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Abstract

Computational prediction of residues that participate in protein-protein interactions is a difficult task, and state of the art
methods have shown only limited success in this arena. One possible problem with these methods is that they try to predict
interacting residues without incorporating information about the partner protein, although it is unclear how much partner
information could enhance prediction performance. To address this issue, the two following comparisons are of crucial
significance: (a) comparison between the predictability of inter-protein residue pairs, i.e., predicting exactly which residue
pairs interact with each other given two protein sequences; this can be achieved by either combining conventional single-
protein predictions or making predictions using a new model trained directly on the residue pairs, and the performance of
these two approaches may be compared: (b) comparison between the predictability of the interacting residues in a single
protein (irrespective of the partner residue or protein) from conventional methods and predictions converted from the pair-
wise trained model. Using these two streams of training and validation procedures and employing similar two-stage neural
networks, we showed that the models trained on pair-wise contacts outperformed the partner-unaware models in
predicting both interacting pairs and interacting single-protein residues. Prediction performance decreased with the size of
the conformational change upon complex formation; this trend is similar to docking, even though no structural information
was used in our prediction. An example application that predicts two partner-specific interfaces of a protein was shown to
be effective, highlighting the potential of the proposed approach. Finally, a preliminary attempt was made to score docking
decoy poses using prediction of interacting residue pairs; this analysis produced an encouraging result.
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Introduction

Protein-protein interactions are crucial for almost all aspects of

cellular dynamics in living systems [1], and an enormous amount

of research has been conducted to reveal, understand and predict

protein-protein interactions at species and cellular levels (e.g., [2]).

Despite the central role of protein-protein interactions in the

theme of life, a complete protein-protein interactome has not yet

been deciphered, even for a small organism, and continuous efforts

are being made to refine the available data [3]. Solving the three-

dimensional structure of a protein complex can provide a detailed

understanding of a specific protein-protein interaction (e.g., [4,5]),

but this type of technology becomes inaccessible on a genomic

scale. Pair-wise associations between proteins can be inferred

much more rapidly from high-throughput experiments, such as

yeast two hybrid assays or mass spectrometry [6], but they cannot

provide insights into the detailed mechanisms involved in such

interactions, which is essential for therapeutic or biotechnological

interventions. Therefore, a large number of putative interactions

remain uncharacterized due to this technological gap.

Many protein structures have been solved (or can be modeled

accurately), and the structure of a complex can, in principle, be

obtained by docking its constituents. However, protein-protein

complexes are formed as a result of numerous interactions at

tertiary and quaternary structure levels; therefore, the task of

building a complex from these individual units represents a

considerable challenge. Prediction of interacting regions between a

pair of proteins is a step toward elucidating the final mode of

interaction between the proteins. For this purpose, a sequence-

based approach is likely to be more convenient and faster than

structure-based methods because of the lower dimensionality of

the input data and the abundant sequence information. The

underlying principle behind this approach has been to identify a

relationship between readily computable sequence features (e.g.,

residue type) and the quantities that characterize the interaction

(e.g., residue contact or the change in the free energy of the

association). Once a relationship has been established, novel

interactions can be detected via these features. A number of studies

have been performed attempting to model this relationship (e.g.,

[7,8]). Researchers have also endeavored to distinguish physical

interactions from random associations [9], transient interactions

from obligatory complexes [10], crystal packing from oligomeri-

zation [11] and specificity from affinity and promiscuity [12].

Prediction-oriented studies generally address one of the two

following problems: (a) given a set of proteins, to determine which

pairs interact with each other and (b) given a single-protein

sequence (or structure), to determine sequence (or structural)

regions that would interact with any other protein. Both types of
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studies have relied on a variety of sequence, structural or other

data sources, such as microarray data [9], protein structures

[13,14,15], conservation of interaction sites [16,17], clustering of

conserved residues [18], co-evolution statistics [19] and codon

usage [20]. A variety of computational techniques have been

employed to utilize this information, including neural networks

[21,22,23,24,25], support vector machines [26,27,28,29,30,31,32],

random forests [33] and Bayesian techniques [34,35,36,37,38].

In this study, we are concerned with the second problem, and

we aim to predict interacting residues from sequence information

alone. However, we intend to go beyond the current regime of

predicting residues that would interact with any protein; instead,

we aim to identify interacting residue pairs between two specific

proteins. A more specific objective of the current study was to

assess whether the performance of sequence-based prediction of

interacting residues can be improved by training models on

interacting residue pairs with knowledge of the interacting partner

protein. To answer this question, we trained a two-stage neural

network model on a data set composed of interacting residue pairs

from known protein complexes; next, we trained a similar two-

stage model on a data set of single residues extracted from the

same data source (without using any pairing information). The

performance of the models trained either on residue pairs or on

single residues was compared by predicting both the interacting

residue pairs and the interacting single residues. The results

showed that the models trained on residue pairs outperformed

those trained on single residues on both accounts. Similar to

docking, the prediction performance was anti-correlated with the

size of the conformational change that was induced upon complex

formation.

Furthermore, we carried out a preliminary assessment regarding

the possibility of using this method to predict multiple interfaces of

a protein with different partners, and we obtained an encouraging

result. We also made a preliminary attempt to use the proposed

method as a scoring function for protein-protein docking, and we

showed that our simple procedure was competitive against a more

sophisticated structure-based approach.

Methods

Data Set
The protein-protein docking benchmark data set (version 3.0)

compiled by Hwang et al. [39], which is abbreviated DBD3.0 in

this work, was used throughout this study. We chose this data set

because it was systematically curated and included protein

complexes (each consisting of a ‘‘ligand’’ and a ‘‘receptor’’) for

which the unbound structures of both the ligand and the receptor

were available, thus allowing us to analyze our results in the

context of conformational changes. Furthermore, the data set also

provided pre-computed ranked decoy sets, and we utilized this

resource to score the docking decoys (see below).

This data set contains 124 complexes, and we used only the

bound structures for the current study. The authors constructed

DBD3.0 such that no two complexes shared an identical set of

families defined in Structural Classification of Proteins (SCOP)

[40] (see [39] for details). Thus, the data set was non-redundant,

but the redundancy was defined somewhat differently from the

typical sequence-based prediction methods. We evaluated se-

quence-level redundancy using BLASTCLUST [41] and con-

firmed that no two complexes shared more than 30% sequence

identity in both the ligand and the receptor chains, i.e., at least one

protein in the pair was unique.

To achieve unbiased training and evaluation, we adopted the

procedure described in Figure 1. In DBD3.0, a ligand (or receptor)

may consist of more than one protein chain. Each chain was treated

separately, but only the interactions between the ligand and

receptor were considered (thus, interactions within the ligand or

receptor chains were ignored). Data were pooled for all the chains

from both the ligand and the receptor to produce a single

performance metric for each complex. For example, if there were

m1 and m2 residues in the two chains of a ligand and n1 and n2

residues in the two chains of a receptor, a total of (m1+m2)*(n1+n2)

residue pairs were considered, and an attempt was made to classify

them as either interacting or non-interacting. Likewise, a total of

m1+m2+n1+n2 residues were considered in predicting the interact-

ing residues in a single chain, and the results were pooled together.

Interface residue definition
A pair of residues from different chains of proteins was labeled

as belonging to the positive class (binding) if the distance between

any atom of one residue and any atom of the other was less than or

equal to 6.0 Å. This distance cutoff has been used in other studies

[42]. Contacts within multiple chains of a single ligand or a

receptor were ignored, as illustrated in Figure 1.

Propensity scores
As in our previous studies, we used propensity scores for single-

residue contacts as a ratio between the relative number of that

residue type in the interface and the relative number of residues of

any type in the interface [43,44]. This definition was extended to

pair-wise contacts in a similar way. Specifically, the interface

propensity of a residue pair with indices i and j (where i and j have

values from 1 to 20) is given by the following equation:

Pij~
Nij(I)

Ni �Nj

�XX
Nij(I)XX

Ni �Nj

where Ni refers to the number of residues of residue type i (e.g.,

Arg) and Nij(I) is the number of contacting residue pairs identified

by indices i and j in the interface. Summation was performed over

all the residue pair types.

The statistical significance of the overrepresentation of certain

residue pairs was assessed using a chi-squared test comparing the

observed and expected numbers of contacts for each residue pair.

The observed number of contacts (Oij) was obtained for the entire

set of proteins, and the expected number of contacts (Eij) between

amino acids i and j in one protein complex was computed using

the following equation:

Eij~No

NiNjX
NiNj

where No is the total number of observed contacts among all the

residue pairs and the subscript i and j are used for ligand and

receptor residues respectively. The expected number was com-

puted for each complex separately, and the numbers were then

added to obtain a final value. This expected number of contacts

was compared with the observed number of contacts for each pair

of residue types, and a chi-squared value was computed using the

following formula:

x2
ij~

(Oij{Eij)
2

Eij

and compared with the values from the standard table with a

single degree of freedom.

Pair-Wise Protein-Protein Interaction Prediction
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Interacting residue-pair predictions
Predictions were performed by identifying a trained model that

could relate a set of sequence features from a pair of target residues

and their sequence neighbors to their contact state (binding or

non-binding, as defined above). The sequence feature set refers to

(a) sparsely encoded sequence features, such as those used in

classical works on secondary structure prediction [45]; (b) position-

specific scoring matrix (PSSM)-based features that are similar to

our previous studies [43]; and (c) a combination of (a) and (b).

Sparsely encoded sequence features simply represent each amino

acid by a 20-dimensional vector, in which all but one of the

dimensions are set to zero and one dimension corresponding to

that residue type is set to 1. On the other hand, PSSM-based

encoding represents each residue by the log-odd frequency of

occurrence of the 20 residue types in an alignment at the target

residue position (alignment column). The PSSM was obtained by

running 3 iterations of PSIBLAST [41] using the default

parameters against the NCBI NR database. Typically, an m-

residue window is used for PSSM encoded features, and an n-

residue window is employed for a sparsely encoded residue, where

m and n range from 0 to the maximum window size (7 residues in

this study). The resulting m+n features from each residue at

position i and j in two contacting chains were concatenated in both

orders (i,j and j,i), which created two patterns for the neural

network inputs with identical target outputs. Using the features in

both orders allowed the neural network to automatically learn that

the pattern vector was independent of the order of the residues in

the pair. Accordingly, model performance was evaluated by

making a prediction for each residue pair in both orders and using

the average of the two as the final score. The target output for the

neural network was set to 0 or 1, which corresponded to the

negative and positive class labels as defined above. The neural

networks returned a real number between 0 and 1, which was

converted to a class label using the procedure described in the

performance evaluation section.

In the first stage of prediction, 24 independent neural network

models were trained and assessed by leave-one-out cross

validation. The models were allowed to learn for a fixed number

of cycles without using information from the protein that was left

out. The prediction performance for each left-out protein was

computed from a model trained in the absence of this protein, and

the scores were averaged to obtain an overall performance score.

The first stage neural network models differed from each other in

terms of the following characteristics:

(i) Feature sets: Different window sizes were used for the sparse

and PSSM-encoded environments of the residue pairs that

ranged from 0 to 3 residue neighbors (n sequence neighbors

from the N- and C- terminal position leads to a (2n+1)

residue window, which results in values of 0 to 7). Because

there were 5 such possibilities for each of the sparse and

PSSM-encoded features, a total of 565 possible combina-

tions remained. Of these remaining combinations, 1 (0 for

PSSM and 0 for sparse encoding) was a featureless

representation that was discarded; this left 24 independent

models. Terminal positions where N- and C-terminal

residues are not present and hence pattern vectors could

not be created have been excluded from the training/

validation cycle data sets.

(ii) Negative data sampling: In each of the 24 models, training

was performed by sampling negative data because negative

class data (non interacting residue pairs) were approximately

Figure 1. Residue pair and single-residue contact data preparation from ligand/receptor complexes (an example with a dimeric
ligand complexed with a dimeric receptor is shown here). For each of the 124 complexes, the data sets were prepared by pairing residues
from the ligand and receptor chains for a pair-wise prediction (as shown in the second part of the illustration). Single-residue data were also prepared
for the whole complex. However, the residues were not encoded as pairs; they were taken from individual chains and partner information was
discarded, and the contact data for all the chains were pooled together to obtain whole-complex data. In one training cycle, the contact and feature
data from all but one of the complexes were used for training, and the left-out complex data were then used to evaluate prediction performance.
Performance scores were calculated for one complex in one training cycle. The obtained set of 124 scores was then averaged to obtain an overall
performance score.
doi:10.1371/journal.pone.0029104.g001
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500 times more prevalent than positive class data (interacting

residue pairs). To overcome the training difficulties caused by

this imbalance, only 2% (or 1,000, whichever was smaller) of

the randomly selected negative data points were used for

training. All the positive data points were retained. No

sampling was performed for the cross-validation (blind) data,

and the reported performance measures were based on the

real data. The 2% residue-pair data corresponded to

approximately 14% (square root of 0.02) of the data from

each of the two interacting proteins; therefore, the single-

protein training models sampled 14% of the negative data.

Each of the 24 models was trained on different random

samples, which allowed for noise cancelation between models

in the stage 2 predictions.

In the second stage, the first stage predictions produced by the

24 neural networks were averaged to obtain the final prediction

(see Figure 2).

Pair prediction to single-chain predictions
To convert a pair-wise prediction score to a conventional

interface residue prediction in single proteins, pair-wise prediction

was first performed as described above. For each residue in each

protein, we next assigned the highest pair-wise score that involved

that residue. Thus, all the residues in all the chains were assigned a

real value score, which is analogous to a single-chain prediction

score, and all performance parameters were computed from these

scores.

Single-chain to pair-wise predictions for benchmarking
The currently available methods for predicting protein

interaction sites return a single score for each residue in each

protein chain, irrespective of its partner. To obtain a pair-wise

prediction score that could be used in a comparison, we performed

single-chain predictions for the individual chains and then

calculated the pair-wise score of a residue pair by averaging the

individual scores of the two residues in the pair.

Performance measure
All the prediction models were trained to return a real number

between 0 and 1, and the desired class labels were binary (1 for

interface residues and 0 for non-interface residues). The output

real numbers were converted into a class prediction by selecting

different thresholds (thereby changing the number of residues that

were predicted to be in the interface), and performance was

evaluated. At a given threshold, any correctly predicted interface

residues were designated as true positives (and their counts were

denoted TP), whereas any correctly predicted non-interface

residues were designated as true negatives (TN). Similarly, false

positives (FP) and false negatives (FN) were residues that were

wrongly predicted to be in the positive or negative class,

respectively. For each threshold, the sensitivity (also called recall),

precision and specificity of the model were defined as follows:

Recall or Sensitivity Rð Þ~TP= TPzFNð Þ

Precision Pð Þ~TP= TPzFPð Þ

Specificity~TN= TNzFPð Þ

To consider both recall and precision, the F1-measure (the

harmonic mean of precision and recall) was defined as follows:

F1~2 � P �R= PzRð Þ

Because the balance between these scores changes with the

threshold, a single performance measure was required to compare

the performance of the various models. The two following

measures are common: (i) the area under the receiver operating

characteristic (ROC) curve, or AUC, where the ROC is a plot of

the recall against (1-specificity), and this measure considers an

entire range of threshold values; and (ii) a set of precision, recall

and F1 at the best performing threshold, at which F1 takes the

highest value. For most comparisons, we used the AUC as the

main performance measure, and in some cases, we provide recall,

precision and F1 scores as an additional reference in the

supplementary materials.

In our leave-one-out scenario, all the performance scores were

computed for each (left-out) protein complex and averaged (over

124 values) to obtain an overall estimate.

Results and Discussion

Propensity of pair-wise versus single-protein-residue
preferences

Table 1 shows the propensity scores of the 10 most preferred

and the 10 most excluded residue pairs in the protein-protein

interface (Table S1 provides complete details). The graphical

pairing propensities of all the combinations are shown in Figure 3.

Because our primary goal was to provide a comparison between

single-residue preferences and pairing preferences, the propensities

computed for the single residues to be in the interface are shown in

the plot as a reference. The following observations were made

from these results:

1. Several residues appeared to be highly preferred with one

partner but highly excluded with another; e.g., Pro paired with

Figure 2. Overall prediction of interacting pairs of residues in
two stages.
doi:10.1371/journal.pone.0029104.g002
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Trp with a high propensity (2.3), but its pairing with Ala was

one of the most excluded parings. Similarly, Phe paired with

Tyr with a high propensity, but its pairing with Val was highly

excluded from the interface. This observation justifies the pair-

wise and partner-aware prediction that we aim to make.

2. Some residues showed less specific contact preferences than

others; e.g., Tyr had a high propensity to pair with several

residues, such as Arg, Phe, and Trp, which suggests a general

preference for Tyr to be in the interface. Tyr can easily

accommodate itself in both the loop and the strand regions of

antibody complementarity determining regions (CDRs). To-

gether with its amphiphilic nature, this often results in over-

representation of Tyr in CDRs [46]. Although this reference

addresses CDRs, similar interaction preferences of Tyr

appeared in non-antibody complexes, as indicated in the

results of this study.

3. Hydrophobic residues are not always preferred in the interface;

this is evident because some pairs, such as Met-Val and Ala-

Val, were excluded from the interface. Apparently, this result is

in contrast to the observation of predominantly hydrophobic

interactions contributing to folding and intra-chain residue-pair

contacts in proteins, well documented in previous studies (e.g.,

[47,48]). However, this apparent discrepancy must be

interpreted in the context of the current propensity values

being derived from sequences and considering that they

implicitly include the surface propensity of the residues.

Because many hydrophobic residues lie in the buried regions

of a protein, the absence of a high propensity for hydrophobic

residues only implies that these residues may naturally prefer

the protein core to a protein-protein interface. An exposed

hydrophobic residue may become preferred in the interface,

which is an issue that we did not examine because we were

interested in the sequence determinants of the interface

residues. However, the propensities of the single residues

within the surface have been examined by other researchers

and can thus be referred to for comparison [49].

4. Electrostatic forces are also important because similarly

charged Lys-Lys pairs were excluded, and oppositely charged

Arg-Asp pairs were preferred. Interestingly, Arg did not appear

in the excluded residue pair list except with a couple of partners

with low statistical significance. On the other hand Lys did not

always appear in the preferred list, which suggests that these

residues play different roles, despite having identical charges.

Arg has a higher propensity than Lys for the interface of

protein-ligand and protein-nucleic acid complexes [43,44].

This may be attributed to a number of structural and chemical

Table 1. The most significant contact occurrences in protein-protein interfaces derived from protein-protein complexes.

Pair
(i–j)

Counts
(Ni*Nj) Propensity

Observed
contacts
(Oij)

Expected contacts
Eij = (Ni*Nj)/S(Ni*Nj)

Chi-square
x2 = (Oij2Eij)

2/Oij

p-value
(Chi-square
test)

Enriched pairs

D-R 38053 2.9 161 55.3 202.2 6.85E-46

R-Y 27214 3.0 119 39.5 159.8 1.28E-36

N-Y 27275 3.0 118 39.6 155.1 1.36E-35

E-R 43020 2.4 152 62.5 128.2 1.01E-29

R-W 10880 3.6 57 15.8 107.4 3.67E-25

N-R 29478 2.4 104 42.8 87.4 8.80E-21

K-Y 38155 2.2 124 55.4 84.9 3.22E-20

D-K 53701 2.0 158 78.0 82.0 1.34E-19

E-K 61956 1.9 172 90.0 74.7 5.42E-18

W-Y 10501 3.2 49 15.3 74.7 5.60E-18

Excluded pairs

A-V 74917 0.3 34 108.8 51.4 7.36E-13

A-L 90550 0.5 60 131.5 38.9 4.46E-10

L-V 94746 0.5 65 137.6 38.3 5.99E-10

K-V 69074 0.4 40 100.3 36.3 1.71E-09

E-L 84917 0.5 59 123.3 33.6 6.87E-09

E-V 70674 0.4 45 102.7 32.4 1.26E-08

I-V 57344 0.4 32 83.3 31.6 1.90E-08

A-P 49550 0.3 25 72.0 30.7 3.08E-08

D-L 74253 0.5 51 107.9 30.0 4.38E-08

S-V 81876 0.5 61 118.9 28.2 1.08E-07

The residue pairs presenting most significant p-values (top 10 from the favored and excluded categories each) are listed here. It should be noted that the data were
derived from all residues of the complex, and that the surface propensity of the residues is implicitly included. Near absence of the hydrophobic residues in the top
scoring pairs highlights the fact that from a purely sequence point of view hydrophobic pairs may not be the best interface candidates. However, if only the surface
residues were considered (using structure information), situation might be different.
doi:10.1371/journal.pone.0029104.t001
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attributes of Arg in contrast to Lys. For example, Arg can form

a larger number of hydrogen bonds than Lys. Arg also exhibits

pseudo-aromatic behavior due to the planar nature of its p-

electron system [46].

Despite a clear sign of recognition that is promoted by the

individual residue pairs, interface regions cannot be identified by

simply locating complementary residue pairs because there are so

many possible combinations and because sequence and structural

neighbors are likely to constrain the actual population of interface

residue pairs. The best estimates of these biases can be made by

trying to predict the interface and then examining the prediction

performance obtained from various feature sets. Therefore, we

used a range of sequence windows encoded by residue identities

and the evolutionary profile of each position to predict interface

residue pairs from all the possible pairs of two proteins. The results

are discussed in the following sections.

Prediction performance
To obtain a thorough analysis, four types of predictions were

compared. First, the models that were trained on residue pairs

were used to estimate the performance of the left-out complex in

a leave-one-out cross-validation regime. These pair-wise predic-

Figure 3. Sequence-based residue-pair contact propensities (natural logarithmic values) in a protein-protein interface. Each plot
corresponds to interface propensity of a residue with all of the 20 possible partner residues. Single residue propensity values for the target residue
are shown by a horizontal dashed line. See Table 1 for comments and Table S1 for additional details.
doi:10.1371/journal.pone.0029104.g003
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tions were then converted to single-residue predictions by

assigning the highest score of the pairs in which a given residue

was involved.

Conversely, two prediction performance scores were obtained

from the models that were trained on single proteins in a similar

manner. The pair-wise scores were obtained by simply averaging

the scores of the two residues in a pair. Thus, the ability to predict

interacting pairs and single residues can be compared for the two

sets of models, i.e., the models trained on pairs and those that were

trained on single residues.

Table 2 summarizes all the performance scores measured by the

AUC. The results of the pair-wise models for each protein are

provided in Table S2. Protein-wise comparison of performance in

the two prediction models with detailed ROC plots are shown in

Figures S1 (prediction of residue pairs) and S2 (prediction of single

residues).

The overall results can be summarized as follows.

Models trained on residue pairs outperform the
corresponding single-protein models

The first two rows of Table 2 show all four of the

performance scores for the models that were trained on

DBD3.0. The performances of the models trained on residue

pairs were 72.9% and 66.1% for the residue pair and the single-

residue predictions, respectively. The corresponding perfor-

mances of the models trained on single residues were 71.0%

and 63.8%, respectively. The performance of the pair-wise

models was higher with respect to predicting both single

residues and residue pairs, and the differences were statistically

significant.

A typical example of the partner-unaware and pair-wise,

partner-aware predictions is shown in Figure 4 using Acetylcho-

linesterase in complex with Toxin F-VII Fasciculin-2 (PDB ID:

1MAH). The predictions made from a model that was trained on

single residues produced a number of false positives in the top

scoring residues. This number significantly decreased after partner

information was introduced by means of a pair-wise model.

Quantitatively, the proportions of true positives that were in the

top 20 positions in the two cases were 25% and 50%, respectively,

showing a net improvement by 25 percentage points in this

particular example. Presumably, the false positives were filtered

out because the partner protein did not contain complementary

residues for the candidates that were detected in the single-protein

model.

Two-stage models are significantly better than stage 1
models

Although most of the comparisons in this study were based on

the final stage 2 model, we examined the performance of the stage

1 models in comparison to the final model. In general, the pair-

wise model performance was approximately 2–6 percentage points

higher than the first-stage model (Table 2). Similarly, the single-

chain prediction models showed an improvement of 4–7

percentage points. Because the two-stage model essentially

averages multiple predictions from closely related feature subsets,

we believe that this improvement was caused by noise reduction

because only the residues that showed high scores in all (or most) of

the models were given high scores in the second stage. Because

most of the published methods for predicting protein-protein

interactions are based on single-stage computational models, they

may benefit by employing this two-stage approach.

Comparison with SPPIDER and PSIVER
In the last two rows of Table 2, we show the ability of two public

web servers (SPPIDER [8] and PSIVER [34]) to predict single

interacting residues. We also converted their prediction results into

residue pair scores in the same way as described above.

While the prediction performance of our method was based on

the leave-one-out cross-validation results and was therefore based

on 124 models, the online web servers used a single model for all

predictions. Furthermore, data redundancy, the definition of

contacts and the performance evaluation method used were all

different in the different studies, which made it rather difficult to

directly compare their performances. For example, SPPIDER

defines contacts by building a consensus over a number of similar

instances in which a residue position occurs, thereby significantly

enriching the number of positive class data points. This leads to a

relatively large number of positive predictions (we observed that

3% of all the residues produced the maximum binding score). In

our calculations, many of these contact predictions were flagged as

false positives; however, according to the SPPIDER definition,

these could be considered true positive cases. In the current study,

we also discarded contacts within the chains of a single ligand or

receptor (as illustrated in Figure 1). Therefore, although the

performance of our models appears to be higher than that of the

previously published methods, we do not claim that they provide a

more accurate result; this claim would require more rigorous

examination using common data sets, and various definitions of

contacts would be necessary.

Table 2. Comparison between the performance levels of the various models.

Prediction model Prediction of residue pairs (AUC in %) Prediction of interacting residues (AUC in %)

Paired training Unpaired training p-value Paired training Unpaired training p-value

Leave-one-out (Stage 2) 72.9 71.0 0.0023 66.1 63.8 0.0062

Leave-one-out (Stage 1) 67.9 63.4 4.2e-6 64.6 59.6 6.0e-9

PSIVER* - 62.8 - - 57.5 -

SPPIDER* - 58.4 - - 54.1 -

The results from the current model are based on a 7-residue window from the protein and contain information from the sequence PSSM and global amino acid
composition of the protein (for stage 2 models, the predictions from all window sizes from 1 to 7 were averaged). The p-values were computed by taking protein-wise
performance scores and applying the paired Student’s t-test over a set of values in the two models being compared.
*These online predictions (PSIVER and SPPIDER) are based on a single model and are optimized for binding site definitions and data sets that are different from those
used in this study. Although our performance appears to be higher than those of these web servers, the choice of data sets, contact definitions and performance
evaluation method used were not extensively examined because the main objective of this work was to establish the point that was made in the top two rows of this
table. The performance scores from the online web servers are provided only as a record (see also the results and discussion).
doi:10.1371/journal.pone.0029104.t002
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Comparison with PIPE Sites
While this work was being completed, a related study was

published [50]. In this publication, the authors reported the

development of the web server PIPE Sites, which predicts

interacting regions in a pair of protein sequences. The method

essentially pairs protein sub-sequences at various window sizes and

scans a database of known protein-protein interactions for their

co-occurrence. Their prediction method does not use any training,

and it is based on direct comparison. The method was

benchmarked by measuring the overlap between the predicted

paired regions and the pair of sequence regions annotated as

interacting domains in a database [51]. We note that although the

PIPE Site method is likely promising and useful, it addresses the

problem of protein-protein interactions at a different level, as it

detects relatively longer interacting regions. Because the PIPE Site

predictions at the residue-pair level are unavailable, we were

unable to perform even a rough quantitative comparison with our

method.

Protein-wise performance comparison
We next analyzed the protein-wise performance of our final

stage 2 model and made the following observations.

Complexes with large conformational changes are
difficult to predict, although no structures are used in the
prediction

The creators of DBD3.0 [39] investigated the degree of

difficulty in predicting docked complexes from unbound struc-

tures; they defined the three levels of difficulty involved as rigid

body, medium and highly difficult complexes. Because this

classification was based on structural considerations, i.e., the

conformational changes that occur upon complex formation, it

would be interesting to determine whether the pair-wise

predictions derived purely from sequence features also follow the

same pattern of difficulty levels. In Table 3, we summarize the

performance of the pair-wise prediction results with respect to the

three categories. To provide a more detailed view of this summary,

we plotted the performance scores as a function of the root mean

square deviation (RMSD) of the conformational change on

complex formation in Figure 5. As shown in Table 3, the residue

pairs in difficult class complexes were predicted to have scores that

were 11.4 percentage points lower on average than the rigid body

cases. An alternative demonstration of this result is the negative

correlation (R = 20.355) that exists between the RMSD of the

bound/unbound structure pairs and prediction performance

(Figure 5). Therefore, we conclude that the structural changes

introduced by complex formation are a challenge that must be

resolved for both structure-based docking and sequence-based

predictions; we presume that this challenge exists because the long-

range intra-chain cooperativity of the interacting residues could

not be learned by the prediction models.

Performance grouped by the functional class of a
complex

To analyze the variation of prediction performance, based on

the functional class of a complex, we used the same functional

classification provided by the creators of DBD3.0 [39]. Antibody/

antigen complexes in that work were divided into two groups

based on the availability of unbound structure. Since that

classification is irrelevant for our sequence-based predictions, we

merged them into a single category called Antibody/Antigen

complexes. The last part of Table 3 shows the average

performance of residue pair prediction in the three groups based

on this classification. We observed a clear pattern that suggested

the functional categories of Antibody/Antigen complexes to be the

best predicted group of protein-protein complexes. This high

prediction performance was produced potentially because anti-

body-antigen complexes may utilize some common patterns of

interacting residue pairs, enabling these patterns to be detected by

models trained on other complexes within these functional

categories. The behavior of enzymes and their substrates and

inhibitors is close to the overall average. The lowest performance

was observed in the unclassified group, which was designated

‘‘others.’’ It is expected that for efficient prediction, several

members of the same functional class should be present in the

training data; the ‘‘others’’ category presumably consisted of

several different functional protein classes, and these classes were

not well represented in the data. Improvement of the annotation of

complexes and enrichment of the data with samples from each

functional class will likely improve performance for these cases.

Figure 4. Binding site predictions mapped to the three-dimensional structure of Acetylcholinesterase in complex with Toxin F-VII
Fasciculin-2 (PDB ID: 1MAH, chains A and F respectively in red and blue color cartoons). The left and right images were drawn from the
top-scoring 20 predictions from single-protein trained models (solid red) and pair-wise trained models (solid green), respectively. Many false positive
cases observed in the single-protein trained model were eliminated in the pair-wise model. (The false positive rate in the selected 20 residues is 75%
and 50% with an overall AUC of ROC being 60% and 82%, respectively. Predictions are made from the models trained by excluding this complex from
the training data.)
doi:10.1371/journal.pone.0029104.g004
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Application to detect partner-specific interface residues
Previous sequence-based predictors of protein-interaction sites

have aimed to detect interface residues without considering

partner proteins. One significant application of the current

method is that it can be used to distinguish between partner-

specific interfaces of proteins that interact with more than one

protein. Here, we examined a few multi-chain complexes from the

Protein Data Bank (PDB) [52] that were not included in DBD3.0.

One such example was the transducin protein beta chain 1 (PDB

ID: 3PSC, chains A, B and G). Chain B directly contacts chain A

(beta-adrenergic receptor kinase-1) and chain G (guanine

nucleotide binding protein gamma subunit). To determine to

what extent the interface residues on chain B, which correspond to

partner chains A and G, can be distinguished, we predicted

interacting residue pairs for the BA and BG complexes and

converted them to single-residue predictions for chain B. Figure 6

shows the results of these predictions. Although a number of

common true and false positive cases were produced, several

residues specific to each partner chain were correctly identified.

Such a separation would not be possible with conventional

sequence-based prediction methods. However, further analysis is

needed to benchmark the current method’s ability to distinguish

partner-specific interfaces more accurately and quantitatively, and

work is in progress toward this goal.

Application as a docking-pose scoring-function
Pair-wise predictions are likely to be of great value in scoring

protein-protein complex decoy poses in a docking experiment. One

of the first challenges in docking experiments is to select a

promising candidate from a set of these decoys, which are

generated by treating individual proteins as rigid bodies and

sampling their hypothetical complexes [53]. The developers of

DBD3.0 used this data set to evaluate the docking program

ZDOCK [7], and they provided docking decoy poses that were

generated for these complexes using a rigid-body procedure, along

with their ranks based on ZDOCK scores and the number of hits

in the top 2000 poses.

Using this data set of 15 degree rotation poses, we compared the

performance of our proposed method with the ZDOCK ranks. To

obtain a rank from our procedure, we predicted the pair-wise

scores for each complex (using leave-one-out cross-validation, as

described above) and computed the AUC for the predicted scores

in reference to the contact data obtained from each pose. The

AUC was treated as a scoring function, and all the poses were

ranked in order of their AUC. The two evaluation measures used

by ZDOCK are (1) the number of native-like hits (native/decoy

Figure 5. Relationship between prediction performance and the RMSD between bound and unbound complexes. Even though there
are few data points in high RMSD category making the statistical point only suggestive in nature, poorer prediction performance for complexes
undergoing large conformational change is consistent with the arguments in the discussion.
doi:10.1371/journal.pone.0029104.g005

Table 3. Performance of pair-wise predictions grouped by
reported difficulty level in structure-based predictions and
functional class.

Classification
Number of
complexes

Average
AUC (%)

Conformational
Change

Rigid-body 88 75.1

Medium 19 70.6

Difficult 17 63.7

Functional
Class

Enzymes/inhibitor or Enzyme/substrate 35 74.2

Antibody/Antigen complex 25 90.0

Others (unclassified) 64 65.5

Complete data for the performance of each protein complex and other
measures of performance (e.g., precision, recall and F-measure) are provided in
Table S1. The classification was taken from the original curators [39].
doi:10.1371/journal.pone.0029104.t003
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RMSD,2.5 Å) in the top 2000 poses and (2) the rank of the first

native like structure. We found that the number of native-like hits

that were obtained using the AUC of our proposed method was

approximately 82% of the number of hits produced by ZDOCK.

Although we used a straightforward sequence-based approach

(e.g., with no repulsive term), this result appears promising and can

form the basis of a more elaborate scoring function that would

account for structure and other aspects.

We also tested whether our method provided information that

was not already available in the ZDOCK scoring procedure. For

this, we re-ranked all the complexes by taking a weighted average

of the ranks from the ZDOCK and AUC-based scores (the

ZDOCK rank was assigned a 3:1 weight after integer values

between 1 and 4 were arbitrarily tested, and the value that

produced slightly better results than others was selected). We

found a modest overall increase of 3% (from 479 to 493 in the 78

complexes with at least one native-like pose) in the number of hits

using this consensus-based approach. However, the rank of the

first hit was not improved with either our AUC-based method or a

consensus-based approach, which suggests that the AUC-based

information is of rather low resolution and cannot be used to rank

closely related promising candidates. This problem has been found

to be the most difficult to solve by even the best scoring functions

that have been developed thus far [53]. Therefore, although

agreement between contacts derived from a docking pose and our

pair-wise prediction can provide useful added value to the scoring

procedures, further work must be performed to take maximum

advantage of this observation.

PPIPP Web server
A two-stage prediction model that was trained on interacting

residue pairs, as described above, has been developed and is

publicly available at http://tardis.nibio.go.jp/netasa/ppipp/. This

online version of our model uses two FASTA formatted sequences

as inputs and performs pair-wise predictions between their

residues. Final scores are provided for residue pairs, and the

scores are also converted to single residues for each chain. A

simple graphical representation of the top 200 pairs is also

displayed that shows the possible connectivity in the two chains.

Further improvements with respect to the graphical presentation

of the results are in progress.

Conclusions
The role of partner information in predicting protein-protein

interaction sites has been found to be important; as a result, pair-

wise models outperform partner-unaware models. Prediction of

the single-protein interface residues that correspond to different

partner proteins makes it possible to predict multiple interfaces on

the same proteins; it also allows us to accurately pair interacting

residues from individual protein chains.

Supporting Information

Figure S1 ROC curves for predicting interacting resi-
due pairs from models trained on single sequences (SS)
and protein pairs (PP).

(PDF)

Figure 6. Partner-specific prediction of two interfaces for the beta subunit of the guanine nucleotide binding protein (transducin
beta chain 1) (PDB ID: 3PSC, chain B is shown as the blue cartoon). The two partners are shown in transparent colors (chain A, which is the
beta-adrenergic receptor kinase-1, is shown in red, and chain G, which is the guanine nucleotide binding protein’s gamma-2 subunit, is shown in
green). Predictions from the pair-wise model for each partner chain were converted into single chain predictions and displayed on chain B. Common
binding sites, predicted with both partners, were removed and residues exclusively predicted with each partner are shown in the corresponding
partner color. Out of the 30 top-scoring residues after removing common predictions, most residues have been assigned to the correct partner.
doi:10.1371/journal.pone.0029104.g006
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Figure S2 ROC curves for predicting interacting single
residues from models trained on single sequences (SS)
and protein pairs (PP).

(PDF)

Table S1 Contact preferences of residue pairs (sorted
by p-values). Total number of residue pairs in the entire data set

is 7,750,982 of which 11,259 have at least one contact within (one

residue of the pair is less than 6.0 Å from the other).

(PDF)

Table S2 Interacting residue pair prediction perfor-
mance for each protein-protein complex and character-
ization of each complex into enzyme, antibody, confor-
mational change (RMSD) and interface size (DASA).
(PDF)
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