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A B S T R A C T

Metabolic syndrome is accompanied by oxidative stress in animals and humans. The main source of ROS in
experimental metabolic syndrome is NADPH oxidase and possibly adipocyte mitochondria. It is now docu-
mented that oxidative stress induces insulin resistance of adipocytes and increases secretion of leptin, MCP-1, IL-
6, and TNF-α by adipocytes. It was established that oxidative stress induces a decrease in adiponectin production
by adipocytes. It has also been shown that obesity itself can induce oxidative stress. Oxidative stress can cause an
alteration of intracellular signaling in adipocytes that apparently leads to the formation of insulin resistance of
adipocytes. Chronic stress, glucocorticoids, mineralocorticoids, angiotensin-II, TNF-α also play an important role
in the pathogenesis of oxidative stress of adipocytes. Oxidative stress is not only a consequence of metabolic
syndrome, but also a reason and a foundational link in the pathogenesis of the metabolic syndrome.

Introduction

Metabolic syndrome (MS) is a pathological condition that, ac-
cording to the International Diabetes Federation (IDF) criteria [1], is
characterized by obesity, dyslipidemia, hyperglycemia, high blood
pressure. Metabolic syndrome is widespread in both developed and
developing countries. For example, in the USA this syndrome occurs in
33% of the adult population [2]. In Germany, metabolic syndrome
occurs in 19.4% of women and 30.2% of men [3]. In Russia, the in-
cidence of MS in men is 23%, and in women 32.4% [4]. It has also been
shown that patients with MS had a fourfold increase in mortality from
cardiovascular diseases [5].

The pathogenesis of MS has been intensively studied for almost
30 years. However, the mechanism(s) of this metabolic disturbance
remains a mystery in many ways. The intent of this review is to draw
the reader's attention to the role of reactive oxygen species (ROS) in the
pathogenesis of disturbance of adipocyte metabolic state and, as a
consequence, in the mechanism of MS occurrence (see Fig. 1).

Oxidative stress in metabolic syndrome, experimental data

In 2003, Tailor et al. published the results of their experiments on

adipocytes isolated from adipose tissue from mice fed on a diet enriched
with fat [6]. Such a diet led to the formation of a state similar to MS in
humans. Isolated adipocytes were characterized by insulin resistance
and a twofold increase in the ROS production. In KKAy strain mice with
obesity and type 2 diabetes mellitus, an increase in the mal-
ondialdehyde (MDA) level in plasma and white adipose tissue was
observed in comparison to C57BL/6 mice (without MS), which had an
increase in the plasma H2O2 concentration [7]. The inhibitor of NADPH
oxidase (Nox) apocynin reduced the MDA level in white adipose tissue
in KKAy mice and did not affect the MDA content in white fat of C57BL/
6 mice [7].

Later, Kurata et al. also found [8] that in KKAy mice compared with
C57BL/6 mice, an increase in the MDA level in the subcutaneous adi-
pose tissue and H2O2 was observed in the blood plasma. Even more
significant were experiments in mice with congenital obesity and in-
sulin resistance (ob/ob strain and db/db strain) [9]. It turned out that
the MDA level in the plasma and in the white fat tissue of these mice
was 2 times higher than in the control C57BL/6J mice. In experiments
on rats fed a diet with a high fructose content, an increase in the activity
of Nox in epididymal adipose tissue was noted [10]. These investigators
hypothesized that a high fructose diet contributes to MS. Nox generated
a superoxide radical (O2

%)) [10]. Farina et al. [11] in experiments with
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rats on a diet with a high fructose content, found Nox activation in
adipose tissue and an increase in the level of MDA in blood plasma. It
has also been shown that not only Nox, but also mitochondria of adi-
pocytes can be a source of ROS [12]. The state which is similar to MS is
developed in rats on diet with a sucrose-rich diet for 4months [13].
These rats have high levels of MDA, protein carbonyl groups and TNF-α
in blood plasma. In female rats, MS was caused by ovariectomy and
drinking water with sucrose (30%) [14]. Such an effect after 6months
resulted in insulin resistance and obesity. The MDA level in the intra-
abdominal fat of these rats was increased by almost 5-fold in compar-
ison with the control group.

Recent data indicate that the source of ROS during experimental MS
is Nox and, possibly, mitochondria. However, the reason for increasing
lipid peroxidation can be not only enhanced ROS production, but also a
decrease in antioxidant protection of the adipocyte. Thus, in KKAy mice
with obesity and type 2 diabetes mellitus, compared with C57BL/6
mice, a decrease in the activity of superoxide dismutase (SOD) and
glutathione peroxidase in white fat was also noted [7]. Similar changes
in the activity of enzymes in the liver and skeletal muscles could not be
detected by the authors. It has also been demonstrated that glutathione
peroxidase activity was decreased in epididymal fat ob/ob mice [15]. A
decrease in the activity of SOD, glutathione peroxidase, and catalase
has been observed in the intra-abdominal fat of female rats with MS
[14].

The aforementioned studies indicate that experimental induced
metabolic syndrome promotes oxidative stress in adipose tissue, due to
activation of the ROS production and reduction of antioxidant protec-
tion of the adipocyte.

Oxidative stress in metabolic syndrome, clinical data

There are few clinical studies on oxidative stress in patients with
MS. Furukawa’s research referring to patients with oxidative stress is
frequently cited [7]. However, there was no data on patients with MS in
the article since only healthy volunteers and people with obesity
without diabetes mellitus and cardiovascular diseases were included in
the study. Since one of the symptoms of MS is arterial hypertension [1],
the exclusion of cardiovascular disease suggests that patients with MS
may have been excluded from the study. However, Furukawa et al. did
present interesting findings which should be mentioned [7]. These
authors found that there was a direct correlation between the level of
MDA in blood plasma and the body mass index. In addition, an inverse
correlation was found between the MDA level in the blood and the
concentration of adiponectin in the plasma [7]. A study in Iran included
37 MS patients and 30 healthy volunteers [16]. The authors were un-
able to identify differences between groups in regard to MDA and

antioxidant activity in serum. However, they were able to detect an
increase in the total oxidant status of serum in patients with MS [16].

Our study included patients with MS and volunteers without MS
(control group) [17]. The diagnosis of MS was made in accordance with
the recommendations of the International Diabetes Federation [1]. The
material of the study was visceral adipose tissue obtained during sur-
gical interventions. The level of ROS in adipocytes was determined
using the dichlorofluorescein diacetate dye by flow laser cyto-
fluorometry on the day of isolation [18]. The results were expressed in
relative units (R.U.). We found [17] that the production of ROS in
adipocytes of visceral fat in patients with MS increased four-fold from
0.074 ± 0.07 (M ± SD, n= 29), in the control group (healthy vo-
lunteers) to 0.298 ± 0.09 (n=6) R.U. (p < 0.05) in the MS group.
The production of ROS in mesenchymal stromal cells of visceral fat in
patients with MS was 0.498 ± 0.08, and was 0.314 ± 0.04R.U.
(p < 0.05) in the control group.

The aforementioned studies indicate that the metabolic syndrome
promotes oxidative stress in adipose tissue, mainly due to the activation
of the products of ROS by adipocytes.

Oxidative stress and obesity

A study performed in China showed that the MDA level in adoles-
cents with obesity is 20% higher (P < 0.01) than in adolescents
without obesity (control) [19]. In 2012, Karbownik-Lewinska et al. [20]
reported that patients which were overweight or obese as compared to
volunteers with normal weight that the lipid peroxidation (LPO) level
in the serum (MDA, 4-hydroxyalkenali) was increased. The level of LPO
products correlated with body weight and body mass index. Similarly, it
was demonstrated that in children and adolescents with insulin re-
sistance and obesity without diabetes mellitus that the serum MDA level
was increased 3.6-fold [21]. In patients with obesity and type 2 dia-
betes, the level of leptin (one of the main adipokines) in serum is
doubled, and the MDA concentration is increased by 32% compared to
the control group (without obesity and diabetes) [22]. In a study per-
formed by Becer and Çırakoğlu [23] included 150 obese patients and
120 volunteers with normal weight. The body mass index in obese
patients was 35, the level of total cholesterol was increased, HOMA-IR
(homeostatic model assessment-insulin resistance) was 2 fold higher
than in the control group (patients without obesity). The concentration
of leptin in the blood plasma of obese patients was 3 times higher than
in the control group [23]. The MDA level in the serum of obese patients
was almost 2 fold higher than in the control group. It should be noted
that patients with obesity included in this study, according to IDF cri-
teria, closely matched MS patients, however they did not have arterial
hypertension.

Fig. 1. The relationship of metabolic syndrome and oxidative stress. ROS, reactive oxygen species; SOD, superoxide dismutase; TNF-α, tumor necrosis factor-α.
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Thus, obesity itself can cause oxidative stress. However, it should be
noted that in these studies there was no attempt to evaluate the pro-
duction of ROS by fatty tissue or to determine the source of MDA in the
blood of obese patients.

Oxidative stress, as a cause of impaired secretion of adiponectin,
leptin, MCP-1, IL-6, TNF-α by fat tissue

It has been shown that the level of leptin was increased in the blood
of MS patients in comparison with volunteers without MS [24,25,26]
while the concentration of adiponectin was decreased [24,26,27]. Many
researchers [25,28,29,30] feel this is directly related to the pathogen-
esis of MS and its associated complications. Both hormones are syn-
thesized by adipocytes [28]. In patients with MS, the level of proin-
flammatory cytokines was increased: MCP-1 (monocyte
chemoattractant protein 1), interleukin-6 (IL-6) and tumor necrosis
factor-α (TNF-α) [24,31,32,33]. It is believed that these cytokines are
synthesized by macrophages of adipose tissue [28] and are involved in
the pathogenesis of MS [30].

In experiments on murine pre-adipocyte 3T3-L1culture, oxidative
stress has been shown to decrease the secretion of adiponectin [34]. In
2006, Chen et al. [35], performing experiments with of pre-adipocyte
3T3-L1 culture, found that ROS reduced the expression of adiponectin
mRNA. In another study, 3T3-L1 pre-adipocytes were exposed to oxi-
dative stress by adding H2O2 or glucose oxidase to the incubation
medium [36]. This causes a decrease in the adiponectin level in adi-
pocytes and increases the production of TNF-α and IL-6. Reduction in
the expression of adiponectin mRNA in the pre-adipocyte 3T3-L1 cul-
ture after oxidative stress was observed by other investigators [37]. In
2015, Pan et al. [38] found that H2O2 reduced adiponectin production
by 3T3-L1 adipocytes by a factor of 2 and contributed to a 3-fold in-
crease in the synthesis of TNF-α and IL-6. Oxidative stress caused by the
addition of H2O2 to the incubation medium of 3T3-L1 pre-adipocytes
caused an increase in the mRNA levels of leptin, IL-6 and MCP-1
(monocyte chemoattractant protein 1), and an increase in the secretion
of these proteins by adipocytes. Especially noticeable was an almost 3-
fold increase in secretion of IL-6 [39]. The ability of H2O2 to induce an
increase in the mRNA of levels of TNF-α, IL-6, MCP-1 in 3T3-L1-adi-
pocytes while reducing the amount of adiponectin mRNA and de-
creasing the concentration of this adipokine in the incubation medium
was noted by other authors [40].

Thus, it has now been shown that oxidative stress promotes a re-
duction of adiponectin production and an increase in the synthesis and
secretion of leptin, MCP-1, IL-6 and TNF-α by adipocytes.

Oxidative stress and intracellular signaling

In 2003, Talior et al. [6] found that high-fat feed promotes the ac-
tivation of protein kinase Cδ (PKC-δ), the same effect was exerted by
H2O2. In experiments with 3T3-L1 adipocytes, it was shown that H2O2

promotes the activation of a number of kinases: Akt (anti-apoptotic
kinase), JAKs (Janus kinases), ERK1/2 (extracellular signal-regulated
kinase) [41]. Simultaneously, the transcription factor STAT (signal
transduced and activator of transcription) is activated. The authors
obtained data that the decrease in adiponectin secretion under oxida-
tive stress is associated with activation of Akt, JAK/STAT, and an in-
crease in IL-6 production is a result of an increase in the activity of Akt,
JAK/STAT and ERK1/2 [41]. It was found that ROS can not only ac-
tivate but inhibit signaling [40,42]. Thus, oxidative stress has been
shown to reduce insulin-induced activation of protein kinase B (Akt
kinase) and PI3 kinase (phosphatidylinositol 3-kinase) in 3T3-L1 adi-
pocyte culture, which, according to the authors, contributes to the
disruption of translocation of GLUT4 (Glucose transporter) into cellular
membrane [42]. In this connection, it should be noted that PI3K plays
an important role in insulin-induced signaling [43]. In experiments
with 3T3-L1-adipocytes, it was shown that H2O2 inhibits insulin-

induced phosphorylation of the insulin receptor and phosphorylation
(activation) of Akt [40]. The phosphorylation of JNK, on the contrary,
enhanced.

In experiments with young mice deletion of the gene encoding PKC-
δ was deleted specifically in muscle using Cre-lox recombination. It was
shown that the deletion of the gene encoding PKC-δ promotes the for-
mation of insulin resistance [44]. In 2011, Bezy et al. [45] received
more revealing data. They found that expression of PKC-δ mRNA and
PKC-ε was increased in the liver of obese patients compared to people
with normal weight. In mice with a liver-specific disturbance of PKC-δ
expression, an increase in glucose tolerance, an increase in insulin
sensitivity, and an increase in insulin signaling in hepatocytes was
observed [45]. Specific liver overexpression of PKC-δ, on the contrary,
led to the formation of a state similar to metabolic stress.

The aforementioned data indicate that oxidative stress caused a
disturbance of insulin-dependent stimulation of PI3K, while the activity
of JNK and PKC-δ in adipocytes increased. Reduced PI3K activity,
which is a key enzyme in the insulin-dependent signaling, undoubtedly
plays an important role in the formation of ROS-induced insulin re-
sistance. An increase in the activity of PKC-δ in oxidative stress, ap-
parently, also has a direct bearing on the formation of MS. The role of
other kinases in regulating the sensitivity of cells to insulin has yet to be
completely delineated.

Oxidative stress, as a cause of insulin resistance of adipocytes

Thus, oxidative stress can cause the formation of insulin resistance
of adipocytes. In 1997, in experiments with the culture of 3T3-L1-adi-
pocytes, it was shown that oxidative stress leads to a decrease in in-
sulin-dependent glucose transport into the cell [46]. In experiments
with 3T3-L1 adipocytes, it was shown that insulin causes translocation
into the GLUT4 cell membrane [47], which leads to an increase in
glucose transport to the cell. Oxidative stress led to disruption of this
process. In 2003, Tailor et al. [6] have shown that oxidative stress in
vivo also contributes to the formation of insulin resistance of adipo-
cytes. The authors found that mice fed for 4months on a high fat
content diet became obese and developed an insulin resistant state si-
milar to MS. Adipocytes were isolated from epididymal fat. It turned
out that in the presence of glucose the ROS production by adipocytes of
animals with MS increased almost 2-fold compared to the adipocytes of
healthy mice [6]. It was also shown that H2O2 contributes to the dis-
turbance of glucose uptake of 3T3-L1-adipocytes [36,48]. If ROS is
really involved in the pathogenesis of MS, then antioxidants should
have a positive effect on the course of MS.

In 2009, research results were published that were performed on
high-fat diet-induced insulin resistance rats [49]. It turned out that the
antioxidant SS31 contribute to decline the glucose and insulin levels in
the blood after oral intake of glucose. In a study that was performed by
Gao et al. [50], it was shown that flavonoids, which are natural anti-
oxidants, decreased serum MDA levels, improved insulin resistance,
ameliorated lipid disorders in high fat diet fed rats as obesity model and
KK-ay mice as diabetic model. In 2009, the results of a study were
published that included 5220 adult volunteers without MS who re-
ceived natural antioxidants (vitamins C and E, β-carotene, zinc, and
selenium) for 7.5 years [51]. The risk of MS was assessed. It has been
established there are no benefit or adverse effect of multiple antioxidant
supplementation on MS incidence. It has been found that adipocyte-
specific deficiency of Nox-4 delays the onset of insulin resistance in
mice with a high fat/high sucrose diet [52]. Recently, in experiments
with mice with a high fat/high sucrose diet, it has been shown that
overexpression of genes encoding catalase and SOD improved insulin
sensitivity of adipocytes in comparison with adipocytes of wild type of
mice [53]. In contrast, ROS-augmented mice, in which glutathione was
depleted specifically in adipocytes, exhibited deteriorated insulin sen-
sitivity of adipocytes.

Thus, oxidative stress can cause the formation of insulin resistance
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of adipocytes. It should be note that some authors propose that not only
oxidative stress but also a decrease in ROS levels resulting from over
supplementation with antioxidants can contribute to adipocyte dys-
function and subsequently insulin resistance [54].

Pathogenesis of oxidative stress and insulin resistance of
adipocytes

The pathogenesis of the oxidative stress of adipocytes in MS is still a
mystery. In 2003, Tailor et al. [6] have shown that the oxidative stress
of isolated adipocytes of mice with MS is noted only in the presence of
glucose and the resulting hyperglycemia may be the cause of oxidative
stress. It is believed that the cause of oxidative stress in MS may be an
increase in blood and tissue free fatty acid levels in patients with me-
tabolic syndrome [55]. It has also been documented that TNF-α, whose
level is increased in the blood of MS patients, can cause oxidative stress
of adipocytes [56,57]. However, there is no conclusive evidence that
hyperglycaemia, dyslipidemia or elevated TNF-α levels are the primary
cause of oxidative stress and subsequent insulin resistance in MS for-
mation. We noted above that oxidative stress induces activation of PKC-
δ, which in turn activates Nox, which synthesizes O2

% [58].
Thus, a positive feedback loop can be formed. Oxidative stress in-

creases the TNF-α production, which, in turn, ensures the enhancement
of ROS production. Oxidative stress stimulates PKC-δ, it also activates
Nox, which in turn causes an increase in O2

% production. However, it is
still unclear if this process occurs in vivo.

We concur with Eriksson’s hypothesis [59] that the primary cause of
insulin resistance, dyslipidemia in MS is chronic stress. This hypothesis
is confirmed by the data of clinical observations [60]. Indeed, clinical
data suggest a positive effect of losartan, an angiotesin II receptor an-
tagonist, on MS course [38]. It has been established that direct renin
inhibition with aliskiren improves metabolic syndrome, and reduces
angiotensin II levels and oxidative stress in visceral fat tissues in fruc-
tose-fed rats [61]. It has also been documented that the miner-
alocorticoid receptor antagonist eplerenone reduces insulin resistance
and adipocyte dysfunction in ob/ob and db/db mice with a dysmeta-
bolic state similar to MS [9]. In experiments on 3T3-L1-adipocytes, it
has been shown that dexamethasone can induce insulin resistance [62].
The glucocorticoid receptor antagonist RU486 has been shown to re-
duce dysfunction of adipose tissue in DahlS.Z-Lepr (fa)/Lepr (fa) rats
with MS [63].

Conclusion

The presented data indicate that oxidative stress causes insulin re-
sistance of adipocytes, and contributes to increased secretion of leptin,
IL-6, TNF-α by adipocytes. The impact of the resulting ROS leads to
decreased adipocyte secretion of adiponectin. It is now documented
that obesity itself can cause oxidative stress. The aforementioned stu-
dies indicate that a positive feedback loop can be formed: oxidative
stress increases the production of TNF-α, which, in turn, ensures the
enhancement of AFK production. Oxidative stress also stimulates PKC-
δ, and activates Nox, which causes an increase in O2

% production.
However, it is still unclear whether these processes occur in vivo.
Oxidative stress can cause the formation of insulin resistance of adi-
pocytes. Oxidative stress can also cause impaired insulin-dependent
stimulation of PI3K, while the activity of JNK and PKC-δ in adipocytes
is increased. Reduction of PI3K activity and stimulation of PKC-δ of
adipocytes in oxidative stress seems to have a direct bearing on the
formation of the metabolic syndrome. We hypothesize that chronic
stress, glucocorticoids, mineralocorticoids, angiotensin II, TNF-α play
an important role in the pathogenesis of oxidative stress of adipocytes.
The presented data suggest that oxidative stress is not only a con-
sequence of MS, but also a link in the pathogenesis of MS. Our
knowledge of the pathogenesis of metabolic syndrome could be greatly
expanded by the in vitro studies of adipocytes derived from patients

with MS. These studies are necessary to find the source of ROS in pa-
tients with MS, but also to determine which pharmacological agents are
capable of reducing ROS production by adipocytes in patients with MS.
This knowledge would be a great benefit in developing new approaches
to MS therapy.
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