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The tumor microenvironment (TME) presents a challenging barrier for effective
nanotherapy-mediated drug delivery to solid tumors. In particular for tumors less
vascularized than the surrounding normal tissue, as in liver metastases, the structure
of the organ itself conjures with cancer-specific behavior to impair drug transport and
uptake by cancer cells. Cells and elements in the TME of hypovascularized tumors
play a key role in the process of delivery and retention of anti-cancer therapeutics by
nanocarriers. This brief review describes the drug transport challenges and how they
are being addressed with advanced in vitro 3D tissue models as well as with in silico
mathematical modeling. This modeling complements network-oriented techniques,
which seek to interpret intra-cellular relevant pathways and signal transduction within
cells and with their surrounding microenvironment. With a concerted effort integrating
experimental observations with computational analyses spanning from the molecular- to
the tissue-scale, the goal of effective nanotherapy customized to patient tumor-specific
conditions may be finally realized.

Keywords: liver metastasis, nanotherapy, tumor microenvironment, macrophages, mathematical modeling,
computational simulation

CHALLENGES OF THE TUMOR MICROENVIRONMENT TO
DRUG DELIVERY

The Tumor Microenvironment Inhibits Drug Delivery
In order for drug molecules to elicit a pharmacological response, the molecules must arrive
in sufficient quantities to the tissue of interest and bind to the molecular target activating or
inhibiting particular pathways. To achieve therapeutic responses in solid tumors, drug molecules
need to overcome various barriers at different physical scales. The tumor microenvironment (TME)
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includes several scales: (a) molecular (nano-) scale, including
up- and down-regulation of various proteins that can signal
for tumor growth or drug-efflux mechanisms; (b) nano- to
micro- scale, which incorporates gradients of cell nutrients
and oxygen, growth factors, and other means of cell-to-
cell communication; (c) micro-scale, in which interactions
between cells occur in the acellular stroma compartment of
the tumor; (d) micro to macro scale, which incorporates
the organ architecture, blood supply, lymphatics, and other
physiological factors. While these barriers span several orders of
magnitude, they are intricately linked and cross-communicate.
As an example, the architecturally/anatomically irregular and
functionally impaired tumor neovasculature (micro to macro
scale) is characterized by reduced oxygen tension, oscillating
flow, constricted blood vessels, and other abnormal features
(Jain, 2003; Folkman, 2007; Chung et al., 2010; Dewhirst and
Secomb, 2017). Consequently, the TME becomes heterogeneous
in terms of gradients of solutes and nutrients (nano- to micro-
scale) as well as differences in pH and cell viability due
to hypoxia (micro-scale). Hypoxia promotes recruitment of
immune cells to the tissue, while prompting release of cytokines
and chemokines (molecular (nano-) scale) that affect cell-to-cell
interactions (micro-scale).

The heterogeneous TME has a significant effect on
therapeutic outcomes. First, TME heterogeneity and three-
dimensionality represent a significant barrier to systemically
administered therapeutics, including nanotherapeutics. As
a result, in vitro efficiencies of anti-cancer drugs (especially
those shown in 2D cultures) do not correlate well with
potencies observed in vivo, as has been shown in several
studies (Agiostratidou et al., 2001; Fruehauf, 2002). The results
highlight discrepancies in positive predictive values between
clinical efficacies and in vitro therapy selection (50–70%)
and negative predictive accuracy (∼90%), demonstrating that
enhanced potency of drugs in 2D cultures largely disregards
the barriers in the heterogeneous TME. Second, cells in
the TME such as endothelial cells, macrophages and other
cells of the immune system, and fibroblasts/myofibroblasts
actively interact with the tumor cells in most solid tumors
and affect cancer cell proliferation, survival, polarity and
invasive capacity (Williams et al., 2016; Guo and Deng, 2018;
Sarode et al., 2020).

Multiple studies have demonstrated that while the normal
cellular microenvironment can inhibit or even prevent the
growth of tumor cells, the changes that happen in the TME
synergistically support tumor growth. Tumors shape their
microenvironment promoting the growth not only malignant
cells, but also non-malignant TME or stromal cells. There
are many mechanisms that still need to be elucidated in
the tumor-stroma interactions, although the importance
of an altered TME in the process of tumorigenesis is no
longer questioned. Numerous successful cancer therapies
targeting the TME have been approved or are being developed,
highlighting the importance of the cells and tissue neighboring
malignant cells for tumor survival and invasion. As an example,
tumor macrophages can be polarized to be tumor-growth
supportive (M2 phenotype) or inhibiting (M1 phenotype)

(Pollard, 2008; Ruffell et al., 2012; Ruffell and Coussens, 2015;
Williams et al., 2016; Kielbassa et al., 2019). The M1/M2
ratio has been shown to be a strong prognostic factor
in a variety of solid tumors including liver metastasis
(Cui et al., 2013; He et al., 2013; Zhang et al., 2014;
Yuan et al., 2017).

The Organ Microenvironment Promotes
Metastasis Development
The TME is dependent not only on the origin and the
characteristics of tumor cells, but also on the anatomy and
physiology of the organ to which tumor cells disseminate. We
discuss the liver as one particular example to illustrate this
complexity (van den Eynden et al., 2013) and the challenges
it poses to drug delivery. Metastatic lesions represent the most
common malignancy in the liver and are up to 40 times
more frequent in clinical practice than primary liver tumors
(Rummeny and Marchal, 1997). The liver is a highly vascularized
organ that has a dense network of capillaries, sinusoids, efficiently
providing oxygen and soluble nutrients to the innermost cells
in the organ. Two physiological factors have been linked to the
high incidence of the liver being an organ of choice for distant
metastasis: (Chung et al., 2010) increased likelihood of invasion
due to dual blood supply from systemic and portal circulation;
(Dewhirst and Secomb, 2017) presence of fenestrations in
the liver sinusoids that allow for tumor cell invasion from
the circulation.

Uniquely, incipient liver metastases preserve the stromal
structure of the liver and do not rely on angiogenesis for
survival (Stessels et al., 2004). This vascularization pattern,
in which tumor cells primarily use existing vasculature in
surrounding parenchyma, is unconventional, compared to most
solid tumors (Pezzella et al., 1997; Danet et al., 2003a,b;
Namasivayam et al., 2007), and significantly limits diffusive
transport into the lesions Thus, the most frequent tumor
types with liver metastasis, including breast, colon, lung,
and gastric carcinomas create hypovascular lesions usually
showing perilesional enhancement (Namasivayam et al., 2007;
Hazhirkarzar et al., 2020). This characteristic significantly
impairs the delivery of systemically administered therapeutics to
tumors in the liver.

For instance, it has been shown that breast cancer and
pancreatic ductal adenocarcinoma liver metastases are
characterized by poor permeation of molecules and are clinically
observed as hypo-attenuating spots, which intravenously injected
contrast agents do not permeate (Liu et al., 2003). Impaired
diffusion is an important factor limiting adequate concentration
of therapeutics, and could explain why chemotherapy fails to
cure unresectable liver lesions. Poor permeation is especially
acute with high molecular weight (HMW) molecules, such as
m99Tc microaggregated albumin (Daly et al., 1985).

Experimental Evidence With
Hypo-Perfused Tumors
Recent data from in vivo studies in breast cancer liver tumors
with low vascularization patterns and high macrophage (Mφ)
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FIGURE 1 | Transport characteristics in breast cancer liver metastases. (A) Perfusion and diffusion of 3 KDa (red) and 40 KDa (green) fluorescent dextrans by IVM in
normal liver (upper panels) and 4T1 breast cancer liver metastases after iv injection. (B) Fluorescent intensities of the dextrans in breast cancer liver metastases
normalized to unaffected liver. (C) Distribution of Mφ (F4/80 antibody, green) in breast cancer liver metastases. Number of Mφ in the lesion, the periphery (40–50
micron from the tumor border) and unaffected liver is normalized to cell number detected by DAPI staining. Reprinted with permission from Tanei et al. (2016).
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content confirm that these lesions lack efficient perfusion.
In intravital microscopy (IVM) studies, transport of HMW
molecules (fluorescent dextrans) into tumor lesions was impeded
compared to healthy tissue (Figure 1). When a HMW drug
nAb-PTX, possessing similar hydrodynamic diameter as 40 KDa
dextran (∼12 nm), was packaged in a solid multistage porous
silicon NV (MSV) (Godin et al., 2010a,b, 2011, 2012; Tanaka
et al., 2010; Tasciotti et al., 2011; Srinivasan et al., 2013; Yokoi
et al., 2013; Jaganathan et al., 2014; Tanei et al., 2016), the
nanotherapeutic was taken up by Mφ in the proximity of breast
cancer liver metastases, thus enabling higher drug concentrations
in the lesions and dramatically improving nAb-PTX therapeutic
efficacy and animal survival (Figure 2).

Evidence with other types of hypo-perfused tumors supports
these data. The composition of the stroma in preclinical
models of orthotopic primary pancreatic based on L3.6pL cells
were analyzed in Yokoi et al. (2013). Profound differences
in the cellular elements of pancreatic stroma as a result of
different treatments were observed (Figure 3, Borsoi et al.,
2015). Mice were treated with a combination of gemcitabine
and nAb-PTX encapsulated or nAb-PTX packed into an
engineered MSV (Tasciotti et al., 2011; Yokoi et al., 2013;
Borsoi et al., 2015, 2017). These data demonstrate that
cellular elements in the TME of poorly perfused tumors

FIGURE 2 | Therapeutic efficacy and survival of mice bearing breast cancer
liver metastases following IV administration of MSV-nAb-PTX, or nAb-PTX.
(A) Kaplan–Meier survival curves. Mice were injected intrasplenically with
cancer cells and therapy was initiated 1 week later. Therapy was administered
every 5 days until animals were moribund (Log-rank test for MSV-nAb-PTX vs.
nAb-PTX is P < 0.05 for 4T1 and P < 0.01 for 3LL models, respectively).
(B) Quantitative analysis of proliferating Ki67-positive cancer cells.
(C) Quantification of tumor diameters in mice liver treated with the systems.
(D) Apoptotic TUNEL-positive cancer cells. Reprinted with permission from
Tanei et al. (2016).

dramatically change during disease progression and in
response to therapy.

THREE-DIMENSIONAL IN VITRO AND EX
VIVO MODELS OF THE CANCER
MICROENVIRONMENT

Tools and Considerations for Preclinical
Models to Evaluate Drug Delivery and
Efficacy
In vitro approaches have been a traditional stronghold for
anti-cancer therapeutic screening, with the goal of maximizing
predictive potency while closely mimicking tumor physiology
and cell-cell interactions (Zoli et al., 2001; Breslin and
O’Driscoll, 2016). Importantly, 3D in vitro models complement
in vivo rodent models and overcome their limitations, such
as high cost, long latency and ethical minimization of
the use of animals. Furthermore, microenvironments that
recapitulate more precisely human tumor physiology can be
created in vitro, enabling evaluation of the effect of various
factors on the mechanisms of tumor initiation, progression
and response to therapy. The addition of the third spatial
dimension to in vitro models has introduced improved cell-cell
interaction setting up transport limitations to oxygen, nutrients
and potential therapeutics, thereby increasing the utility for
therapeutic screening (Griffith and Swartz, 2006). Here, we
briefly review considerations in evaluating drug efficacy in
terms of adopting the appropriate 3D in vitro/ex vivo models,
and consider integrated engineering examples of therapeutic
efficiency directed toward hypovascularized lesions such as
liver metastases.

A majority of therapeutics suffer from high attrition rates
as they move through the oncologic discovery pipeline, due
to a lack of translation from the preclinical to the clinical
stage (Hay et al., 2014; Wong et al., 2019). Preliminary
considerations while identifying the most appropriate in vitro
model draw a balance between the complex physiological
relevance (cellular complexity, molecular pathology) of 3D
models and their ability to scale up for drug screening. While
cellular simplicity may be sufficient for evaluating key molecular
targets for targeted therapy, models that include elements
of tumor stroma have to be considered for more nuanced
drug delivery approaches. For example, a nanoparticle-based
approach targeting collagenase in hypovascular pancreatic ductal
adenocarcinoma had the goal of demonstrating increased drug
penetration after nanoparticle treatment (Zinger et al., 2019).
Similarly, novel nano-immunotherapies in development target
phagocytic cells like macrophages or antigen presenting cells
within the TME (Caster et al., 2019).

Another important consideration in preclinical screening is
how therapeutic efficacy is defined. Specific to 3D models, IC50
alone may not be the most suitable metric to evaluate therapeutic
efficiency in isolation (Zoli et al., 2001). Traditional plate-reader
based viability/metabolic activity assays are not designed to
discern individual contributions of cellular compartments within
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FIGURE 3 | Changes in stroma composition of hypo-perfused pancreatic ductal adenocarcinoma as a result of therapy with gemcitabine (GEM) and MSV-nab-PTX.
M2 macrophages (CD204, red) and M1 + M2 macrophages (F4/80, green) were visualized using confocal microscopy. (A) Untreated mice; (B) mice treated 2×; (C)
mice treated 12×; (D) M1 macrophages quantification; (E) M1 + M2 macrophages quantification [data from Borsoi et al. (2015)].

tumoroid/organoid models (Horman et al., 2015). However, a
combination of IC50 with imaging methodologies that evaluate
drug uptake, molecular read outs and morphometric analysis
may offer more information of the dynamics of the therapeutic
process (Raghavan et al., 2015, 2016; Stock et al., 2016; Santo
et al., 2017). Such high content imaging approaches can reliably
provide morphological and cellular dynamics information that
can be correlated with therapeutic outcomes (Garvey et al., 2016;
Ahonen et al., 2017; Bulin et al., 2017).

Integrated Engineered Tumor Model
Approaches for Anti-cancer Therapeutic
Screening
A fundamental consideration in preclinical in vitro models
remains the methodologies utilized to create the actual
models – engineering approaches can often dictate resultant
drug sensitivity. This section briefly describes some of the
most popular approaches utilized currently to manufacture 3D
in vitro/ex vivo tumor models, with examples of how they have
been utilized in drug delivery to hypovascular lesions such as liver
metastases and pancreatic ductal adenocarcinoma.

Spheroids and Organoids
Spheroids represent the most frequently used 3D cancer model
in preclinical research. Most cancer cell lines will grow and

organize as avascular 3D structures called spheroids, either aided
by scaffolds, hydrogels, magnetic levitations, extracellular matrix
(ECM) gels or in scaffold-free suspension or liquid overlay
cultures. The organoid/tumoroid model has been demonstrated
as a promising tool to recapitulate patient response in colorectal
(Sato et al., 2011), ovarian (Kopper et al., 2019), pancreatic (Boj
et al., 2015; Ware et al., 2016a,b), breast (Jaganathan et al., 2014;
Leonard and Godin, 2016), and gastrointestinal cancers (Aberle
et al., 2018). Spheroids and organoids derived from cancer stem
cells/tumor-initiating cells have been described to capture inter-
patient heterogeneity, with the opportunity to rapidly relate
phenotype to genotype, and high fidelity drug sensitivity (Sachs
and Clevers, 2014; Raghavan et al., 2017). In regards to 3D models
of hypovascularized tumors (e.g., liver metastasis of breast,
lung and colorectal tumors, pancreatic, etc.) tumor spheroids
recapitulate the nutrient and therapeutic supply patterns (mainly
from the surrounding tissue).

The biggest advantage of the spheroid/organoid approach
is to be able to deconstruct the cellular and environmental
elements of the TME, and reverse engineer them as appropriate,
to study specific targeting strategies. For example, avascular
spheroids of breast cancer cells surrounded by macrophages
were constructed using magnetic levitation and bioprinting to
recapitulate the microenvironment of liver metastasis (Leonard
and Godin, 2016; Leonard et al., 2016, 2020). In another study,
hepatocellular carcinoma (HCC) spheroids were created by
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combining alginate microbead technology with decellularized
liver matrix-derived ECM, to encapsulate HCC cells (Sun et al.,
2018). To model the anchorage-independent aggregation of
pre-metastatic ovarian cancer cells within malignant ascites,
spheroids containing ovarian cancer stem cells and macrophages
were utilized (Raghavan et al., 2019). Pancreatic tumor-rich
spheroids were designed for drug screening with various
human pancreatic cancer cells and human stellate cells using a
combination of polymer matrix and hanging drop techniques
(Ware et al., 2016b).

Ex vivo Explant Cultures/Sheet Models
The establishment of these explant cultures/sheet models
relies on precision-cut slicing mechanisms, and access
to primary patient-derived tumors. These models have
the advantage of preserving complete tissue architecture,
as well as, the cellular heterogeneity of the tumor, and
can virtually be derived from any accessible surgical
tumor specimen. The challenges of preservation and
proliferation, however, still remain. Using explant cultures,
anticancer drug screening has been demonstrated in
rectal cancer liver metastases, which could be replicated
in rodent xenograft models (Zhang et al., 2020). Tumor
slices have also been utilized to test nanoparticle-based
drug delivery of oligonucleotides to ovarian cancer and
gliomas, and non-small cell lung cancer (Dong et al., 2011;
Ewe et al., 2017).

Decellularized Liver Scaffolds and Matrices
The use of naturally derived scaffolds for solid organs has
been well developed for regenerative medicine (Baptista
et al., 2009), and has made inroads into use in anticancer
therapeutics (Hinderer et al., 2016). The most advantageous
aspect of the use of natural ECM-based bio-scaffolds is the
ability to retain bioactive molecules like growth factors and
other signaling compounds embedded within the scaffolding
structure, providing cues to tumor cells that are seeded on
them. Metastatic colorectal cancer cells and native HCC cells
grown on human decellularized liver scaffolds demonstrated
less efficacy to chemotherapeutic regimens that were used at
standard 2D determined IC50 (Hussein et al., 2016; D’Angelo
et al., 2020). This implies the retaining of bioactivity in
decellularized scaffolds, which speaks not only to their utility
in re-engineering the architectural and scaffolding components
of the TME, but also highlights that the metastatic TME
triggers a physiologically more resistant cancer phenotype.
Recently, decellularized liver scaffolds have been manufactured
by immersion decellularization of chick embryos, which
bypasses the slow whole-organ decellularization approach.
A dramatic reduction in doxorubicin efficiency against triple
negative breast cancer liver metastases was demonstrated
(Guller et al., 2020). Importantly, the speed at which the
matrices can be produced using this approach lends itself
high throughput amenable for anticancer screening. It
should be noted that decellularized tissue scaffolds can be
combined with other techniques for 3D tumor growth, as
described above.

Microfluidic Organ-on-a-Chip
Microfluidic approaches have been implemented to generate
tumor spheroids, relying on perfusion and microwells. These
models are mainly used for tumors with enhanced degree
of angiogenesis and vascularization as compared to the
surrounding tissue. The utility of microfluidic approaches
in the study of cancer drug delivery is well reviewed (Unger
et al., 2014; Ozcelikkale et al., 2017). The advantage of using
microfluidic approaches is the inclusion of dynamics of the
TME (Agastin et al., 2011; Kim et al., 2012). Microfluidic
models of pancreatic ductal adenocarcinoma demonstrated
transcriptome level similarity to patient-derived pancreatic
stellate cells (Gioeli et al., 2019). To model liver metastasis,
gelatin methacryloyl was combined with decellularized
liver matrix components including bioactive factors derived
from liver matrix, in a dynamic culture system to assess
drug-dose responses to acetaminophen and sorafenib (Lu
et al., 2018). In a similar metastasis-on-a-chip model of
kidney cancer metastasized to the liver, NP-conjugated 5-
fluorouracil was shown to be more efficacious than free drug
(Wang et al., 2020).

3D Bioprinting
Bioprinting is an emerging engineering strategy to develop
3D tumor models, where 3D printing is exploited to deposit
cells and biomaterials in tissue-like structures. The biggest
limitation of bioprinting approaches has been the maintenance
of cellular viability through the simultaneous layer-by-layer
assembly process of cells and bio-inks (Albritton and Miller,
2017). Early attempts using bio-inks like gelatin, alginate
and/or fibrinogen demonstrated that heterotypic cell interactions
can be maintained in bioprinted tumors, which result in
them being more chemoresistant (Zhao et al., 2014; Dai
et al., 2016; Zhang et al., 2016; Zhou et al., 2016). This
technique has been interestingly utilized to create metastasis
models at the tumor-vasculature interface (Meng et al.,
2019), as well as, mimicking organ specific metastasis using
decellularized liver matrix ECM as a bioink (Lee et al.,
2017). This technology has potential for combining organoid
technology with rapid production, potentially rendering it high-
throughput amenable for personalized medicine and therapeutic
screening applications.

DRUG-BASED NANOTHERAPY IN
CANCER

Nanotherapy Can Be More Effective
Compared to Free Drug Infusion
Nanoparticles have been used clinically for tumor therapy since
the early 1990s. Currently available nanotherapies improve safety
and efficacy of chemotherapies. As an example, Doxyl R©, the first
nano-drug, liposomal doxorubicin, was introduced to reduce
the cardiotoxicity of doxorubicin, leveraging the differences in
biodistribution of free drug vs. liposomal entity (Barenholz,
2012). Since then, a few dozens of nanotherapeutics have been
approved for cancer therapy. Many other nanomedicine-based
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approaches are under investigation worldwide. Nanotherapy
offers the possibility to improve metastatic disease treatment by
increasing the concentrations and attaining controlled release
of therapeutics in distant lesions (Sanga et al., 2007; Farokhzad
Omid and Langer, 2009; Misra et al., 2010; Bourzac, 2012;
Parhi et al., 2012; Zamboni et al., 2012; Bertrand et al.,
2014; Grodzinski and Farrell, 2014; Fernandes et al., 2015).
Nanovectors (NV) can favorably change pharmacokinetics of
drugs in plasma and in tissues, prolonging circulation time and
enhancing delivery to tumors (Bae et al., 2005, 2007; Bae and
Kataoka, 2009; Maniwa et al., 2010; Ponta and Bae, 2014; Khawar
et al., 2015; Reichel et al., 2015, 2017; Curtis et al., 2016b;
Khalid et al., 2016).

Generally, systemically administered nanotherapies first flow
in the circulation and either attach to the elements in the
TME (e.g., receptors overexpressed in the tumor-associated
endothelium and stroma elements) or extravasate through the
gaps in the leaky and disorganized tumor neovasculature. A key
mechanism related to the extravasation of nanotherapies and
macromolecules in the tumor is called the Enhanced Permeation
and Retention (EPR) effect (Greish, 2010). Factors that contribute
to the EPR effect include: enhanced vascular permeability and
angiogenesis, which sustain rapid growth of tumor on one side,
and impaired lymphatic drainage, on the other side (Maeda et al.,
2003; Nakamura et al., 2015).

Another mechanism for tumor targeting proposed specifically
for nanotherapies includes their interaction with immune
cells, such as macrophages, which are abundant in the TME.
Macrophages are professional phagocytes and, as such, efficiently
take up particles from the circulation (Gustafson et al., 2015).
These immune cells can thus serve as a cellular depot for
therapeutics in the TME (Choi et al., 2007; Leonard et al., 2016;
Tanei et al., 2016; Hu et al., 2019). Additionally, nanotherapies
can affect the polarization and the function of the immune
cells, reversing their phenotype from pro-tumorigenic M2 to
anti-tumorigenic M1 (Ponzoni et al., 2018; Hu et al., 2019;
Reichel et al., 2019).

Challenges for Nanotherapy in the Tumor
Microenvironment
Clinical benefits from nanotherapy remain controversial because
in vivo efficacy varies from tumor to tumor (Kyle et al.,
2007; Vicent et al., 2009; Cukierman and Khan, 2010; Fang
et al., 2011; Bhatia et al., 2012; Mehta et al., 2012; Cho et al.,
2013; Crist et al., 2013; Prabhakar et al., 2013; Venditto and
Szoka, 2013; Dawidczyk et al., 2014; Danhier, 2016). Further,
it is well known that organ physiology and microenvironment
significantly impact the efficacy of cancer therapy (Curtis and
Frieboes, 2016). As an example, while well-documented in
primary tumors, the EPR effect does not usually apply to organs
enriched with blood vessels, such as the liver. In the liver, tumor
lesions are less vascularized than the organ itself (e.g., they appear
as “white spots” on a “red bed”). Thus, management of cancer
metastasized to different organs should ideally account for these
variations, providing personalized therapy based on the location
of the metastasis.

A number of HMW-based therapeutic strategies has been
clinically approved and proposed for the therapy of advanced
breast cancer, pancreatic ductal denocarcinoma and other
tumors, including albumin-bound drug conjugates, such
as nanoalbumin bound paclitaxel, nAb-PTX or Abraxane R©

(Blomstrand et al., 2019; Li and Kwon, 2019; Untch et al.,
2019), monoclonal antibodies (mAb), such as anti-HER2 mAb
trastuzumab (Figueroa-Magalhaes et al., 2014) or anti-EGFR
mAb, cetuximab (Huang and Buchsbaum, 2009), and genetic
materials, including siRNA, mRNA, and aptamers (Kang
et al., 2015; Ngamcherdtrakul and Yantasee, 2019). In liver
metastatic lesions with low vascularization patterns, these
potent therapeutics are unable to be transported deeply enough
into the lesions prior to their clearance from circulation.
Thus, new approaches to enhance their accumulation in liver
metastases are necessary.

MATHEMATICAL MODELING OF
DRUG-BASED CANCER NANOTHERAPY

The “One Drug” (a.k.a. “Silver Bullet”)
Approach to Cancer Drug Therapy Has
Failed
The complexity of the TME coupled with cellular plasticity may
preclude any one particular therapeutic from fully succeeding
in eradicating a tumor. Yet, historically, the search for the
one “silver bullet” that could cure patients has garnered much
attention in research and in clinical medicine (e.g., Zempolich
and Dubeau, 1998; Koontz, 2017). More recently, approaches
that consider information from different physical scales and
perspectives, and that are able to integrate the associated
information into a coherent picture, have been pursued. These
approaches include the combination of experimentation with
mathematical modeling and computational simulation (Frieboes
et al., 2006, 2012, 2019; Sanga et al., 2007; Sinek et al., 2007;
Brocato et al., 2018; Dogra et al., 2019).

A Systems-Level Approach Is Required
for Nanotherapy to Succeed
Newer approaches to cancer therapy involving molecular
profiling represent a promising avenue, especially as they seek
to elucidate the role of the microenvironment in the evolution
of acquired drug resistance. In particular, the development
of gene analysis tools has offered the opportunity to more
quickly and cheaply assess variations in the genetic make-
up of tumors (Heath et al., 2016; Miryala et al., 2018).
Yet the interpretation of these data for clinical application
is non-trivial. Although the detection of genetic variation in
individual patient tumors is considered crucial for the success
of personalized medicine, for the most part it remains unclear
how this variation translates to tumor-scale phenotype. With
the exception of a few well-studied genes [e.g., BRCA1 and
BRCA2 in breast cancer (Grimmett et al., 2018)], most of the
genetic information elucidated from these analyses has yet to be
meaningfully interpreted.
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Mathematical Modeling as a
Systems-Level Approach
A major reason for the challenge to link the molecular to the
tissue scale is that the growth and treatment response of many
cancers do not solely depend on variation at the genetic scale
but rather on the combination of characteristics at multiple
scales, including genetic, cellular, and tissue conditions such as
the tumor and organ microenvironment. A purely empirical
approach would be insurmountable to determine optimal drug
therapy, due to the many variables involved. For this task, which
requires a systems-level perspective, mathematical modeling
and computational simulation are ideally suited. Network-
oriented approaches have sought to “connect the dots,” so
to speak, to make sense of intra-cellular relevant pathways
as well as signal transduction within cells and with their
surrounding microenvironment (Kreeger and Lauffenburger,
2010; Bachmann et al., 2012; Lecca and Re, 2017). In addition
to the effort to model the molecular-scale, the integration of
experimental and computational modeling to enable realistic,
predictive evaluation of tumor behavior during therapy has been
pursued. The application of mathematical modeling can help to
bridge the associated physical scales (from molecules to tissue),
and thus lead to improved interpretation of particular tumor
characteristics and how they might influence the drug transport
in the tumor, and consequently, the drug response.

Mathematical Modeling Provides a Link
to the Molecular Scale
Mathematical modeling complements network-oriented
techniques (e.g., principal network analysis) and data-based
approaches (e.g., statistical and machine learning) by providing
for mechanistic insight of tissue behavior in time as well as
space. This would be considered important to evaluate the effects
of the microenvironment on tumor response to therapy. In
particular when evaluating omics strategies, recent work strongly
suggests that the best predictive results are obtained via studies
accounting for multiple types of datasets (Cho et al., 2014; Ge
et al., 2015; Li et al., 2016; Ren et al., 2016; Dong et al., 2017),
as a single approach may not suffice for personalized cancer
patient treatment. The interdependence of the datasets indicates
an integrated approach that links genes to phenotype (Su et al.,
2011; Zhang et al., 2013; Bolger et al., 2014; Minton et al., 2015;
Murakami et al., 2015). For example, metabolomics provides
insight into outcomes of transcription changes, which reflect
differential functionality of specific metabolites influencing
the tumor response. Attempts to predict therapy response
based on metabolomics analysis only (Tian et al., 2018) or gene
expression (Geeleher and Cox, 2014) yield results typically
relying on statistical analyses that do not necessarily represent
any particular tumor (Peng et al., 2018; Mucaki et al., 2019).
Ideally, a mathematical-based framework would be capable of
recreating particular patients’ tumors for in silico prediction of
behavior in time and space prior to treatment, incorporating
omics data for patient customization, and thus move toward the
goal of predictive personalized treatment.

The ability to predict personalized drug response would help
to obviate unnecessary, high-cost and high-morbidity treatments,
allowing more efficient patient management. Although a number
of theoretical models of tumor drug response have been
developed in recent years (e.g., Byrne et al., 2006; Ribba et al.,
2006; Stamatakos et al., 2006; Enderling et al., 2007; Roeder and
Glauche, 2008; Frieboes et al., 2009; Hinow et al., 2009; Sinek
et al., 2009; Gevertz, 2011), few have focused on a multiscale
integration of molecular data to evaluate cancer treatment
response. By extracting mathematical model parameter values
from tumor-specific cell proliferation, apoptosis, and molecular
characteristics, and simulating the effects of nanocarrier and
drug transport and retention in tissue, it may become possible
to predict the drug response customized for individual patients,
beyond what would have been expected from sole consideration
of any one of these parameters or the intrinsic resistance of the
cancer cells themselves.

MODELING OF CANCER
NANOTHERAPY TAKING INTO
ACCOUNT THE MICROENVIRONMENT

Mathematical Modeling Focusing on
Drug Delivery
Mathematical modeling and computational analysis are actively
being pursued in several aspects of oncology to personalize
and improve therapeutic outcomes (e.g., Ibrahim-Hashim et al.,
2017). In particular, tissue structure and transport in liver (Rani
et al., 2006; Hoehme et al., 2007; Campbell et al., 2008; Hoehme
et al., 2010, 2017, 2018; Holzhutter et al., 2012; Drasdo et al., 2014;
Dutta-Moscato et al., 2014; Lettmann and Hardtke-Wolenski,
2014; Schliess et al., 2014; Siggers et al., 2014; Bethge et al., 2015;
Ricken et al., 2015; Schwen et al., 2015; Nishii et al., 2016; Sluka
et al., 2016; White et al., 2016; Friedman and Hao, 2017; Hudson
et al., 2017, 2019; Meyer et al., 2017; Fu et al., 2018; Mahlbacher
et al., 2018; Clendenon et al., 2019; Van Liedekerke et al., 2020)
as well as pancreas (Haeno et al., 2012; Louzoun et al., 2014; Ng
and Frieboes, 2017, 2018; Roy and Finley, 2017; Yamamoto et al.,
2017; Chen et al., 2020; Dogra et al., 2020b) have been modeled.
While numerous studies have simulated tumor growth and
angiogenesis [see recent reviews and related work (Cristini et al.,
2008; Edelman et al., 2010; Lowengrub et al., 2010; Osborne et al.,
2010; Rejniak and McCawley, 2010; Vineis et al., 2010; Andasari
et al., 2011; Chaplain, 2011; Deisboeck et al., 2011; Frieboes et al.,
2011; Michor et al., 2011; Rejniak and Anderson, 2011; Swanson
et al., 2011)] including metastatic conditions (Campbell et al.,
2008; Haeno et al., 2012; Bethge et al., 2015; Hudson et al., 2017,
2019), as well as pharmacokinetics/pharmacodynamics (Lee et al.,
2013; Pascal et al., 2013a,b; Wang et al., 2015, 2016; Barbolosi
et al., 2016; Enriquez-Navas et al., 2016; Curtis et al., 2018) and
drug discovery (Wang and Deisboeck, 2014; Zhang and Brusic,
2014), few have focused on HMW-based therapeutics. To address
this need, models have been proposed which, coupled with
experimentally measured parameters, have paved the way for
more realistic multiscale modeling of cancer nanotherapy (Dogra
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TABLE 1 | Overview of recent mathematical modeling to study nanoparticle delivery and efficacy in tumors.

Nanotherapy Focus References

Biodistribution/physiological pharmacokinetics Li et al., 2010, 2012; Li and Reineke, 2011; Dogra et al., 2020a

Transport in avascular tumors Gao et al., 2013; Curtis et al., 2016a

Transport in irregularly vascularized tumors van de Ven et al., 2013; Wu et al., 2014; Curtis et al., 2016a; Miller and Frieboes, 2019a,b

Transport based on nanoparticle physical characteristics Decuzzi and Ferrari, 2006; Decuzzi et al., 2009; Godin et al., 2010b

Binding to tumor vasculature Frieboes et al., 2013; Curtis et al., 2015; Chamseddine et al., 2018, 2020;

Interactions with macrophages Leonard et al., 2016, 2017, 2020; Mahlbacher et al., 2018

Intracellular pharmacokinetics Li et al., 2013; Miller and Frieboes, 2019b

For tumor detection Reichel et al., 2015

For hyperthermia applications Kaddi et al., 2013

For drug delivery van de Ven et al., 2012; Li et al., 2013; Curtis et al., 2015, 2016a,b; Leonard et al., 2016, 2017, 2020;
Chamseddine et al., 2018, 2020; Miller and Frieboes, 2019a,b;

FIGURE 4 | Effect of repeated therapy on simulated breast cancer liver metastsis lesions over 9 day, showing (A) drug (as% of maximum blood levels) and (B) tumor
effect (as% of initial lesion diameter) after nAb-PTX and MSV-nAb-PTX injection. In all cases, therapy is initiated at 0, 3, and 6 day. (C) Simulated tumor diameter after
three treatments as % of initial tumor. (D) Comparable results from in vivo tumor after three treatments as reported in Tanei et al. (2016). The longer-acting and
spatially focused drug release with macrophages achieves a more pronounced regression over the course of therapy than with bolus injection. Reprinted with
permission from Leonard et al. (2016).

et al., 2019), integrating spatial scales nm to cm- and temporal
scales from sub-sec to weeks (as summarized in Table 1).

Traditional pharmacokinetics and pharmacodynamics
(PK/PD) correlate efficacy of small molecule drugs with
time-dependent changes in average bulk drug concentration
at the site of action. However, it has been shown that these
PK/PD methods often fail to predict efficacy of drug-loaded

NV that control drug concentrations in vascular, interstitial
and intracellular spaces of tumor (Ponta and Bae, 2014;
Ponta et al., 2015; Curtis et al., 2016b). In addition, traditional
analyses frequently simplify or rule out tumor physiology
changing over time (Khawar et al., 2015; Khalid et al., 2016). To
overcome these issues, computational modeling that integrates
key parameters influencing NV-based drug delivery into tumor
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tissue to realistically predict in vivo efficacy of nanotherapy
has been proposed.

Physiologically based pharmacokinetic (PBPK) models
have been utilized to evaluate drug efficacy, including
nanoparticle-delivered drugs (Li et al., 2010). These models
evaluate the absorption, distribution, metabolism, and
excretion of small molecules such as drugs or nanoparticles
by organizing tissues and organs as distinct compartments
linked via mass transport. In Li et al. (2013), PBPK modeling
was applied to evaluate the intracellular pharmacokinetics
of paclitaxel delivered by nanoparticles, with the model
parameters set from experimental data with human breast
cancer MCF7 cells in vitro. The results revealed that the
simulated intracellular pharmacokinetics corresponded with
relevant parameters, including nanoparticle PK, drug-release
kinetics, and drug dose.

The effect of irregular vascularization on nanoparticle
transport and drug release in tumor tissue has been evaluated
in several studies (van de Ven et al., 2012; Li et al., 2013;
Curtis et al., 2015, 2016a,b; Leonard et al., 2016, 2017, 2020;
Chamseddine et al., 2018, 2020; Miller and Frieboes, 2019a,b).
The role of macrophages in nanotherapeutic transport and effect
on hypo-vascularized tumor lesions such as breast cancer liver
metastases was evaluated in Leonard et al. (2016, 2017). In
particular, the response due to repetitive therapy with MSV-nAb-
PTX and nAb-PTX, showed that encapsulation of the drug in
multi-stage vectors (MSV-nAb-PTX) could maximize the tumor
regression (Figure 4).

Case Study: Modeling of Liver
Metastasis Nanotherapy Response
Shifting macrophage polarization from an anti-inflammatory
and tumorigenic M2 phenotype to a pro-inflammatory and
anti-cancerous M1 phenotype has recently garnered increased
focus (Pyonteck et al., 2013; Leonard et al., 2017; Tariq
et al., 2017; Poh and Ernst, 2018), with some promising
results (Pyonteck et al., 2013). This shift would ideally be
combined with standard therapies. Computational modeling
has predicted that the tumor response depends non-linearly
on the M1:M2 ratio (Leonard et al., 2017). To explore
this further, mathematical modeling was recently employed
to analyze the effects of the nanotherapy while simulating
manipulation of the macrophage phenotype via a hypothetical
immunotherapy affecting macrophage polarization (Leonard
et al., 2020). Although the role of macrophages in cancer
therapy has been evaluated in the past via mathematical
modeling (Mahlbacher et al., 2019), the effect of varying
macrophage phenotypes on nanotherapy response has not been
extensively explored. The simulations indicated that the M2-
tumor interaction may have a dual role in the response to MSV-
nab-PTX, initially promoting tumor death and subsequently
aiding tumor regrowth.

To test this model-derived hypothesis, CRISPR technology
was employed in the laboratory to achieve a stable polarization
of macrophages and avoid their repolarization in the dynamically
changing TME. The experiments showed that the response to

MSV-nab-PTX was non-uniform with respect to the M1:M2
ratio. For 72 h exposure, an M1:M2 ratio of 1500:500 reached
lower viability than 2000:0 with only M1, demonstrating that
the M2 subtype increases the therapeutic efficacy. Similarly,
the ratio of 0:2000 with only M2 had lower viability than
the 500:1500 ratio. The tumor response to MSV-nab-PTX
loaded macrophages predicted by the computational model is
in Figure 5. Figure 5A shows a general trend of decreased
tumor size when the M1:M2 ratio increases. Simulating the
inactivation of M2 macrophages to gauge the M1-only effect
(Figure 5B) while maintaining the same number of activated
M1 shows that the response is significantly less than when
the M2 are active, even for a high M1:M2 ratio of 3.8:1.
Hence, a dual action of the M2 macrophages is forecast by
the model. Since PTX is a cell-cycle inhibitor, M2 macrophages
synergistically augment the drug effect during treatment by
promoting cell proliferation, and support tumor recovery after
the treatment. By simulating repeated treatment cycles with
MSV-nab-PTX (Figures 5C,D), the model showed that the
presence of both macrophage subtypes significantly supports
tumor regression.

These modeling results suggest that immunotherapy strategies
primarily dependent on raising the M1:M2 ratio may be less
effective than protocols that establish an M1:M2 ratio that
maximizes tumor regression during chemotherapeutic exposure,
and then tilts this ratio in favor of the M1 macrophages during the
tumor recovery phase in order to leverage their cytotoxic effect.

CONCLUSION

While molecular targets in tumors are currently clinically
evaluated and considered in determining therapeutic strategies,
the physical and physiological barriers in the TME may not
be taken into account. As discussed in this review, in many
instances, the resistance to therapy can have physical or
physiological origins. In the case of tumor metastasis to the liver
or other hypovascularized lesions, the tumor lesion blood supply
represents a critical limiting factor. The ability to retain the drug
in the proximity of tumor cells, for example, by anchoring it to the
cells of the TME, could bring significant therapeutic advantage.
Modeling therapeutic responses and the efficiency of advanced
tools, such as nanomedicines, for enhancing these responses
would be of prime interest to improve outcomes.

Three-dimensional tumor models are being designed and
utilized to bridge the gap between 2D cell cultures and
the gold-standard animal models. While for some purposes,
such as drug delivery from vasculature to the tumor mass
in hypovascular tumors, simple, high-throughput and highly
reproducible spheroids can be used, organoids may represent
an advantageous systems when TME-tumor cell interactions
are important to consider (e.g., in the case of immunotherapy
evaluation). With the advent of bioprinting technologies and
the ability to recreate complex heterotypic cellular interactions
within 3D models, it is expected that the use of 3D tumor
models in anticancer therapeutic screening will be significantly
expanded. Combined with novel nanotherapy-based targeting
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FIGURE 5 | Simulation of tumor progression for untreated and MSV-nAb-PTX treated cases including various combinations of macrophage polarizations simulated
average tumor radius (n = 5, mean +/− SD) over time when treated with MSV-nab-PTX-loaded macrophages. (A) Single treatment with both M1 and M2 subtypes
active for three different M1:M2 ratios; (B) single treatment with only M1 active for three different M1:M2 ratios; (C) treated every 2d with M1:M2 of 3.0:1; (D) treated
every 3d with M1:M2 of 3.0:1. Reprinted with permission from Leonard et al. (2020).

strategies and integrated with computational predictions of NP
behavior within the TME, preclinical testing in 3D tissue models
could benefit from in vitro-ex vivo/in silico approaches in the
oncologic drug discovery pipeline.

Nanotherapy-tumor interactions are expected to depend
non-linearly (i.e., non-additively) on nanotherapy and tumor
tissue-specific conditions, including vascularization, hypoxia,
and other microenvironment characteristics affecting tumor
response. We have illustrated in this review that the analysis of
such interactions could benefit from mathematical modeling that
provides a capability for system analysis. In order to leverage
the power of these models, their parameters need to be based
on biologically relevant data, including clinical information.
Recent advances in computational power may enable simulations
with enhanced biology to more fully capture the complexity

of the TME, including fibroblast cells and extra-cellular matrix
components. These models could then be integrated with
network-oriented approaches to fully link the molecular- to the
tissue-scale. Ideally, nanotherapy candidates would be evaluated
prior to treatment by informing the parameters of such models
with patient tumor-specific characteristics, as can be observed via
analysis of biopsy samples, imaging, and omics information. The
models could then be used to determine protocols for optimal
tumor response.
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