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A B S T R A C T

Aims/hypotheses: It is now generally accepted that diabetes increases the risk for cognitive impairment, but the
precise mechanisms are poorly understood. In recent years, resting-state functional magnetic resonance imaging
(rs-fMRI) is increasingly used to investigate the neural basis of cognitive dysfunction in type 2 diabetes (T2D)
patients. Alterations in brain functional connectivity may underlie diabetes-related cognitive dysfunction and
brain damage. The aim of this study was to investigate the changes in default mode network (DMN) connectivity
in different glucose metabolism status and diabetes duration.
Methods: We used a seed-based fMRI analysis to investigate positive and negative DMN connectivity in four
groups (39 subjects with normal glucose metabolism [NGM], 23 subjects with impaired glucose metabolism
[IGM; i.e., prediabetes], 59 T2D patients with a diabetes duration of< 10 years, and 24 T2D patients with a
diabetes duration of ≥10 years).
Results: Negative DMN connectivity increased and then regressed with deteriorating glucose metabolism status
and extending diabetes duration. DMN connectivity showed a significant correlation with diabetes duration.
Conclusion/interpretation: This study suggests that DMN connectivity may exhibit distinct patterns in different
glucose metabolism status and diabetes duration, providing some potential neuroimaging evidence for early
diagnosis and further understanding of the pathophysiological mechanisms of diabetic brain damage.

1. Introduction

The human brain is one of the most metabolically-active organs in
the body, so it follows that glucose metabolism dysregulation, a hall-
mark of diabetes, would cause a variety of deleterious effects on neural
and cognitive processes. Previous studies have confirmed that type 2
diabetes (T2D) is associated with alterations in resting-state activity
and connectivity in the brain. Resting-state functional magnetic re-
sonance imaging (rs-fMRI) is generally considered a powerful tool for

measuring brain functional connectivity. Recently, a number of studies
used rs-fMRI to investigate the neuronal basis of cognitive dysfunction
in T2D patients (Zhou et al., 2010; Musen et al., 2012; Cui et al., 2015;
Chen et al., 2015; Xia et al., 2013). In particular, the default mode
network (DMN) has been studied extensively. As a system of anatomi-
cally connected and functionally correlated brain regions, DMN exhibits
elevated activity during undirected passive tasks (Andrews-Hanna,
2012). At the same time DMN is also related to “thinking about others”,
some goal-oriented tasks such as social working memory, executive
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control, and DMN has been shown to be negatively correlated with
other networks in the brain such as attention networks (Broyd et al.,
2009; Andrews-Hanna, 2012), which can affect several mental dis-
orders including bipolar disorder and schizophrenia as well (Zeng et al.,
2012; Zeng et al., 2014a,b; He et al., 2016; Sui et al., 2018). DMN has
also been involved with diabetes, so far the most consistent finding has
been that T2D is associated with disrupted DMN connectivity
(Macpherson et al., 2017). However, it remains unclear how DMN
connectivity changes in the clinical progression of T2D.

Most cases of T2D undergo a gradual progression from normal
glucose metabolism (NGM) to impaired glucose metabolism (IGM; i.e.,
prediabetes; including impaired fasting glucose [IFG] and impaired
glucose tolerance [IGT]) and eventually to T2D. From the perspective of
preventive medicine, it is more beneficial to explore brain alterations in
different glucose metabolism status and diabetes severity than to focus
only on the overall T2D. So the subjects in this study were divided into
four levels according to glucose metabolism status and the duration of
diabetes, including NGM, prediabetes, T2D patients with a diabetes
duration of< 10 years, and T2D patients with a diabetes duration of
≥10 years.

There is also evidence that interventions involving physical activity
and weight loss may affect brain functional connectivity. Recent studies
have shown that increased physical activities have protective effects on
the brain, including increases in the volume (Erickson et al., 2011) and
blood flow (Burdette et al., 2010) to the hippocampus, and improved
functional connectivity in the DMN (Burdette et al., 2010; Li et al.,
2014). The importance of these findings is the implication that diabetes
and related factors are modifiable, potentially permitting interventions
to prevent or abate diabetic brain damage.

In this study, 39 subjects with NGM, 23 subjects with prediabetes,
59 T2D patients with a diabetes duration of< 10 years, and 24 T2D
patients with a diabetes duration of ≥10 years were recruited. We used
seed-based rs-fMRI analyses to investigate positive DMN connectivity
(within-network correlations) in the four groups. We examined nega-
tive DMN connectivity (between-network anticorrelation) as well, as
the previous studies suggest that the anticorrelation between the DMN
and task-positive network (i.e., negative DMN connectivity) is asso-
ciated with cognitive (dys)function (Di Perri et al., 2016). The purpose
is to detect the changes of DMN functional connectivity in subjects with
different glucose metabolism status and diabetes severity and to in-
vestigate the relationships between the strength of DMN functional
connectivity and diabetes-related clinical variables.

2. Material and methods

2.1. Participants

In this cross-sectional study, based on the natural progression of
T2D, we recruited 145 participants who met the criteria, including 39
subjects with NGM as controls, 23 subject with prediabetes, 59 T2D
patients with a diabetes duration of< 10 years (here defined as early-
stage T2D), and 24 T2D patients with a diabetes duration of ≥10 years
(defined as later-stage T2D), between October 1, 2014 and October 31,
2016 from the Diabetes Outpatient Department and the Health
Management Center at the Third Xiangya Hospital. All of the partici-
pants were selected according to the following criteria: (1) right-
handed; (2) no visual, auditory and communication disorders; (3) no
history of coronary disease, nephritis, tumors, gastrointestinal disease,
or psychiatric illness; (4) able to meet the physical demands of the
imaging procedure; (5) T2D was diagnosed using established criteria
based on medical histories, medication use, fasting plasma glucose
(FPG) levels ≥7.0 mmol/l or plasma glucose (PG) levels ≥11.1 mmol/l
at any time; (6) IGM was diagnosed based on FPG levels of 6.1 to
7.0 mmol/l or a 2-h postprandial glucose (2hPG) level of 7.8 to
11.1 mmol/l; (7) NGM was diagnosed based on FPG levels< 6.1 mmol/
l and 2hPG levels< 7.8mmol/l. This study was approved by the

Medical Ethical Committee of the Third Xiangya Hospital of Central
South University. All participants gave written informed consent after a
detailed description of the study.

2.2. Procedure and measures

Each subject provided a medical history and underwent a physical
examination, during which clinical data were recorded or measured
with standard laboratory tests, including sex, age, education, body mass
index (BMI), blood pressure (BP), FPG, 2hPG, fasting insulin, fasting C-
peptide, glycosylated hemoglobin A1c (HbA1c), blood urea nitrogen
(BUN), serum creatine (SCr), total cholesterol, triglyceride (TG), high-
density lipoprotein (HDL), and low-density lipoprotein (LDL). The up-
dated homeostasis model assessment of insulin resistance (HOMA2-IR)
index was calculated using the HOMA2 Calculator v2.2.3 (http://www.
dtu.ox.ac.uk/homacalculator/) from FPG and fasting insulin values to
evaluate insulin resistance in the subjects without insulin treatment.

2.3. Image acquisition

The rs-fMRI scanning was performed on a 1.5-T scanner with a
standard 8-channel head coil (Avanto, Siemens, Erlangen, Germany) for
all subjects. For rs-fMRI, echo planar imaging (EPI) was employed with
the following imaging parameters: repetition time (TR)=2000ms,
echo time (TE)= 40ms, flip angle (FA)= 90°, slice thick-
ness= 4.0mm, slice spacing= 1.0mm, number of slices= 28, matrix
size= 128×128, field of view (FOV)= 240mm×240mm, number
of excitations (NEX)= 1.0, scan time=8min 26 s, and scan
range=250.

2.4. Image processing

All of the rs-fMRI data were preprocessed by using previously de-
scribed procedures (Zeng et al., 2014a,b; Zeng et al., 2018) with SPM
(SPM8, http://www.fil.ion.ucl.ac.uk/spm). For each subject, the first
ten frames of the scanned data were discarded for magnetic saturation.
Slice-timing and head motion correction were performed in which the
remaining images were realigned to the first volume within a run for
the correction of interscan head motions. All of the participants in this
study had< 2mm translation and 2° of rotation in any of the x-, y-, and
z-axes. Next, spatial normalization, spatial smoothing and temporal
filtering were performed with the images normalized (3mm isotropic
voxels) to the standard EPI template in the Montreal Neurological In-
stitute (MNI) space, spatially smoothed with a Gaussian filter kernel of
6mm full-width half-maximum and temporally filtered with a Cheby-
shev bandpass filter (0.01–0.08 Hz). Finally, we removed the signals
which are unlikely to reflect neuronal activity from the filtered images
by multiple regression, including three mean signals from the white
matter (WM), cerebrospinal fluid (CSF) and whole brain and six para-
meters obtained from head motion correction, as well as their first-
order derivative terms. The residuals of the regression were used for
further analysis.

To examine the differences in rs-fMRI functional connectivity
among the four groups, we performed a seed-based correlation analysis
based on the images of residual. In our research, two seeds were defined
as spheres with a 5-mm radius around the peak coordinates of the two
main DMN nodes (i.e., the medial prefrontal cortex [−1, 54, 27] and
the posterior cingulate cortex [0, −52, 27]) (Raichle, 2011; Di Perri
et al., 2016). The time series from the voxels in each seed region were
extracted and then averaged together. For each individual, we obtained
functional connectivity maps by calculating Pearson's correlation
coefficients between this averaged signal and the time series of each
voxel in the entire brain. The functional correlation r between a voxel
and the given seed is defined as r= cov (V, R)/(σ(V) ∗ σ(R)), where V
denotes the time series of this voxel, R denotes the averaged signal of
the seed, and cov(·) and σ(·) denote the covariance and standard
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deviation, respectively. It should be noted that roughly averaging the
time series from the voxels of spatially separated ROIs may cause
possible problems in the calculation of functional connectivity. But we
averaged the time series from the voxels of the posterior cingulate
cortex and medial prefrontal cortex here because of the high temporal
correlation between the two critical DMN nodes, as the previous studies
(Di Perri et al., 2016). Subsequently, Fisher's r-to-z transformation was
applied to the resulting maps to improve normality.

For the z-value maps of the four groups, one-sample t-tests
(p < .005, false discovery rate [FDR]-corrected) were conducted first
to identify the brain regions showing significant positive and negative
functional connectivity, respectively, with the DMN. By combining the
binary spatial maps of the four groups, we obtained a positive spatial
mask and a negative spatial mask (Fig. 1). Within these two masks,
averaged positive and negative DMN functional connectivity were
calculated for each subject. Finally, group-to-group two-sample t-tests
were performed to identify between-group differences in positive and
negative DMN connectivity. Pearson correlation analyses were per-
formed among all patients with T2D to assess the relationship between
DMN connectivity and diabetes-related clinical variables.

In addition, to further examine the changes of the spatial functional
pattern of DMN, the voxel-based comparison was also performed
among the four groups. Specifically, repeated measures analyses of
variance (ANOVAs, p < .005) were performed on the individual z-
maps in a voxel-wise manner by applying the spatial positive and ne-
gative masks, respectively.

3. Results

The demographic and clinical characteristics of the four groups are
summarized in Table 1. The groups differed significantly in HbA1c, FPG,
2hPG, TG and HDL (Table 1, p < .05).

Negative DMN connectivity was increased in subjects with early-
stage T2D compared with controls (p < .05). Individuals with later-
stage T2D had lower negative DMN connectivity than those with early-
stage T2D (p < .01). Negative DMN connectivity did not differ be-
tween individuals with prediabetes and those with early-stage T2D or
NGM (p > .05). Therefore, in the different glucose metabolism status
and diabetes duration, negative connectivity appears to increase and
then regress instead of following a linear pattern (Fig. 2A).

Positive DMN connectivity was not significantly altered in subjects
with prediabetes or early-stage T2D compared with controls (p > .05).
Patients with later-stage T2D had significantly lower positive DMN
connectivity than those with early-stage T2D (p < .05). Positive con-
nectivity followed a similar overall trend to negative connectivity, in-
creasing and then regressing (Fig. 2B).

Correlation analyses indicated that both negative and positive DMN
connectivity were correlated with diabetes duration (r=0.32, p < .01

and r=−0.26, p= .02, respectively; Fig. 2C,D).
ANOVAs indicated that some regions exhibited the significant

changes of positive functional connectivity with the DMN, including the
bilateral superior frontal gyrus and right caudate. The significant
changes of negative functional connectivity were observed between the
DMN and the right middle temporal gyrus, the left precentral gyrus as
well as the right superior parietal gyrus (Table 2 and Fig. 3).

4. Discussion

In the current study, we observed that negative connectivity in-
creases and then decreases as a parabolic relation instead of following a
simple linear pattern in different glucose metabolism status and dia-
betes duration. The magnitudes of both the positive and negative DMN
connectivity values are correlated with diabetes duration. To the best of
our knowledge, this cross-sectional study is the first to examine the
positive and negative DMN connectivity of groups with NGM, pre-
diabetes and T2D with different diabetes duration, especially from the
perspective of T2D development and the severity of diabetes (here as-
sessed by diabetes duration).

Patients with early-stage T2D had significantly increased negative
connectivity and slightly increased positive connectivity. Some pre-
vious studies have suggested that between-network anticorrelations
reflect an effective ability to switch between internal thoughts and
perception of the external world (Fransson, 2005). Previous studies
have also shown that early-stage type 1 diabetes patients had enhanced
functional connectivity (Van Duinkerken et al., 2012; Saggar et al.,
2017). Moreover, similar findings were found in patients with early-
stage multiple sclerosis and mild cognitive impairment (Roosendaal
et al., 2010; Celone et al., 2006). This phenomenon may be a result of
the loss of local inhibitory neurons, leading to the augmentation of
long-distance neuronal activation which, in turn, would lead to an in-
crease in the functional connectivity of the brain (de Haan et al., 2012).
This enhancement could also be a reaction to a loss of connectivity that
could inhibit the lower-order cognitive networks (Seeley, 2011). An-
other theory interprets the increase in functional connectivity as a sign
of functional reorganization (Schoonheim et al., 2010) in response to
early, mild brain damage. Compensatory mechanisms, such as the
functional reorganization of networks, may play a role in counteracting
the slight decrements in cognitive performance among participants
with prediabetes and early-stage T2D before the onset of clinically
apparent cognitive deterioration (van Bussel et al., 2016). Then, when
the functional reorganization fails, functional networks become dis-
rupted and cognitive decrements become identifiable in the later stages
of diabetes. This decompensation may be why patients in our study
with later-stage T2D had lower connectivity than those with early-stage
T2D. Furthermore, this disruption of functional networks may explain
the increased risk of developing mild cognitive impairment and

Fig. 1. Functional connectivity masks of DMN from all subjects (one-sample t-tests, FDR, p < .005, cluster size> 30). (Left) The regions in orange showed sig-
nificant positive functional connectivity with the seeds of DMN. (Right) The regions in blue showed significant negative functional connectivity with the seeds of
DMN.
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Alzheimer's disease in the later stages of T2D.
Furthermore, we found some regions exhibited the significant dia-

betes-related functional connectivity changes within the DMN, such as
the bilateral superior frontal gyrus (SFG), right middle temporal gyrus
(MTG), left precentral gyrus, right superior parietal gyrus, et al. The
structural and functional changes of these brain regions have been re-
ported in the diabetic population. Significantly increased connectivity
was found in the bilateral SFG in T2D patients (Cui et al., 2015). The
pooled and subgroup meta-analyses found that T2D patients showed
robustly reduced gray matter in the MTG, medial SFG, et al. (Liu et al.,
2017). Compared with healthy controls, T2D patients had significantly
decreased amplitude of low-frequency fluctuation (ALFF) values in the
bilateral MTG, et al.; and increased ALFF values in both the bilateral
cerebellum posterior lobe and right cerebellum culmen (Xia et al.,
2013).

In addition, we identified no evident alteration of brain DMN
function connectivity in prediabetes. Previous studies in prediabetes
patients have focused mostly on changes in brain morphometry
(Schneider et al., 2017; Markus et al., 2017). No consistent results were
obtained, likely because the neuroimaging methods and the char-
acteristics of the subjects differed from study to study. Therefore, it is
necessary to conduct further research in a large sample and expand into
longitudinal, multimodal studies.

Moreover, we observed that DMN connectivity in patients with T2D
was significantly correlated with disease duration. The longer the dia-
betes duration was, the weaker the average positive and negative
connectivity would be. A dynamic equilibrium of interaction within the
DMN and between the DMN and other brain systems, such as the task-
positive network, is very important for the maintenance of normal
cognitive function (Uddin et al., 2009). The reduced between-network
anticorrelations indicate that the effective capacity to switch between
internal thoughts and perception of the external world may be im-
paired. Thus, one may conclude that the impairment of cognitive
function becomes more serious as the duration of diabetes prolong,
which is consistent with previous findings (Schneider et al., 2017; Yang

et al., 2016).
This study has some limitations that should be noted. First, this

experiment has a cross-sectional design and a relatively small sample;
therefore, a longitudinal study with a large sample is needed to confirm
the findings. Second, the effects of glucose-lowering treatments on
functional connectivity were not taken into account. Third, this study
did not include cognitive assessments to examine the relationship be-
tween brain connectivity changes and cognitive deficits; such assess-
ments could be carried out in the future. In addition, another limitation
of this study is the use of 1.5-T MRI scanner for data acquisition, as the
signal-to-noise ratio of 1.5-T MRI is slightly lower than 3.0-T MRI. With
the wide availability of higher field strength MRI scanners, this may not
be conducive to future longitudinal comparison studies. Nevertheless,
the current findings provide new insights and prompt new questions for
future studies to further understand the pathophysiology of diabetic
brain damage.

5. Conclusions

In conclusion, we detected the impairment of connectivity patterns
in subjects with different glucose metabolism status and diabetes se-
verity. No evident alteration of positive or negative DMN connectivity
was observed in prediabetes, and compensatory enhancement of ne-
gative DMN connectivity was displayed in patients with a diabetes
duration of< 10 years, while decompensatory reductions were found
in patients with a longer duration of diabetes (≥10 years). The DMN
connectivity of T2D patients was associated with illness duration.
Overall, T2D is associated with disrupted DMN functional connectivity.
DMN connectivity may exhibit distinct patterns in different glucose
metabolism status and diabetes duration, providing some potential
neuroimaging evidence for early diagnosis and further understanding of
the pathophysiological mechanisms of diabetic brain damage.

Table 1
Demographic and clinical characteristics of all subjects.

NGM (n=39) Prediabetes (n=23) T2D p-Value

Duration < 10 years (n=59) Duration≥ 10 years (n=24)

Age (years) 57.0 ± 8.2 58.3 ± 6.9 55.5 ± 7.4 59.7 ± 6.5 0.10a

Sex (male/female, n) 18/21 11/12 35/24 13/11 0.58b

Education (years) 11.6 ± 3.5 11.9 ± 3.5 12.0 ± 3.7 12.2 ± 3.6 0.93a

BMI (kg/m2) 24.5 ± 2.4 25.8 ± 3.3 25.3 ± 3.1 24.8 ± 2.2 0.30a

Systolic BP (mmHg) 125.2 ± 18.6 131.2 ± 13.3 132.7 ± 15.6 130.0 ± 15.4 0.16a

Diastolic BP (mmHg) 75.8 ± 12.3 79.6 ± 10.5 79.9 ± 9.6 74.5 ± 10.4 0.08a

Total cholesterol (mmol/l) 5.2 ± 0.9 5.1 ± 0.9 5.0 ± 1.1 4.7 ± 1.0 0.33a

TG (mmol/l) 1.6 ± 0.7 2.6 ± 2.4 2.6 ± 2.3 1.7 ± 1.5 0.03a,⁎

HDL (mmol/l) 1.7 ± 0.4 1.7 ± 0.4 1.4 ± 0.4 1.5 ± 0.4 0.005a,⁎

LDL (mmol/l) 2.9 ± 0.7 2.4 ± 0.9 2.7 ± 0.8 2.6 ± 0.8 0.12a

BUN (mmol/l) 4.7 ± 1.1 5.1 ± 0.8 5.2 ± 1.4 5.2 ± 1.6 0.35a

SCr (μmol/l) 64.5 ± 13.3 66.5 ± 15.8 65.7 ± 21.3 65.0 ± 16.2 0.98a

FPG (mmol/l) 5.3 ± 0.4 5.7 ± 0.6 8.3 ± 2.6 7.8 ± 2.2 < 0.001a,⁎

2hPG (mmol/l) 6.2 ± 0.9 7.7 ± 1.6 14.0 ± 5.2 13.4 ± 4.2 < 0.001a,⁎

Fasting insulin (μU/ml) 10.2 ± 5.8 13.2 ± 5.3 12.5 ± 8.4 11.5 ± 8.4 0.34a

Fasting C-peptide(ng/ml) 2.1 ± 0.8 2.5 ± 0.6 2.3 ± 0.9 1.9 ± 0.7 0.05a

HbA1c (mmol/mol [%]) 38 ± 4.4 41 ± 6.6 58 ± 16.4 58 ± 14.2 < 0.001a,⁎

(5.6 ± 0.4) (5.9 ± 0.6) (7.5 ± 1.5) (7.5 ± 1.3)
HOMA2-%β 91.2 ± 35.9 69.3 ± 35.4 79.3 ± 46.3 85.3 ± 42.2 0.22a

HOMA2-IR 1.3 ± 0.7 1.7 ± 0.7 1.8 ± 1.2 1.6 ± 1.2 0.15a

All data are expressed as the mean ± standard deviation (SD) unless otherwise indicated.
NGM, normal glucose metabolism; BMI, body mass index; BP, blood pressure; TG, triglycerides; HDL, high-density lipoprotein; LDL, low-density lipoprotein; BUN,
blood urea nitrogen; SCr, serum creatine; FPG, fasting plasma glucose; 2hPG, 2-h postprandial glucose; HbA1c, glycosylated hemoglobin A1c; HOMA2-%β, updated
homeostatic model assessment of beta-cell function; HOMA2-IR, updated homeostatic model assessment of insulin resistance.

⁎ Indicates a significant difference between groups (p-value< .05).
a ANOVA test.
b Pearson's chi-squared test.
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Table 2
Significantly altered spatial patterns of positive and negative DMN functional
connectivity were observed among the four groups.

Target region Side BA Cluster size MNI
coordinates

F-value

(voxels) (x, y, z) F(3,141)

Positive DMN FC
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Gyrus
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Superior Frontal Gyrus R 9 10 12, 48, 30 6.25
Caudate R 17 12, 15, 21 6.73

Negative DMN FC
Middle Temporal Gyrus R 21 23 33,-66,27 8.55
Precentral Gyrus L 6 13 30,-15,54 6.33
Superior Parietal Gyrus R 7 10 15,-54,72 5.17
Cerebellum Posterior

Lobe
R 10 27,-51,39 6.34
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