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A B S T R A C T

Objectives: Investigating biomarkers to demonstrate progression of Parkinson's disease (PD) is of high priority. We investigated the association of brain structural
properties with progression of clinical outcomes and their ability to differentiate clinical subtypes of PD.
Methods: A comprehensive set of clinical features was evaluated at baseline and 4.5-year follow-up for 144 de-novo PD patients from the Parkinson's Progression

Markers Initiative. We created a global composite outcome (GCO) by combining z-scores of non-motor and motor symptoms, motor signs, overall activities of daily
living and global cognition, as a single numeric indicator of prognosis. We classified patients into three subtypes based on multi-domain clinical criteria: ‘mild motor-
predominant’, ‘intermediate’ and ‘diffuse-malignant’. We analyzed diffusion-weighted scans at the early drug-naïve stage and extracted fractional anisotropy and
mean diffusivity (MD) of basal ganglia and cortical sub-regions. Then, we employed graph theory to calculate network properties and used network-based statistic to
investigate our primary hypothesis.
Results: Baseline MD of globus pallidus was associated with worsening of motor severity, cognition, and GCO after 4.5 years of follow-up. Connectivity disruption

at baseline was correlated with decline in cognition, and increase in GCO. Baseline MD of nucleus accumbens, globus pallidus and basal-ganglia were linked to
clinical subtypes at 4.5-year of follow-up. Disruption in sub-cortical networks associated with being subtyped as ‘diffuse-malignant’ versus ‘mild motor-predominant’
after 4.5 years.
Conclusions: Diffusion imaging analysis at the early de-novo stage of PD was able to differentiate clinical sub-types of PD after 4.5 years and was highly associated

with future clinical outcomes of PD.

1. Introduction

Although Parkinson's disease is often conceived of as a homogenous
disease, there are in fact radical differences in clinical manifestations
and progression between patients (Simuni et al., 2018). With this in
mind, there is a growing need for identifying biomarkers to predict the
progression of PD.

Despite several investigations, discovery of an accurate biomarker
for PD progression has been still elusive. Neuroimaging research ad-
vances over the past decades, however, have provided promising de-
tailed knowledge of the brain pathology in several neurodegenerative
disorders including PD (Pyatigorskaya et al., 2014, Lehéricy et al.,
2004). In particular, Diffusion Tensor Imaging (DTI) has shown various
structural abnormalities in PD patients compared to healthy controls.
Microstructural damage of white matter integrity, in terms of decreased

fractional anisotropy (FA) and increased mean diffusivity (MD) has
been reported in several brain regions in PD (Cochrane and
Ebmeier, 2013, Zhang et al., 2016). Combining DTI analysis with graph
theory and further reconstruction of the brain networks has demon-
strated disruption of the brain connectivity and widespread pattern of
decreased efficiency in PD patients compared to healthy controls
(Li et al., 2016, Li et al., 2017). Surprisingly, DTI-based imaging ana-
lysis has also succeeded in detecting early pathological brain changes of
PD (Yoshikawa et al., 2004). Insufficiency of global neural connections
has been recently reported in early stage de novo PD patients, by ap-
plying the graph theoretical analysis on DTI scans (Abbasi et al., 2018).
Moreover, several DTI studies detected an abnormal pattern of PD
subnetworks with reduced connectivity using the network-based sta-
tistic (NBS) (Zalesky et al., 2010), which primarily involved key com-
ponents of the limbic system, basal ganglia and sensorimotor area
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(Nigro et al., 2016).
In addition to baseline DTI findings, a 6-year longitudinal study

demonstrated increased mean diffusivity in various brain regions and a
positive correlation between increased diffusivity in the anterior pu-
tamen and PD motor progression (Chan et al., 2016).

Although few longitudinal investigations have been conducted,
systematic longitudinal studies on comprehensive assessments of PD
outcomes are still lacking. Considering the alterations of the diffusion
properties and damage of white matter tracts, here we primarily aimed
to explore whether DTI biomarkers and in particular, structural net-
work properties at baseline, are associated with long-term motor and
non-motor outcomes in patients with PD who were enrolled in the
Parkinson's Progression Markers Initiative (PPMI) cohort (www.ppmi-
info.org/data). In addition, we investigated if baseline DTI measures are
able to distinct clinical subtypes of PD (Fereshtehnejad et al., 2017).

2. Methods

2.1. Participants

Participants of the current study were included from the PPMI co-
hort (Marek et al., 2011). The PPMI is an ongoing multicenter study
consisting of clinical, genetic, biological and imaging measurements of
more than 400 PD patients, designed with the goal of identifying dis-
ease biomarkers. Each participating PPMI site received approval from a
local research ethics committee before study initiation and written in-
formed consent forms were obtained from all subjects participating in
the study. According to the inclusion criteria, de novo PD patients aged
30 years or older at the time of diagnosis with at least two of the fol-
lowing clinical features were eligible: resting tremor, bradykinesia, ri-
gidity OR either asymmetric resting tremor or asymmetric bradyki-
nesia. Additional inclusion criteria were a diagnosis of PD for 2 years or
less at the time of screening; Hoehn and Yahr stage I or II at the baseline
visit; confirmation of dopamine transporter deficit in neuroimaging
assessments; and not expected to require PD medications within at least
6 months from the baseline visit. Patients with a history of PD medi-
cation use including levodopa, dopamine agonists, MAO-B inhibitors
(e.g., selegiline, rasagiline), amantadine or other PD medications within
60 days of the baseline visit or having a clinical diagnosis of dementia
-as determined by the investigator on the basis of the criteria developed
by the Movement Disorders Society (MDS)- were excluded
(Marek et al., 2011).

2.2. Clinical subtypes

We recently recommended guidelines for subtyping de novo PD
subjects based on clinical features (Fereshtehnejad et al., 2017). Three
distinct subtypes of PD were defined by hierarchical clustering based on
a composite motor severity score and three main non-motor domains at
baseline: REM sleep behavior disorder (RBD), dysautonomia, and cog-
nitive impairment. The “mild motor-predominant” subtype consists of
individuals with both composite motor and all non-motor symptom
scores below the 75th percentile of severity (calculated from the same
PPMI population). At the other end of the spectrum, two criteria cate-
gorized the “diffuse-malignant” subtype: individuals who scored > 75
th percentile in composite motor symptom score and at least one of the
three non-motor domains or those who scored > 75th percentile in all
three non-motor domains, regardless of the motor severity. The re-
maining cases were classified as the “intermediate” subtype. This
classification was supported by differing rates of progression of clinical
and structural imaging measures at 2.7 years. To investigate if baseline
DTI analysis could predict shifting in clinical subtypes, we reclassified
participants after 4.5 years of follow-up by using the updated reference
percentile values derived from the score distribution of these motor and
non-motor features.

Applying this comprehensive classification on PPMI participants,

422 PD subjects were subcategorized into one of three subtypes, mild-
motor predominant, intermediate and diffuse-malignant. Among them,
152 patients had undergone DTI scan of the brain at the baseline visit.
The scans underwent a basic quality control assessment by the Center
for Imaging of Neurodegenerative Diseases (VA Medical Center, San
Francisco, CA), and processed images were uploaded to the PPMI
website. We also checked each scan visually for quality assessment.
Thereafter, 8 participants that either had only one baseline DTI or failed
the quality control were excluded from our study, so that 144 PD pa-
tients (82 mild-motor predominant, 48 intermediate and 14 diffuse-
malignant on baseline classification) were included for the main ana-
lysis.

2.3. Clinical measures

A comprehensive set of demographic and clinical features were re-
corded at enrollment and at every follow-up visit for each participant.
Table 1 summarizes the baseline and 4.5-year follow-up values for each
clinical measure categorized into motor and non-motor manifestations.

For longitudinal assessments, we defined four major clinical out-
comes consisting of:

- Motor severity: sum of the severity scores for motor symptoms and
signs measured by the MDS-unified Parkinson's disease rating scale
(MDS-UPDRS) (Goetz et al., 2008) parts II and III, respectively.

- Motor phenotype: postural instability gait difficulty (PIGD) score
(Stebbins et al., 2013).

- Cognition: global cognitive status measured by the Montreal cog-
nitive assessment (MoCA) score (Nasreddine et al., 2005).

- Global composite outcome (GCO): for analysis of overall disease
progression, we used a previously-published global composite score
as a single numeric indicator of prognosis (Fereshtehnejad et al.,
2017, Fereshtehnejad et al., 2015). This was calculated by com-
bining z-scores of: 1) non-motor symptoms (MDS-UPDRS-I), 2)
motor symptoms (MDS-UPDRS-II), 3) motor signs (MDS-UPDRS-III),
4) overall activities of daily living (Schwab and England ADL) and
5) global cognition (MoCA score).

2.4. MRI acquisition

We used the initial visit whole-brain T1 structural and diffusion MRI
scans of our participants which were performed at various sites on a

Table 1
Demographic and clinical characteristics of the study population (n = 144) at
baseline and the end of follow-up (4.5 years).

Characteristic Baseline Follow-up

Demographics
Age at onset (year) 60.6 (9.5) –
Male sex (%) 90 (62.5%) –
Education history (year) 15.3 (3.0) –
Symptoms duration (month) 6.5 (6.8) –
Positive family history (%) 24 (16.9%) –
Clinical Motor Features
UPDRS-Part II 5.5 (4.0) 10.2 (7.7)
UPDRS-Part III 20.6 (8.7) 27.9 (14.9)
Schwab & England score 94.6 (5.4) 86.2 (13.5)
PIGD score 0.22 (0.23) 0.51 (0.67)
Clinical Non-Motor Features
UPDRS-Part I 5.2 (3.7) 7.6 (5.5)
Epworth sleepiness score 5.9 (3.3) 8.1 (5.1)
Geriatric depression scale (GDS) 2.4 (2.6) 3.3 (3.6)
State-trait anxiety inventory (STAI) score 66.6 (18.5) 67.8 (22.5)
Impulse control disorders (QUIP score) 0.28 (0.57) 0.33 (0.61)
REM sleep behavior disorder (RBD) score 3.3 (2.4) 4.8 (3.2)
SCOPA autonomic score 9.1 (6.0) 12.7 (6.7)
MOCA score 27.7 (2.1) 26.7 (4.1)
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Siemens 3 Tesla TIM Trio system (Siemens AG, Munich, Germany)
using a 12-channel Matrix head coil. According to the PPMI cohort
imaging protocols a three-dimensional T1 image was acquired using a
magnetization-prepared rapid acquisition gradient echo protocol with
the following parameters: repetition time (TR)=2300 ms; echo time
(TE)=2.98 ms; field of view (FOV)=256 mm; flip angle=9; and voxel
size =1 mm3. The whole-brain diffusion MRI acquisition sequence used
the following parameters: diffusion gradient directions=64;
TR=900 ms; TE=88 ms; b-values=0, 1000s/mm2;
FOV=230 × 230 mm; in-plane resolution=2 mm isotropic; number of
contiguous slices=72; slice thickness=2 mm; and acceleration
factor=2. Detailed acquisition parameters are available on the PPMI
website (http://www.ppmi-info.org/study-design/research-documents-
and-sops/).

2.5. DTI processing

Diffusion Weighted Imaging data were preprocessed and analyzed
using the Oxford Center for Functional MRI of the Brain Diffusion
Toolbox (v5.0) (http://www.fmrib.ox.ac.uk/fsl) (Smith et al., 2004).
Visual quality assessment was performed after each processing step.
Baseline diffusion-weighted scans were first corrected for head motion
and eddy currents. Diffusion tensor models were then fitted in-
dependently for each voxel within the brain, and FA and MD maps were
subsequently computed for each participant.

2.6. Fractional-anisotropy and mean-diffusivity maps

Using the previously extracted maps, we mainly focused on six re-
gions of interest (ROI) in the basal ganglia including ventral caudate,
dorsal caudate, globus pallidus, nucleus accumbens, ventromedial pu-
tamen and dorsolateral putamen and estimated the mean FA and MD in
each hemisphere. FA and MD measures were then summed to obtain a
whole basal ganglia measure for each hemisphere. Moreover, a pre-
vious structural study on the PPMI dataset revealed cortical thinning of
various brain regions after 1 year of follow up in PD patients relative to
healthy controls (Yau et al., 2018). Accordingly, we conducted an ex-
ploratory analysis on the seven affected cortical regions including bi-
lateral medial and inferior frontal lobe, precentral and postcentral gyri,
inferior and medial temporal lobe and left lateral occipital gyri. The
results of the cortical analysis are presented in Supplementary material.

2.7. Brain parcellation

We used the Brainnetome atlas for brain parcellation (http://www.
atlas.brainnetome.org) (Brainnetome , 2013). This atlas consists of 246
cortical and sub-cortical regions based on MRI-derived structural and
functional connectivity patterns and cytoarchitecture. Brainnetome
regions were non-linearly transformed into the DTI space of each par-
ticipant using the FNIRT package of FSL. The affine transformation
from a subject's native to the structural (T1 MRI) space followed by
nonlinear warps/displacement of structural to standard (MNI152) space
were calculated and inversely applied on the Brainnetome regions for
each participant.

2.8. Network analysis

Interregional white matter tracts were analyzed using a multi-fiber
diffusion probabilistic model which estimates probability distribution
of one or more connections at each brain voxel using the probtrackx
package of FSL (Behrens et al., 2007). Whole brain network construc-
tion was performed via tractography between each of the regional la-
bels as a seed and the remaining labels as targets. Using the Brainne-
tome atlas parcellations, a 246 × 246 weighted interregional
connectivity matrix was thus obtained for each participant. Each value
within the connectivity matrices represents the number of probabilistic

tracts or fiber pathways that connect the two regions. Since diagonal
elements represent self-connections, we excluded them from further
graph analyses. Thus, the nodes of the graph are the brain parcels and
the edges the estimated number of white matter tracts between them.

2.9. Graph theoretical analysis

We used the Brain Connectivity Toolbox (http://www.braim-
connectivity-toolbox.net/) (Rubinov and Sporns, 2010) to perform
graph theoretical analysis on the individual brain graphs or con-
nectomes. For each connectivity matrix we calculated the following
global network measures: 1) global efficiency, the average of the in-
verse shortest path length; 2) mean clustering coefficient, the mean
probability that two nodes connected to an index node are also con-
nected with each other; 3) characteristic path length, the average
shortest path length between any two nodes. We also examined the
following local characteristics of the graph: 1) nodal degree, the
number of connections of any node with the rest of the network; 2)
nodal strength, the sum of weights of links connected to a node; 3)
clustering coefficient, the fraction of a node's neighbors that are
neighbors of each other; 4) local efficiency, the efficiency computed on
node neighborhoods (Brainnetome , 2013). According to our primary
hypothesis, assessments for the local metrics were performed on the 6
distinct basal ganglia sub-regions of each hemisphere based on the
Brainnetome atlas parcellations.

2.10. Network-based statistic analysis

Given the fact that the mild motor-predominant and the diffuse-
malignant subtypes represent the two extremes of PD clinical severity
(Fereshtehnejad et al., 2017), we used the NBS analysis approach to
further identify specific different interregional white matter subnet-
work between the two subtypes, using clinical classification from the
baseline and follow up visits (4.5 years). By evaluating the null hy-
pothesis at the level of interconnected subnetworks rather than in-
dividual connections, we avoided multiple comparisons problems when
mass univariate testing is performed at every connection in the graph.
Zalesky et al. have provided a detailed description of the NBS metho-
dology (Zalesky et al., 2010). Briefly, this method first identifies the
supra-threshold connections by using a primary component-forming
threshold. Then, the size of the remaining connected components in the
network (i.e., number of edges) is determined. Using the null dis-
tribution of maximal connected component size obtained empirically
by a non-parametric permutation approach, a corrected p-value is cal-
culated. In addition, we re-did this analysis by weighting each con-
nection by fractional anisotropy and mean diffusivity and re-calculated
the connectivity matrices across PD subtypes. 5000 permutations were
used for this analysis. These results are presented in Supplementary
materials.

2.11. Statistical analysis

We used R v3.2.2 (RStudio Team 2015) and MATLAB v2108a to
perform statistical analysis. We summed the left- and right- hemisphere
values of FA and MD as a single aggregate measure. Global and local
connectivity metrics were also calculated using the afore-mentioned
graph analysis.

One-way ANOVA tests were used to compare differences in baseline
DTI measures between various clinical subtypes of PD, defined at
baseline and after 4.5 years of follow-up. A two-tailed FDR-corrected p-
value < 0.05 was considered as the significance threshold for the
comparative analyses.

Furthermore, we performed an exploratory Pearson correlation
analysis to assess whether baseline DTI measures and network metrics
associate with longitudinal change in the clinical outcomes of interest
after follow-up. Afterwards, we regressed out the effect of age, as a
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potential confounder, by adjusting all associations for age using partial
correlations.

In order to investigate the primary drivers of the relationship be-
tween brain measures, demographic features and clinical outcomes in a
single model, we performed a partial least square (PLS) analysis
(Herve and Williams, 2010). PLS is a multivariate approach based on
singular value decomposition (SVD) of the data matrices to investigate
the linear relationship between two sets of variables. We used the PLS
MATLAB toolbox (McIntosh and Lobaugh, 2004) (https://www.
rotman-baycrest.on.ca/index.php?section=84). This approach was
previously explained in detail elsewhere (Zeighami et al., 2017).
Briefly, SVD was applied to the correlation matrix between two sets of
measures (i.e. brain and clinical measures). The significance of the
covariance explained for each latent variable was measured using
permutation analysis (N = 500 repeats). The confidence interval for
individual coefficients for each variable loaded in a given latent vari-
able was calculated using bootstrapping (i.e. randomly sampled with
replacement, N = 500). We ran the analysis with MD- and FA-only to
ensure the stability of the results.

2.12. Data availability

All data used in this manuscript are part of publicly available and
de-identified PPMI database (https://www.ppmi-info.org). Procedures
for data request can be found at https://www.ppmi-info.org/access-
data-specimens/download-data.

3. Results

The study population consisted of 90 (62.5%) males and 54 (37.5%)
females with an average age of 60.6 (SD=9.5) years and symptom
duration of 6.5 (SD=6.8) months at enrollment. Participants were all in
the drug-naïve stage with an average MDS-UPDRS-part III score of 20.6
(SD=8.7) and Hoehn and Yahr stage of 1–2 at baseline. Other demo-
graphic and clinical measures at baseline and after 4.5 years follow-up
are listed in Table 1.

3.1. Clinical subtypes of PD

Using previously determined multi-domain criteria
(Fereshtehnejad et al., 2017), 82 (56.9%) participants were categorized
as ‘mild motor-predominant’, 48 (33.3%) as ‘intermediate’, and 14
(9.7%) as ‘diffuse-malignant’ at baseline. Whereas no single micro-
structural DTI measure in basal nuclei differentiated clinical subtypes at
baseline (Fig. 1), network metrics significantly varied between the in-
itial subtypes at enrollment (Fig. 2). Individuals with ‘diffuse-malig-
nant’ PD at baseline had significantly lower global efficiency (FDR
connected p < 0.05) and higher characteristic path length (FDR cor-
rected p < 0.05, Fig. 2, Table 2a) compared to the other subtypes.

After 4.5 years of follow-up, 62% of patients remained in their
subtype, and 38% of the study population switched clinical subtypes. At
follow up, 83 (57.6%) were classified as ‘mild motor-predominant’, 45
(31.3%) as ‘intermediate’ and 16 (11.1%) as the ‘diffuse-malignant’
subtype. Differences between local metrics of basal ganglia across PD
subtypes are presented in Table 2b. As illustrated in Fig. 1, mean dif-
fusivity of nucleus accumbens (FDR corrected p < 0.001), globus
pallidus (FDR corrected p < 0.05) and the entire basal ganglia (FDR
corrected p < 0.05) at the baseline scan could significantly predict
clinical subtypes at the 4.5 years of follow-up. Furthermore, partici-
pants who were categorized as ‘diffuse-malignant’ PD after 4.5 years,
had significantly lower global efficiency (FDR corrected p < 0.001)
and higher characteristic path length (FDR corrected p < 0.001) at
baseline (Table 2a, Fig. 2)

We also compared nodal metrics of basal ganglia between PD sub-
types (Supplementary Fig. e.1). Members of the ‘diffuse-malignant’
subtype, defined after 4.5 years follow-up, had significantly lower local

efficiency of caudate, nucleus accumbens, and dorsolateral putamen at
baseline (FDR corrected p < 0.05, Supplementary Fig. e.1). Individuals
with ‘diffuse-malignant’ PD had significantly lower nodal strength in
nucleus accumbens (FDR corrected p < 0.05).

Finally, for the cortical regions, at baseline only nodal strength of
the pre-central (Pfdr=0.02, mean sum of sub-regional z-scores: mild
motor-predominant=0.6871, intermediate=0.8631, diffuse-malig-
nant = −6.9840) and post-central (Pfdr=0.02, mild motor-pre-
dominant=0.9431, intermediate= −0.2281, diffuse-malig-
nant = −4.9374) gyri were significantly lower in ‘diffuse-malignant’
subtype. Moreover, participants who were categorized as ‘diffuse-ma-
lignant’ PD after 4.5 years, had significantly higher mean diffusivity of
inferior frontal (Pfdr = 0.042, mild motor-predominant=0.0148, in-
termediate= 0.0149, diffuse-malignant = 0.0162) and medial (Pfdr =
0.036, mild motor-predominant=0.0081, intermediate= 0.0081, dif-
fuse-malignant = 0.0088) and inferior (Pfdr = 0.018, mild motor-pre-
dominant=0.0127, intermediate= −0.0129, diffuse-malignant
=0.0136) temporal lobe and lower nodal strength in the seven cortical
ROIs (Pfdr< 0.05).

3.2. Longitudinal progression in clinical outcomes

Table 3 and supplementary table e-1 summarize the results of the
exploratory bivariate Pearson and age-adjusted partial correlations
between DTI measures at baseline and longitudinal changes in the
clinical outcomes of interest after follow-up focusing on the basal
ganglia. Baseline mean diffusivity, in all regions, was associated with
further increase in PIGD score (faster development of posture and gait
problems); however, among basal ganglia nuclei, it remained statisti-
cally significant in globus pallidus after regressing out the effect of
aging (r = 0.25, p = 0.003). Baseline mean diffusivity of globus pal-
lidus was also significantly associated with the worsening of motor
severity as measured by MDS-UPDRS-parts II-III (r = 0.27, p = 0.001),
cognition as measured by MoCA (r=−0.18, p = 0.040), and global
outcome as shown by the GCO z-score (r= 0.30, p < 0.0001) after 4.5
years of follow-up. As shown in Table 3, FA failed to demonstrate any
significant association with disease progression.

After running the PLS analysis between MD/FA and the clinical
measures, we found that the first latent variable significantly explained
the covariance between the two sets of variables (Fig. 3). These results
showed a relationship between generally higher mean diffusivity in
basal ganglia and 1) older age, 2) male gender, 3) more rapid cognitive
decline (further reduction in MOCA, 4) more rapid worsening of pos-
tural instability and gait (expressed in the PIGD score), and faster
progression of global impairment (increased GCO score). The first latent
variable accounted for 75% of the covariance. However, these results
were mainly driven by the alterations in MD rather than FA, as shown
on the previous analysis. In a post hoc analysis we ran PLS analysis
separately, for MD and FA. The results were highly stable for MD-only,
with a high degree of similarity to the original results, however the first
latent variable for FA-only was not significant, indicating a higher
contribution of MD to the original covariance explained. Finally, the
relationship between MD and clinical measures was consistent and si-
milar in different areas of basal ganglia in the PLS model. This suggests
that the alteration in mean diffusivity could be present throughout the
whole basal ganglia and not restricted to only one of its sub-compo-
nents.

Investigating the brain network metrics, decreased global efficiency
and increased characteristic path length at baseline significantly cor-
related with increase in GCO (r=−0.19 and +0.18 respectively,
p ≤ 0.05), increase in PIGD scores (r=−0.30 and +0.32 respectively,
p < 0.001) and decline in MoCA (r=+0.22 and −0.22 respectively,
p < 0.05) after follow-up. These associations remained statistically
significant after regressing out the effect of aging (Table 3). In basal
ganglia network, higher clustering coefficient and local efficiency at
baseline correlated with less increase in PIGD score (r=−0.19 and
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Fig. 1. Basal ganglia mean diffusivity in baseline and follow up subtypes of Parkinson's disease (PD)
(a) Mean diffusivity of basal ganglia sub-regions in baseline (left) and follow up (right) PD sub-types. Diffuse-malignant subtype, particularly after 4.5 years of follow
up, showed higher mean diffusivity of nucleus accumbens and globus pallidus. (b) Mean diffusivity of basal ganglia in follow up diffuse-malignant subtype was
significantly higher than the mild motor-predominant subtype, (c) Sub-regions of basal ganglia in Brainnetome atlas. MD = mean diffusivity, L = left, R = right,
vCa = ventral caudate, GP = globus pallidus, NAC = nucleus accumbens, vmPu = ventromedial putamen, dCa = dorsal caudate, dlPu= dorsolateral putamen,
* = p-value < 0.05.
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−0.20, p < 0.05) and less decline in MoCA score (r = 0.21 and 0.21,
p < 0.05) after 4.5 years. Participants with higher nodal strength of
basal ganglia also experienced less cognitive decline after follow-up

(r= 0.25, p= 0.003). The associations between baseline nodal metrics
in basal ganglia and longitudinal change in MoCA and PIGD scores were
independent of the effect of aging (Table 3).

Fig. 2. Structural brain network and clinical subtypes of Parkinson's disease (PD)
(a) Global efficiency and characteristic path length showed more disruption in anatomical brain connectivity in diffuse-malignant subtype of PD. (b) Network based
statistic identified two subnetworks with decreased efficiency in diffuse malignant compared to mild motor-predominant in the follow up clinical subtypes. The first
subnetwork consisted of 6 edges, connecting 7 regions of the brain (corrected p < 0.005) which primarily involved key components of basal ganglia, thalamus and
inferior frontal gyrus. The second subnetwork consisted of 5 brain sub-regions including insula and superior temporal gyrus which were connected through 4 edges
(corrected p < 0.01). r = right hemisphere, IFG = inferior frontal gyrus, BG = basal ganglia, Tha = thalamus, INS = insula, STG = superior temporal gyrus,
PoG = post-central gyrus.

Table 2a
Baseline global network measures between distinct clinical subtypes of Parkinson's disease, defined at baseline and after 4.5 years of follow-up (n = 144).

(Values in each cell represent the average z-score of each measure in each subtype).

Parkinson's disease clinical subtypes at baseline
Global Network Metrics Mild Motor-predominant Intermediate Diffuse malignant Corrected p-value fdr

Global efficiency 0.05527 0.12158 −0.7406 0.033
Characteristic path length −0.0305 −0.1454 0.67711 0.033
Mean clustering coefficient 0.04291 0.01003 −0.2857 0.526

Parkinson's Disease Clinical Subtypes at Follow-up
Global Network Metrics Mild Motor-predominant Intermediate Diffuse malignant Corrected p-value fdr
Global efficiency 0.17531 6.1E-06 −0.9094 <0.001
Characteristic path length −0.1715 −0.0345 0.98657 <0.001
Mean clustering coefficient 0.05012 0.01606 −0.3052 0.428
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We also explored how nodal metrics in each sub-region of the basal
ganglia associated with the progression of clinical outcomes (Table e-
1). Region-specific nodal metrics were mostly associated with the

change in PIGD score and cognitive status. Among basal ganglia sub-
regions, nodal metrics of dorsolateral putamen significantly correlated
with worsening of all clinical measures, namely motor severity, gait and
postural instability, cognitive status and the GCO. Nodal metrics of
nucleus accumbens also significantly associated with longitudinal
change in motor phenotype as measured by PIGD score and cognitive
impairment after 4.5 years (Table e-1).

Studying the cortical ROIs, only mean diffusivity of inferior tem-
poral lobe showed significant correlation with PIGD (Pfdr = 0.006,
r = +0.302), MOCA (Pfdr = 0.01, r = −0.27) and GCO (Pfdr = 0.009,
r = 0.323) scores. Network measurements revealed no correlation with
clinical measures after correcting for multiple comparisons.

3.3. Whole brain mapping of PD subtypes

NBS detected two subnetworks of significantly reduced connectivity
at the baseline connectomes, in patients who were later subtyped as
‘diffuse-malignant’ compared to the ‘mild-motor predominant’ patients
by the 4.5 years follow up classification (p < 0.05, corrected for
multiple comparisons; Fig. 2). The first subnetwork consisted of 6
edges, connecting 7 regions of the brain (corrected p < 0.005) which
primarily involved key components of regions known to be involved in
PD like basal ganglia, thalamus and inferior frontal gyrus sub-regions.
The second significantly different subnetwork consisted of 5 brain re-
gions including insula and superior temporal gyrus sub-regions of the

Table 2b
Baseline local network measures of basal ganglia between distinct clinical
subtypes of Parkinson's disease, defined at baseline and after 4.5 years of
follow-up (n = 144).

(Values in each cell represent the average z-score of each measure in each
subtype).

Parkinson's Disease Clinical Subtypes at Baseline
Basal Ganglia Mild Motor-

predominant
Intermediate Diffuse

malignant
Corrected p-
value fdr

Clustering
Coefficient

0.07438 0.04798 −0.6 0.089

Nodal Degree 0.02361 0.05079 −0.3124 0.467
Nodal Strength −0.0025 0.16234 −0.5419 0.089
Local Efficiency 0.07417 0.06427 −0.6548 0.089

Parkinson's Disease Clinical Subtypes at Follow-up
Basal Ganglia Mild Motor-

predominant
Intermediate Diffuse

malignant
Corrected p-
value fdr

Clustering
Coefficient

0.14702 −0.0862 −0.5202 0.076

Nodal Degree 0.10286 −0.0636 −0.3548 0.216
Nodal Strength 0.10439 −0.0192 −0.4874 0.125
Local Efficiency 0.14992 −0.0807 −0.5508 0.076

Table 3
Bivariate Pearson and age-adjusted partial correlations between microstructural/network metrics at baseline and longitudinal changes in the clinical outcomes of
Parkinson's disease progression after 4.5 years of follow-up.

Imaging Measures Motor severity Motor phenotype Cognition GCO
Δ UPDRS-II-III Δ PIGD Score Δ MoCA Score Δ z-score

Mean Diffusivity
Caudate NS +0.19 (0.022) NS NS

– NS – –
Putamen NS +0.18 (0.031) NS +0.19 (0.027)

– NS – NS
Nucleus Accumbence NS +0.21 (0.012) NS NS

– NS – –
Globus Pallidus +0.27 (0.001) +0.29 (0.001) −0.18 (0.040) +0.30 (<0.001)

+0.24 (0.004) +0.25 (0.003) NS +0.26 (0.003)
Basal Ganglia NS +0.25 (0.002) NS +0.21 (0.012)

– +0.19 (0.026) – NS
Fractional Anisotropy
Caudate NS NS NS NS

– – – –
Putamen NS NS NS NS

– – – –
Nucleus Accumbence NS NS NS NS

– – – –
Globus Pallidus NS NS NS NS

– – – –
Basal Ganglia NS NS NS NS

– – – –
Network Metrics
Global Efficiency NS −0.30 (< 0.001) +0.22 (0.008) −0.19 (0.026)

– −0.28 (0.001) +0.21 (0.015) −0.17 (0.052)
Characteristic Path Length NS +0.318 (<0.001) −0.22 (0.009) +0.18 (0.031)

– +0.30 (< 0.001) −0.20 (0.015) NS
Average of Clustering Coefficient NS NS NS NS
Nodal Metrics-Basal Ganglia
Clustering Coefficient NS −0.19 (0.022) +0.21 (0.011) NS

– −0.20 (0.016) +0.23 (0.006) –
Nodal Degree NS NS NS NS

– −0.21 (0.015) – –
Nodal Strength NS NS +0.22 (0.004) NS

– – +0.28 (0.001) –
Local Efficiency NS −0.20 (0.014) +0.21 (0.011) NS

– −0.22 (0.011) +0.23 (0.006) −0.17 (0.045)

In each cell, data are presented as correlation coefficient (p-value) followed by age-adjusted values in the second row. Data on fractional anisotropy and mean
diffusivity sections are incorporated as sum of the left- and right-side values. Correlations that remained statistically significant are bolded. GCO = Global Composite
Outcome, UPDRS = Unified Parkinson's disease Rating Scale, MoCA = Montreal Cognitive Assessment, Δ = change in the clinical outcome, NS = not significant.
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Fig. 3. Relationship between microstructural properties of brain and clinical measures (a) Regional microstructural properties contributing to the first latent variable
using partial least square analysis. The confidence intervals calculated using bootstrapping (N = 500). (b) Clinical measures contributing microstructural properties
to the first latent variable. (c) P-value based on the permutation analysis (N = 500), as well as covariance explained for each latent variable. In all plot blue is the
main analysis using both mean diffusivity and fractional anisotropy, cyan is for using only mean diffusivity, and green is using only fractional anisotropy (The only
mean diffusivity and only fractional anisotropy are only intended as post-hoc analysis for stability of results). L = left, R = right, vCa = ventral caudate,
GP = globus pallidus, NAC = nucleus accumbens, vmPu = ventromedial putamen, dCa = dorsal caudate, dlPu = dorsolateral putamen.

Table 4
Networks identified to be significantly different between the “diffuse-malignant” and “mild-motor predominant” subtypes
of Parkinson's disease, based on the 4.5-years follow up classification by using the Network-Based Statistical analysis.

Networks and connections t value

Network 1 (7 nodes, 6 edges, p = 0.003)
Right inferior frontal gyrus, caudal area 45 and Right globus pallidus t = 3.03
Right Inferior frontal gyrus, caudal area 45 and Right dorsolateral putamen t = 2.94
Right Inferior frontal gyrus, rostral area 45 and Right medial pre-frontal thalamus t = 2.97
Right Inferior frontal gyrus, rostral area 45 and Right pre-motor thalamus t = 3.23
Right Inferior frontal gyrus, caudal area 45 and Right lateral pre-frontal thalamus t = 3.01
Right Inferior frontal gyrus, rostral area 45 and Right lateral pre-frontal thalamus t = 2.90
Network 2 (5 nodes, 4 edges, p = 0.009)
Right superior temporal gyrus TE1.0-TE1.2 and Right superior temporal gyrus, caudal area 22 t = 3.72
Right superior temporal gyrus TE1.0-TE1.2 and Right dorsal granular insula t = 3.46
Right post-central gyrus and Right dorsal dys-granular insula t = 3.13
Right dorsal granular insula and Right dorsal dys-granular insula t = 3.61
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barainnetome parcellation which were connected through 4 edges
(Table 4). On the other hand, the FA-weighted connectivity matrices
revealed no difference across a wide range of thresholds between the
diffuse-malignant and mild motor-predominant subtypes of PD, defined
at baseline and after 4.5 years. However, the MD-weighted connectome
demonstrated three sub-networks with higher mean diffusivity in dif-
fuse-malignant subtype of PD defined after 4.5 years of follow up
compared to mild motor-predominant subtype. Similarly, basal ganglia,
insula, cingulate and pre and post-central gyri were notably involved in
different sub-networks of the MD-weighted matrices (Supplementary
material).

4. Discussion

Having explored a large DTI set of early-phase, drug-naïve PD pa-
tients, our study provided new evidence that these measures of struc-
tural neural disruption can predict clinical motor and non-motor out-
comes of PD. In this longitudinal cohort, we analyzed microstructural
damage of regional integrity (reflected by increased diffusivity) and
disruption of the brain's connectivity pattern predicted progression of
motor and non-motor symptoms over time. The fact that baseline DTI
properties could identify clinically distinct sub-types of PD patients
after 4.5 years of follow up, highlights a key role for DTI biomarkers in
classifying and predicting PD prognosis over time.

4.1. Microstructural abnormalities and PD progression

Disruption in coherence of the underlying brain tissue is mainly
reflected by a decrease in FA or an increase in MD. Although for most of
the brain regions decreased FA and increased MD occur together in a
similar pattern, in some regions one measure dominates, as FA is more
sensitive to tissue directionality, while MD mainly represents tissue
density and extracellular fluid accumulation (Wiltshire et al., 2010).
Disruption of the white matter integrity occurs in PD across several
regions of the cerebral white matter and is particularly notable in
subcortical areas (Pyatigorskaya et al., 2014, Cochrane and
Ebmeier, 2013, Atkinson-Clement et al., 2017, Deng et al., 2018). Fo-
cusing on the basal ganglia and in line with pathologic pattern of PD
development, we found significant associations between increased
mean diffusivity of the basal ganglia sub-regions (particularly globus
pallidus) at the very early de novo stage, and progression of global
composite outcome after 4.5 years of follow up. The baseline MD value
of globus pallidus also positively correlated with motor and cognitive
progression and faster development of gait problems as measured by
PIGD scoring. We did not find the same association for FA, a finding
that was largely replicated by the PLS analysis. Several studies reported
positive correlation between DTI measures of nigrostriatal projection
loss and motor severity in PD (Yoshikawa et al., 2004, Zhang et al.,
2015, Zhan et al., 2012); however, other studies did not replicate the
association (Vaillancourt et al., 2009, Du et al., 2011). Zhang et al.
reported higher rates of FA reduction and radial and axial diffusivity
increases predominately in substantia nigra, midbrain and thalamus of
PD patients in the same cohort (PPMI), after one year of follow up,
compared to normal aging. They also observed that a steep increase in
diffusivity of thalamus correlated with fast cognitive decline measured
by MoCA; however, they found no significant correlation between mi-
crostructural DTI changes and UPDRS score after one year (Zhang et al.,
2016). Previous studies on PD showed that cognitive impairment in
executive and visuospatial domains associated with increases in diffu-
sivity of thalamic (Chen et al., 2017), prefrontal (Auning et al., 2014)
and frontal (Koshimori et al., 2015) regions. Zheng et al. reported that
MD of various subcortical regions associated more strongly with per-
formance in distinct cognitive domains than FA (Zheng et al., 2014). In
addition, MD in putamen was positively correlated with MDS-UPDRS
motor score (Wang et al., 2015) as well as MDS-UPDRS motor pro-
gression over 6 years (Chan et al., 2016). PD patients with freezing of

gait showed higher MD values in subcortical structures such as basal
ganglia compared to patients without gait freezing (Youn et al., 2015).
It is interesting to note that the highest correlation of DTI changes with
PD progression over 4.5-years of follow up was found for globus pal-
lidus, which has a primary action in movement regulation and is used as
a target for deep brain stimulation in PD (Dostrovsky et al., 2002). This
is in line with previous results which showed a significant increase in
diffusivity of the globus pallidus in PD patients compared to healthy
controls (Atkinson-Clement et al., 2017, Menke et al., 2013) and its
correlation with motor severity in the PIGD subtype of PD (Nagae et al.,
2016).

In general, disruption of motor and cognitive function in PD may be
related to more severe loss of brain tissue as reflected by diffusivity,
than by disruption in tissue coherence (Zheng et al., 2014, Wang et al.,
2015). Taken together, our results may suggest that baseline micro-
structural alterations of the brain regions, measured by increased dif-
fusivity are not only correlated with major symptoms of PD (Hall et al.,
2016) but also predict long term motor and non-motor outcomes of PD.

4.2. Structural network properties and PD progression

Implementing graph theoretical analysis, our results revealed sig-
nificant correlations between baseline structural brain networks and
future clinical outcomes of PD. Several studies have previously noted
disruption of anatomical brain networks in PD patients compared to
healthy controls (Nigro et al., 2016, Kamagata et al., 2018). More
specifically, PD patients have demonstrated decreased efficiency of
various global and local metrics of structural connections. In PPMI, PD
patients have been shown to have disrupted structural connectivity at
the global level compared to healthy controls (Abbasi et al., 2018). Few
connectomic analyses have also investigated the correlation between
altered brain networks and clinical manifestations in PD and reported
that impaired cognition is associated with disruption of functional and
structural brain networks (Christopher and Strafella, 2013, Beyer et al.,
2013). Similar studies could not replicate such associations for severity
of motor symptoms (Nigro et al., 2016, Fang et al., 2017,
Campbell et al., 2015), resulting in general lack of consensus on the
association of brain networks and clinical manifestations in PD. In the
current longitudinal study, however, we observed remarkable links
between baseline structural network metrics and clinical features of PD,
both at the early drug-naïve stage and after 4.5 years of follow-up.
Decreased global efficiency and increased characteristic path length
which reflect disruption in the integration of brain connections were
correlated with worsening of PIGD, MoCA and GCO scores after 4.5
years of follow up. Considering the key role of basal ganglia in PD, we
observed that disruption of the local network metrics including clus-
tering coefficient, local efficiency, nodal strength and degree in basal
ganglia components, substantially correlated with progression of var-
ious motor and non-motor symptoms. These findings suggest that da-
mages of structural connectivity pattern, either globally or locally in
basal ganglia sub-regions, contribute to various clinical manifestations
of PD. In other words, we found that similar to other neurodegenerative
disorders (Tucholka et al., 2018, Daianu et al., 2013), structural con-
nectivity pattern of the brain alters in early stages of PD and is corre-
lated with clinical progression of the disease over time, as reflected in
our graph theoretical analyses.

4.3. DTI and clinical subtypes of PD

Our results showed that DTI properties could significantly dis-
criminate PD patients with different clinical subtypes after 4.5 years of
follow up. Patients in the ‘diffuse-malignant’ subtype at baseline had
increased diffusivity of basal ganglia and more disruption in global and
local connectivity patterns, relative to the other subtypes. Indeed,
clinical manifestations of PD directly associated with a distinct pattern
of DTI properties. In general, microstructural and connectomic analyses
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followed a disruptive trend as clinical symptoms were more severe from
‘mild-motor predominant’ to ‘diffuse-malignant’ subtype
(Supplementary Fig. e.1).

In addition, our NBS analyses demonstrated a distinct brain network
characterizing the structural connectivity abnormalities in the ‘diffuse-
malignant’ subtype compared to ‘mild motor-predominant’ PD. The
involved anatomical regions were predominantly pathways related to
basal ganglia, thalamus and insula which is relatively consistent with
spread of PD neurodegeneration.

The challenge of great heterogeneity in clinical manifestations of PD
is largely illuminated by demonstrating differences in microstructural,
graph theoretical and NBS analyses of DTI measures between distinct
PD subtypes. These findings also provide additional validity for multi-
domain classification of PD. Nevertheless, the fact that baseline DTI
measures and network metrics were more prominently different be-
tween subtypes that were defined after 4.5 years follow-up clinical
evaluations than those defined at baseline, highlights the potential of
imaging biomarkers data to further optimize subtyping in PD.

4.4. Limitations and strengths

This study has several limitations. Our study was restricted to PPMI
subjects and 3T imaging, so DTI studies with different protocols or
imaging acquisition of higher fields may reveal additional details. Some
technical limitations are inherent in multi-center studies, which PPMI
has minimized by setting guidelines for data gathering. Another po-
tential limitation is the choice of region of interest; additional group
differences may be observable with analysis of other brain regions.

On the other hand, the current study has several strengths. We were
able to study a large sample size of de novo PD patients enrolled at
PPMI centers across the world which enhances generalizability of our
findings. Also, here we have investigated basal ganglia sub-regions in
detail by employing the Brainnetome atlas, which allowed us to clarify
the contributions of particular sub-regions in pathophysiology of PD
manifestations. Furthermore, we applied PLS as an innovative approach
and the findings were consistent with our primary analyses, demon-
strating a low possibility for multiple comparison bias. Finally, to the
best of our knowledge, this is the first study that investigated the re-
lationship between comprehensively-defined PD outcomes and dif-
ferent PD phenotypes to DTI MRI properties, on a large sample of PD
patients over time.
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