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ABSTRACT

Motivation: Detecting IBD tracts is an important problem in genetics.

Most of the existing methods focus on detecting pairwise IBD tracts,

which have relatively low power to detect short IBD tracts. Methods to

detect IBD tracts among multiple individuals simultaneously, or group-

wise IBD tracts, have better performance for short IBD tracts detec-

tion. Group-wise IBD tracts can be applied to a wide range of

applications, such as disease mapping, pedigree reconstruction and

so forth. The existing group-wise IBD tract detection method is com-

putationally inefficient and is only able to handle small datasets, such

as 20, 30 individuals with hundreds of SNPs. It also requires a previous

specification of the number of IBD groups, or partitions of the individ-

uals where all the individuals in the same partition are IBD with each

other, which may not be realistic in many cases. The method can only

handle a small number of IBD groups, such as two or three, because

of scalability issues. What is more, it does not take LD (linkage dis-

equilibrium) into consideration.

Results: In this work, we developed an efficient method IBD-Groupon,

which detects group-wise IBD tracts based on pairwise IBD relation-

ships, and it is able to address all the drawbacks aforementioned. To

our knowledge, our method is the first practical group-wise IBD tracts

detection method that is scalable to very large datasets, for example,

hundreds of individuals with thousands of SNPs, and in the mean-

while, it is powerful to detect short IBD tracts. Our method does not

need to specify the number of IBD groups, which will be detected

automatically. And our method takes LD into consideration, as it is

based on pairwise IBD tracts where LD can be easily incorporated.

Contact: dhe@us.ibm.com

1 INTRODUCTION

Two or more alleles are identical by descent (IBD) if they are

identical copies of the same ancestral allele. IBD tracts are

regions shared between two or more individuals if they inherit

identical nucleotide sequences in the regions from common an-

cestor. IBD detection has been applied to a wide range of appli-

cations, such as detecting relatedness of unknown individuals

(Albrechtsen et al., 2009; Browning and Browning, 2011;

Gusev et al., 2009; He et al., 2013; Purcell et al., 2007), recon-

structing pedigrees (He et al., 2013), phasing haplotypes

(Browning and Browning, 2011), disease mapping (Albrechtsen

et al., 2009; Purcell et al., 2007) and so forth.
Recently, many methods (Albrechtsen et al., 2009; Browning

and Browning, 2011; Gusev et al., 2009; Purcell et al., 2007) have

been developed to detect IBD tracts between pairs of individuals,

based on genotype data or haplotypes. Albrechtsen et al. (2009)

proposed Relate, which uses a continuous time Markov model

where the hidden states are the number of alleles shared IBD
between pairs of individuals at a given position. Purcell et al.

(2007) proposed PLINK, which detects extended chromosomal
segmental IBD sharing between pairs of distantly related indi-

viduals by use of a hidden Markov model (HMM), in which the
underlying hidden IBD state is estimated given the observed IBS

(identity-by-state) sharing and genome-wide level of relatedness
between the pair. Gusev et al. (2009) proposed a program

GERMLINE based on a dictionary of haplotypes that is used
to efficiently discover short exact matches between individuals.

These matches are then expanded using dynamic programming
to identify long, nearly identical segmental sharing that is indi-

cative of relatedness. Browning and Browning (2011) imple-
mented an algorithm fastIBD in the program BEAGLE, which

is based on estimating frequencies of shared haplotypes because a
shared common haplotype is unlikely to reflect recent IBD,

whereas a shared haplotype that is rare is likely to be identical
by descent. A fixed number of haplotype pairs are sampled for

each individual from the posterior haplotype distribution. Each
sampled haplotype corresponds to a sequence of HMM states.

The fastIBD algorithm searches for pairs of sampled haplotypes
sharing the same sequence of HMM states for a set of consecu-

tive markers. Overlapping shared haplotype tracts are merged,
and the merged shared haplotype tract is a mosaic of pairs of

sampled haplotypes. A fastIBD score is calculated for each
merged tract, and if the score is below a user-specified threshold,

the tract is reported as IBD.
These methods have been shown to be powerful to detect long

pairwise IBD tracts. However, they generally suffer from low
power to detect relatively short IBD tracts, for example, IBD

tracts of length 51MB. And they all aim to detect pairwise
IBDs only. Methods to use group-wise IBD relationships or

IBD tracts shared by multiple individuals to increase the power
for short IBD tracts detection have been proposed. Hansen et al.

(2009), Leibon et al. (2008) and Thomas et al. (2007) have pro-
posed methods to detect group-wise IBD tracts for cases in which

some pedigree information or information about IBD sharing is
available. Moltke et al. (2011) proposed a more general Markov

Chain Monte Carlo (MCMC) method where it does not assume
any previous information about IBD sharing patterns. Group-

wise IBDs are detected directly from unphased genotype data,
using an HMM model where the states are possible IBD tracts

among the given set of individuals. An MCMC approach is de-
veloped to infer relevant information about the parameters of the

HMM model. Besides the capability to report group-wise IBD
tracts, it is also shown that the MCMC approach has relatively
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high power to detect short IBD tracts compared with the pair-

wise IBD tracts detection methods.

The MCMC method, however, suffers from intensive compu-

tation; therefore, it can be only applied to small datasets, for

example, 20–30 individuals with 500 SNPs. And the MCMC

method takes tens of hours even on these small datasets. It

also requires a previous specification of the number of IBD

groups, or partitions of the individuals where all the individuals

in the same partition are IBD with each other. The number of

IBD groups needs to be small, such as two or three. This is

unrealistic in many cases. What is more, the MCMC method

does not take linkage disequilibrium (LD) into account, which

is common in the genotype data.
To address all the drawbacks of the MCMC method, we

developed a method IBD-Groupon, which detects group-wise

IBD tracts based on pairwise IBD tracts. We first use Beagle

(Browning and Browning, 2011) to detect pairwise IBD tracts,

as Beagle allows us to adjust a threshold to detect short IBD

tracts, with the side effects of obtaining many false-positive IBD

tracts. Then we construct an HMM to select the most likely

group-wise IBD tracts to eliminate false-positive IBD tracts,

based on the assumption that the length of a false-positive

IBD tract is generally smaller than that of the true positives,

and thus false positives generally have lower likelihoods. We

also developed a depth first search algorithm, as well as a short-

est path algorithm to effectively select the possible values of the

states of the HMM such that our method is scalable to large

datasets. IBD-Groupon does not require any specification of the

number of IBD groups and the length of the IBD tracts, which

will be detected automatically. Using both simulated and real

data, we show that our method is not only much more efficient

than the MCMCmethod but also much more accurate, in that it

has much lower false-positive rate. And to our knowledge, it is

the first practical method that is able to detect group-wise IBD

tracts on large datasets, for example, hundreds of individuals

with thousands of SNPs, and in the meanwhile, it does not

assume any previous information of the IBD sharing patterns.

It also takes LD into consideration, as Beagle considers LD for

pairwise IBD detection.
Gusev et al. (2011) proposed a method DASH that identifies

pairwise IBD tracts using GERMLINE first and then conducts

an iterative minimum cut algorithm to identify densely connected

components as IBD clusters. The method cuts the haplotypes

into windows, and the min-cut algorithm runs recursively until

it identifies a subgraph of desired density or a trivial subgraph

that contains no edges to be cut. The idea is similar to IBD-

Groupon but with the following significant differences: (i)

DASH takes the density threshold of the subgraphs, as well as

the length of the windows as the parameters of input. IBD-

Groupon uses an HMM to determine the cliques and the

length of the identified IBD tracts automatically. (ii) DASH

identifies the IBD clusters in each window independently. IBD-

Groupon builds a global probabilistic framework to combine

information cross-windows. Indeed, DASH can be considered

as a special case of IBD-Groupon where there is one HMM

state for each window but with one value for each state.

We show in our experiments that compared with DASH, not

only IBD-Groupon requires no parameter tuning but also it

produces more accurate results. And the two methods have simi-

lar execution time.

2 METHODS

Our method IBD-Groupon builds an HMM based on the pairwise IBD

tracts. The HMM creates a state for each loci or SNP (single-nucleotide

polymorphism) position. For SNPs across all haplotypes at each position,

we first obtain all pairwise IBD relationships of them. As pairwise IBD

relationship should be transitive, namely, if allele a and b are IBD, b and

c are IBD, then a and c should be IBD, we say there is a conflict if a and

c are not IBD. Then we generate all possible global IBD configurations

from these pairwise IBD relationships, which are sets of IBD groups that

determine the pairwise IBD relationships for every pair of haplotypes at

the loci, and there should be no conflict among these pairwise IBD rela-

tionships. There can be multiple global IBD configurations for each loci.

For the above example, we can have two configurations: ½½a, b�, c� and

½½b, c�, a�. In the first configuration, a, b are IBD, and they are not IBD

with c. Thus, there is no conflict. Similarly, in the second configuration,

b, c are IBD, and they are not IBD with a.

Each global IBD configuration is then considered as a value of the

HMM state. The emission probability is computed as the posterior prob-

ability of the configuration given all the pairwise IBD relationships for

this position. The transition probability is computed according to the

change of the IBD status between adjacent SNPs on the same haplotypes.

Based on the HMM, we identify the most likely global IBD configur-

ations for all SNP positions, and we concatenate them to obtain group-

wise IBD tracts among multiple individuals of the whole genome. To

make the HMM practical for large datasets, we developed various of

techniques and the details will be given in the next few sections.

We show the flow chart of IBD-Groupon in Figure 1. Given the un-

phased genotype data, we first phase them using the existing tools, such

as Beagle Browning and Browning (2011), and we obtain the pairwise

IBD tracts among all the haplotypes where both inbreeding and LD are

considered. We define a haplotype chunk as a subsequence of a haplotype.

Given the pairwise IBD relationships of all the individual haplotypes, we

first split the haplotypes into themaximum IBD chunks, which are defined

as the maximum haplotype chunks where the IBD status between all pairs

of haplotypes remains the same. We create one HMM state for each

chunk. Next, for each chunk, we construct an IBD Graph where the

nodes are the chunks from each haplotype, the edges connect the haplo-

type chunks that are IBD to each other. Once we have such a graph, we

search for all maximal cliques and build a bipartite graph where one side

is all the haplotype chunks, the other side is all the maximal cliques. An

edge indicates the maximal clique covers a haplotype chunk (namely, the

clique in the IBD graph contains the corresponding haplotype node), and

a clique may cover multiple haplotype chunks. As these maximal cliques

give configurations of the group-wise IBD status among the individuals,

selecting different cliques generally leads to different global configur-

ations, and thus naturally different values of the HMM state (we will

give the definition of ‘select’ later). As the number of possible configur-

ations, we rank the configurations according to the posterior probability

of the cliques given the pairwise IBD relationships and select the top- k

configurations, where k is small enough for the HMM. Therefore,

IBD-Groupon is an approximation algorithm, but we show in our

experiments using k as 100 makes significant improvements over the

state-of-the art methods. Ranking the configurations requires computing

the posterior probabilities of all configurations, which can be expensive

and even prohibitive. We convert the problem into a top- k shortest paths

problem on a State Graph where each shortest path represents one con-

figuration, and the length of shortest paths is proportional to the reverse

of the posterior probability. By extending algorithms, such as Dijkstra

algorithm (Dijkstra, 1959), we can select the top- k shortest paths directly

without exploring all possible paths. And then we take the top- k best
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configurations as the values of the HMM state. Next, we explain each

step of IBD-Groupon in details.

2.1 Identify maximums IBD chunks

We define a haplotype chunk as a subsequence of a haplotype. Given the

pairwise IBD relationships of all the individual haplotypes, we first split

the haplotypes into the maximum IBD chunks, which are defined as the

maximum haplotype chunks where the IBD status between all pairs of

haplotypes remains the same. As shown in Figure 1a, if we mark

positions in the pairwise IBD tracts as 1 and in the non-IBD tracts as

0 (in the example, there are six pairwise IBD relationships, each row is

one relationship), we can identify the maximum IBD chunks where there

is no switch between 1 and 0 in the chunk. As the IBD status remains the

same in the chunk, we do not need to create separate HMM states for

each SNP position in the same chunk. Instead, we create one HMM state

for each chunk, which significantly reduces the complexity of the HMM.

2.2 IBD graph

Once we have identified the maximum IBD chunks, we create an IBD

Graph for each chunk, where one node is created for each haplotype

rather than one individual, as we would like to handle inbreeding cases

where the two haplotypes of the same individual may share certain IBD

regions. And we create an edge between a pair of haplotypes if they are

IBD for this chunk. An example of an IBD graph is shown in Figure 1b.

We can see haplotypes 1, 2 and 3 are IBD for the first chunk, haplotypes

2, 3 and 4 are IBD for the same chunk and haplotypes 5 and 6 are IBD

for the same chunk.

Once we build the IBD graph, we apply a maximal clique algorithm

(Bron and Kerbosch, 1973) to find all the maximal cliques, which has the

worst case complexity Oð3h=3Þ, where h is the total number of haplotypes.

The complexity in reality is much better because group-wise IBD is rare,

and the size of groups is usually not big. Each clique indicates one con-

figuration of IBD status for the haplotypes involved. For example, a

maximal clique ½h1, h2, h3� indicates the three haplotypes are IBD for

this chunk. And we consider maximal cliques to identify group-wise

IBD tracts among the most number of haplotypes. Therefore, we can

obtain different IBD configurations by selecting different cliques (from

now on, we will simply use clique to represent maximal clique).

We can obtain a global IBD configuration by selecting the maximal

cliques. Once we select a maximal clique, all the haplotypes in the clique

are IBD with each other. The global IBD configuration then determines

the IBD relationship of the haplotypes according to the selected cliques so

that all the haplotypes in the same clique are IBD with each other. If all

the maximal cliques are independent, namely, they do not overlap, we

select all of them and we will have only one global IBD configuration for

all haplotypes at this chunk. However, in reality, these cliques may over-

lap, indicating that the detected pairwise IBD relationships may conflict

with each other. As the IBD configuration cannot have any conflicts,

once we select a clique, we delete its corresponding nodes and edges in

the graph. The remaining cliques will be shrunk by this deletion, as the

overlapping haplotypes are deleted, and the conflicts are thus resolved.

Fig. 1. Flow chart of IBD-Groupon. (a) Identify the maximum IBD chunks from pairwise IBD relationships. (b) Running example of IBD-Groupon for

the first maximum IBD chunk, where haplotypes 1, 2 and 3 are IBD, haplotypes 2, 3 and 4 are IBD and haplotypes 5 and 6 are IBD. (b.a) The IBD

graph. (b.b) The bipartite graph where node A corresponds to the maximal clique [1,2,3], node B corresponds to the maximal clique [2,3,4], node C

corresponds to the maximal clique [5,6]. (b.c) The state graph. (c) The full HMM built from the pairwise IBD relationships. As there are six chunks, there

are six states. Only the first state has two values. Each state emits the pairwise IBD relationships for the corresponding chunk
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Therefore, the order of selection determines the IBD configuration. In the

example in Figure 1c in the IBD graph, there are two overlapped maximal

cliques C1 [1,2,3] and C2 [2,3,4]. We have two way, or two orders to select

them, namely, C1C2 or C2C1. Thus, there are two possible global

configurations [[1, 2, 3], 4] (once we have selected C1, C2 shrank to [4])

or [1, [2, 3, 4]] (once we have selected C2, C1 shrank to [1]). Therefore,

given a set of n maximal cliques, we have O(n!) ways to select them, which

generates O(n!) orders, each leading to a global configuration.

As we can see, the number of possible global IBD configurations, or

values for the HMM state, can be very large, and the HMM may not be

scalable to such large number of values. Therefore, we would like to select

the top- k ‘best’ configurations where k is a reasonably large number,

such as 100, where the HMM is still scalable, and consider these config-

urations only. We determine the quality of the configurations by the

posterior probability of each configuration given the pairwise IBD rela-

tionships, or the emission probability of the corresponding HMM state.

Given a global IBD configuration and the pairwise IBD relationships for

all individual haplotypes, each associated with a probability, the

emission probability for the global IBD configuration can be computed

as follows:

emissionðGCÞ ¼
Y

½hi , hj �2GC

Pðhi, hjÞ ð1Þ

where GC denotes global IBD configuration, ½hi, hj� is a pair of haplo-

types that are IBD in the global configuration, and Pðhi, hjÞ is the prob-

ability of the pairwise IBD relationships between the two haplotypes.

Notice Pðhi, hjÞ can never be 0, as hi, hj can be IBD in the global config-

uration only when Pðhi, hjÞ is greater than a threshold.

In this work, we use Beagle (Browning and Browning, 2011) to detect

pairwise IBD relationships, and Beagle reports a value for each pairwise

IBD relationship. However, the value approximates the frequency of the

corresponding IBD tracts in the population, which can be interpreted as

the probability of IBS for the region or the probability that the regions

are identical by random chance. Thus, the smaller the value is, the more

likely the IBD tract is true, as the probability of IBS is small. Therefore,

this value is not the probability of IBD, and we need to convert it into an

IBD probability. As the smaller the value is, the more likely the IBD tract

is true, we compute the inverse of the value, and we normalize the new

value by the maximal inversed value from all the IBD tracts for the chunk

so that all the inversed values are within the range of [0, 1]. The normal-

ized inversed values are then used as the probability of IBD tracts. The

reason that we do normalization by the maximal inversed value is because

Beagle is powerful in detecting IBD tracts of length41MB. The IBD

tracts with the maximal inversed value are of length generally41MB. For

IBD of such length reported by Beagle, we simply consider the IBD

probability is 1.

To obtain the top- k configurations, a naı̈ve way is to compute the

posterior probability of each configuration and then rank them. The

complexity is Oðn!logðn!ÞÞ, which can be very large, where n is the

number of maximal cliques for the chunk. To avoid a full enumeration

of all possible configurations, we construct a state graph and convert the

problem into a top- k shortest path problem on the state graph where full

exploration of all paths can be avoided. More details will be given in the

next few sections.

2.3 Bipartite graph

Given all the maximal cliques of an IBD graph, we build a bipartite graph

where the nodes on one side are the individual haplotypes (we call them

hap-nodes); the nodes on the other side are the maximal cliques (we call

them clique-nodes). We create an edge between a hap-node and a clique-

node if the clique in the IBD graph contains the haplotype (we say the

clique covers the haplotype). Thus, both the hap-nodes and clique-nodes

may be associated with multiple edges.

When the cliques do not overlap, we simply select all the cliques, and

there is a unique global IBD configuration. When the cliques do overlap,

we want to identify the overlapped cliques first. This can be achieved by

detecting all the connected components on the bipartite graph. The cor-

responding cliques of the clique-nodes in the same connected components

overlap with each other, and we can treat each connected components

independently and then combine the configurations from each

component.

For each connected component, we still need to enumerate all possible

configurations. However, the number is generally much smaller than that

for all possible global configurations when all cliques are considered. We

further developed an efficient pruning strategy to stop the enumeration as

early as possible based on our observation that the maximal cliques in

those connected components generally overlap with each other signifi-

cantly. Once we select a clique, we remove the clique-node and all the

hap-nodes it covers. Therefore, after selecting just a few cliques, the bi-

partite graph for this component is empty, and we do not need to select

any of the remaining cliques. Alternatively, the configuration remains the

same no matter how we select the remaining cliques. We consider

the problem as a search problem on a search tree where the nodes are

the cliques and we conducted a depth first search algorithm. A path on

the tree determines the order of selection for the clique-nodes, and a

subtree is pruned if all the hap-nodes are removed due to the selection

of the clique-nodes along the path.

The algorithm is shown in Algorithm 1. On line 2, we rank the cliques

first according to the size because we would like to select large cliques

first. Selection of large cliques removes more hap-nodes, and thus usually

leads to a faster termination of the search. On line 3 and 4, we maintain

two records for the search, a set Available recording the available, or un-

selected cliques, a set cc recording the current selected cliques, or the

current configuration. On line 6, min(Available) returns the minimum

index of the available cliques as the smaller the index is, the larger the

clique is and we give higher priority to larger cliques. For every selection,

we need to update the two sets Available and cc, as shown on lines 8 and

9. We also need to remove the hap-nodes covered by the selected cliques

as shown on line 7. On line 10, after every selection, we check whether

there are still hap-nodes remaining. If yes, we keep on the depth first

search. Otherwise, we add the current configuration as one of the unique

configurations. Then we do back track and update the two sets Available

and cc accordingly. The whole depth first search ends until no more

clique nodes can be selected. The worst case complexity is Oðt!Þ where t

is the number of maximal cliques in the connected components. However,

as the maximal cliques overlap with each other significantly, in reality, the

depth first search terminates fast.

Algorithm 1. Enumerate configurations for a connected component

Require: A bipartite graph G containing k clique-nodes

Ensure: A set of unique configurations C

1: C fg

2: Rank the clique-nodes of G according to the size of the

corresponding cliques as CN1,CN2, . . . ,CNk

3: Available f1, 2, . . . , kg

4: cc fg

5: while Search does not end do

6: Do depth first search and select CNi where i minðAvailableÞ

7: Remove the hap-nodes covered by CNi

8: Available Available� fig

9: cc ccþ fCNig

10: if size(hap-nodes) ¼¼ 0 then

11: C Cþ fccg
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12: Back track

13: Available Availableþ fig

14: cc cc� fCNig

15: end if

16: end while

17: output C

Once we have generated all possible configurations for each connected

component, we need to combine them. Assuming we have k connected

components with the number of configurations as n1, n2, . . . , nk, respect-

ively. The total number of global configuration is
Qk

i¼1 ni. To compute

the posterior probability for all of them and then rank them can be time

consuming. To select the top- k best configurations directly, we construct

a State Graph and convert the problem into a top- k shortest path prob-

lem where full exploration of all paths can be avoided.

2.4 State graph

We build a State Graph, which is used to generate the final k values for the

HMM state of each chunk. Given there are t connected components

cc1, cc2, . . . , cct with the number of configurations as n1, n2, . . . , nt,

respectively. We create t�1 nodes N1,N2, . . . ,Nt�1, and also one start

node S and one sink node T. Then we create n1 edges from S to node N1,

where each edge corresponds to one of the n1 configurations for cc1. As all

the edges are directed, we can only choose one of these edges to go from S

to N1, which corresponds to the fact that for each connected component,

each time we can only select one configuration among n1 configurations.

Between node Ni and node Niþ1, we create niþ1 edges where each edge

corresponds to one of the niþ1 configurations for cciþ1. Finally, between

node Nt�1 and the sink node T, we create nt edges where each edge cor-

responds to one of the nt configurations for the connected component cct.

Therefore, the state graph is a DAG (directed-acyclic-graph).

Thus, a global configuration is essentially a path from S to T. If we

associate each edge with the emission probability of the corresponding

configuration, we can obtain the posterior probability of the global con-

figuration, or the path, by multiplying all the emission probabilities along

the path. To convert the problem into a shortest path problem, instead of

the emission probability, we associate each edge with a distance, which is

the log value of the inverse of the emission probability. Thus, the higher

the emission probability, the smaller the distance is. And instead of multi-

plying the distances, we now sum them and we turn the problem into a

top- k shortest path problem, which can be solved efficiently by extending

algorithms, such as Dijkstra algorithm (Dijkstra, 1959). We simply run

Dijkstra from S to T and terminate the algorithm only after the top- k

shortest paths are identified. Full exploration of all paths can be avoided.

The worst case complexity is Oðktðmþ tlogðtÞÞÞ, where t and m are the

number of nodes and edges, respectively, in the state graph. In reality, the

state graph contains usually a small number of nodes and edges, as

group-wise IBD is rare, leading to a small number of configurations in

the connected components.

2.5 Generate HMM states

Once we obtain the top- k global configurations for all the chunks, we

construct an HMM model where k values are created for each chunk.

Notice for many chunks, the total number of possible values is indeed

smaller than k. The emission probability of each chunk can be computed

using Equation (1). The transition probability between a value i and a

value j between adjacent states is computed by the following formula:

Ti, j ¼P
NIBD�4IBD

IBD�4IBD � PNIBD�4NoIBD

IBD�4NoIBD

� PNNoIBD�4IBD

NoIBD�4IBD � PNNoIBD�4NoIBD

NoIBD�4NoIBD

where PX�4Y denotes the transition probability from status X to status

Y, and X,Y are either status ‘IBD’ or ‘no IBD’, NX�4Y denotes the

number of transitions from status X to status Y between all pairwise

IBD relationships of the two adjacent states. As each value of a state is

a configuration of all pairwise IBD relationships, including IBD and no

IBD, we need to consider all four possible status transitions.

The probability of transition between IBD and no IBD status can be

measured from the pairwise IBD relationships as the follows:

PIBD�4IBD ¼
X

1�i, j�m

NIBD�4IBD ðhi, hjÞ

NIBD�4IBD ðhi, hjÞ þNIBD�4NoIBD ðhi, hjÞ

PIBD�4NoIBD ¼
X

1�i, j�m

NIBD�4NoIBD ðhi, hjÞ

NIBD�4IBD ðhi, hjÞ þNIBD�4NoIBD ðhi, hjÞ

PNoIBD�4IBD ¼
X

1�i, j�m

NNoIBD�4IBD ðhi, hjÞ

NNoIBD�4IBD ðhi, hjÞ þNNoIBD�4NoIBD ðhi, hjÞ

PNoIBD�4NoIBD ¼
X

1�i, j�m

NNoIBD�4NoIBD ðhi, hjÞ

NNoIBD�4IBD ðhi, hjÞ þNNoIBD�4NoIBD ðhi, hjÞ

where hi, hj are the i-th and j-th haplotypes, NX�4Yðhi, hjÞ is the number

of transitions from status X to status Y between all pairs of adjacent

alleles in hi, hj, and X,Y are either status ‘IBD’ or ‘no IBD’. We can

also consider the weighted version of these probabilities, namely, we

weight NIBD�4IBDðhi, hjÞ by its corresponding IBD probability. But as

the short IBDs generally have low IBD probability, the effects of weights

can be indeed ignored. Therefore, we simply use the aforementioned

formulas.

Given all the states, the emission probabilities of each state and the

transition probabilities between adjacent states, we can apply Verterbi

algorithm (Viterbi, 1967) to find the most likely path of the states,

where each state corresponds to a global IBD configuration for the cor-

responding chunk, and we concatenate all these configurations to obtain

a complete IBD configuration for all the haplotypes. The complexity of

HMM is Oðc� k2Þ where c is the number of IBD chunks, and k is the

number of values to be saved for each state. In reality, lots of states have

much smaller number of values; therefore, the HMM is generally

efficient.

3 EXPERIMENTAL RESULTS

We compare the performance of IBD-Groupon with the MCMC

method proposed in Moltke et al. (2011) and DASH (Gusev

et al., 2011). All the experiments are done on a 2.4GHz Intel

dual core machine with 4 GB memory.

3.1 Simulated data

In Moltke et al. (2011), it is shown that for long IBD regions,

pairwise IBD detection methods, such as Beagle, GERMLINE,

Relate, PLINK generally perform well. The MCMC method is

superior to the other methods when the IBD regions shared by

multiple individuals are short. Thus, in our experiments, we only

focus on detecting short group-wise IBD tracts. We use the same

simulation used in Moltke et al. (2011), where we randomly

generate 104 individuals each with 2 haplotypes, each of length

8 MB with 200 evenly distributed SNPs. Then we set one haplo-

type of the second individual to be IBD with one haplotype of

the third individual for SNPs with index [1, 112], and we set the

same haplotype of the second individual to be IBD with one

haplotype of the fourth individual for SNPs with index

[88, 200]. All the other haplotype regions of all individuals are

randomly generated and are not IBD.
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Thus, the group-wise IBD regions are shared by individuals 2,

3 and 4 for SNPs with index [88, 112] of length 25. Moltke et al.

(2011) showed that the pairwise IBD detection methods are gen-

erally not able to detect such short IBD regions. As we use

Beagle to detect the pairwise IBD, and by using different thresh-

old, Beagle is able to detect IBD regions with different sizes, we

first vary the threshold of Beagle to generate pairwise IBD tracts

and run IBD-Groupon on top of the results. All the results are

the average performance of 100 randomly generated datasets.
We consider a true positive, as that the true group-wise IBD

region is detected, and all the other detected group-wise IBD

regions (the number of haplotypes involved needs to be no less

than three) are false-positive regions. We also compute the aver-

age lengths of the detected true positive group-wise IBD regions

and the false-positive group-wise IBD regions. We show the re-

sults in Table 1. We can see that the MCMC method achieves

high-TP ratio, as reported in the work Moltke et al. (2011).

However, it also reports relatively large number of FP regions.

Also the average length of the TP regions, 33.6, deviates from the

ground-truth value 25 a lot. For IBD-Groupon, using the default

threshold (10E-8), the group-wise IBD region was never detected,

which is also consistent with the findings of Moltke et al. (2011),

which used the default threshold. However, as we increase the

threshold, shorter IBDs are detected and the TP ratio increases

as well. The length of the TP regions is much more consistent

with the ground-truth value 25 compared with that of the

MCMC method. We also observe that when threshold 10E-3 is

used, IBD-Groupon achieves the same detection power as

MCMC does, but it also suffers from false positives. However,

the number of FP is still much smaller than that of MCMC. And

the length of FP is generally smaller than that of TP. Threshold

10E-4 seems to achieve the best balance between TP and FP, and

thus in our future experiments, we use threshold 10E-4 for

Beagle.
Moltke et al., (2011) reported that the running time of MCMC

is generally much longer than that of other methods. For the

simulated data, as we only used 200 SNPs, the running times

of MCMC and IBD-Groupon generally do not differ too

much. Both of them finished in a few seconds. But as we will

show later, when we use a larger dataset, the running time of

MCMC increases dramatically.

3.2 Real data

We simulate a pedigree using HapMap according to a real pedi-

gree. The pedigree consists of 184 extant individuals, or individ-

uals of the most current generation, and a family of size 456 with

three generations. We select random individuals as ancestral in-

dividuals and mate them according to the pedigree to generate

the extant individuals. We also make sure the selected individuals

do not have parent–child relationship.

We conduct our experiments mainly on chromosome 22,

which contains 6159 SNPs. We first consider nine individuals,

as MCMC method gets very slow for larger dataset. MCMC

runs for a long time even if we only consider a small number

of SNPs. For example, for 500 SNPs, MCMC finished in

�50min. IBD-Groupon, on the contrary, finishes in seconds.

As there is a clear advantage of efficiency of IBD-Groupon

over MCMC, we did not run MCMC for larger datasets.
For the nine individuals, individuals 2, 3 and 4, individuals 5, 6

and 7 and individuals 8 and 9 are siblings, respectively, according

to the pedigree. Therefore, we should expect group-wise IBDs for

them. As MCMC finishes fast enough only for 500SNPs, we

consider only the first 500 SNPs of all the haplotypes for the

nine individuals. For IBD group size 3, we observe the two

groups f2, 3, 4g and f7, 8, 9g have the longest IBD regions,

which are consistent with the fact that the individuals f2, 3, 4g

and f7, 8, 9g are siblings. However, the MCMC program reports

lots of false positives. As can be seen in Table 2, besides the two

true sibling group-wise IBDs, there are lots of false-positive

group-wise IBDs reported, for all group sizes 3, 4 and 5. And

even for the two true sibling groups, the length of IBD regions is

much higher than expected.

We next run IBD-Groupon on the whole chromosome 22 for

all the nine individuals, for 6159 SNPs. We use the threshold

10E-4. We set the top values to be saved for each state as 50

because none of the state has450 values for all the chunks. IBD-

Groupon finished in 9 s and it reports group-wise IBDs of size 3

only for the two sibling groups 2, 3 and 4 and 5, 6 and 7. It

indeed never reported any group-wise IBDs that are not consist-

ent with the true pedigree structure, namely, it did not report any

false positives.
To show the efficiency of IBD-Groupon with respect to the

number of values to be saved for each state and the number of

individuals involved, we first fix the number of individuals

involved as 50 and vary the number of values to be saved for

each state as 10, 30, 50, 70 and 100. The running time of IBD-

Groupon is shown in Figure 2a. Next we fix the number of top

values to be saved as 100 and vary the number of individuals as

Table 1. Performance of MCMC versus IBD-Groupon on simulated

data

Method True

positive

Average

true

positive

length

No. of

false

positive

Average

false

positive

length

MCMC 0.9 33.6 16 16.9

IBD-Groupon (t¼ 10E-8) 0 0 0 0

IBD-Groupon (t¼ 10E-7) 0.3 27.8 0 0

IBD-Groupon (t¼ 10E-6) 0.55 27 0 0

IBD-Groupon (t¼ 10E-5) 0.6 27 0 0

IBD-Groupon (t¼ 10E-4) 0.75 26 1 13

IBD-Groupon (t¼ 10E-3) 0.9 22 8 14

Table 2. Performance of MCMC on real data

IBD group

size

No. of

reported IBDs

Average num

of reported

IBD locus

3 144 123

4 237 75

5 246 52
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50, 60, 70, 80, 90 and 100. The running time of IBD-Groupon is

shown in Figure 2b. We can see that IBD-Groupon is scalable to

both parameters, and although we did not show it, obviously

IBD-Groupon has the potential to handle much larger datasets.
We also calculate the precision and recall of group-wise IBD

regions reported by IBD-Groupon in Table 3 for different

number of individuals and save the top-100 values for each

state. We define true positive as if some group-wise IBD tracts

for a sibling group in the pedigree are reported. If the group-wise

IBD is not consistent with any of the sibling groups in the pedi-

gree, we call it false positive. Notice we only use sibling groups in

the pedigree to judge whether the group-wise IBD tracts are true

positive or false positive. The false-positive IBD tracts indeed

may not be really false positive, as the IBD tracts may be

between cousins rather than siblings. We did not distinguish

such IBD tracts from false positives as the number of possible

relationships could be exponential with the depth and size of the

pedigree. Therefore, we just simply use sibling groups

instead of considering all family groups with all possible

relationships. The precision is the overall precision for different

IBD group sizes, and the recall is for IBD groups of different

sizes as 2, 3 and 4. The precision is measured as
reported true positives

reported true positives þ reported false positives, and the recall is measured as
reported true positives

all true positives . As we can see the precision drops as the number

of individuals increases, as more false positive IBD tracts are

reported. We should expect a higher precision if we use all

family groups with all possible relationships. The recall for all

group sizes is generally good.
To show the effects of the Beagle threshold, we also show the

performance of IBD-Groupon using Beagle threshold as 10E-8

in Table 4. We can see that when using a smaller threshold,

namely, being stricter on the IBD tracts, the precision of IBD-

Groupon increases significantly as most of the reported IBD

tracts are true positives. However, the recall drops significantly,

as short pairwise IBD tracts are not reported. Thus, when the

number of individuals is small, we should use a higher Beagle

threshold as both precision and recall are good. When the

number of individuals is big, we have to choose between preci-

sion and recall. For higher precision, we should use lower thresh-

old and for higher recall, we should use higher threshold.

We also compared Beagle with IBD-Groupon directly to show

that even for pairwise IBD tracts, Beagle has low power to detect

short IBD tracts. As Beagle only reports pairwise IBD tracts, we
only consider pairwise IBD. The results are shown in Table 5. For

Beagle, we use the default threshold 10E-8. For IBD-Groupon,

we use threshold 10E-4. As Beagle is shown to be reliable for long
IBD tracts, we consider IBD tracts with length greater than a

threshold, and we vary the length threshold as 100, 200, 300
and 400SNPs. As we consider the recalls on true positives of

all possible lengths, whose number is always fixed, the larger
the threshold is, in general, the lower the recalls are. As shown

in the table, Beagle has high precision, as it only reports long IBD
tracts that are mostly likely true positives. The precision of IBD-

Groupon is low when very short IBD tracts are considered (with
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Fig. 2. (a) Running time (sec.) of IBD-Groupon for different number of values for each state using 50 individuals. (b) Running time (sec.) of IBD-

Groupon for different number of individuals using 100 top values

Table 3. Performance of IBD-Groupon on real data with respect to

different number of individuals

No. of

individuals

Precision Recall

(2) (%)

Recall

(3) (%)

Recall

(4) (%)

10 95 100 100 NA

30 70 100 80 100

50 65 100 83 100

70 51 100 83 100

90 43 100 75 75

Note: The top-100 values are saved for each state. The precision is for all IBD group

sizes. The recall is for different IBD group sizes. Beagle threshold¼ 10E-4.

Table 4. Performance of IBD-Groupon on real data with respect to dif-

ferent number of individuals

Num. of

individuals

Precision

(%)

Recall

(2) (%)

Recall

(3) (%)

Recall

(4) (%)

10 100 100 100 NA

30 96.4 50 60 0

50 96.8 87.5 66 0

70 87 83 66 0

90 85 86 62 0

Note: The top-100 values are saved for each state. The precision is for all IBD group

sizes. The recall is for different IBD group sizes. Beagle threshold¼ 10E-8.
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threshold 100SNPs). However, IBD-Groupon has much higher

recall than Beagle does, as Beagle is not able to detect short IBD

tracts (with threshold 100 and 200SNPs). When the IBD tracts

are very long (with threshold 300 and 400SNPs), both Beagle and

IBD-Groupon have the same low recalls, as short IBD tracts are

not considered by both of them.
To further evaluate the accuracy of the reported group-wise

IBDs, we calculate the average group-wise IBD tract length for

groups of sizes as 2, 3 and 4, and we consider 100 individuals and

save the top-100 values for each state. It is shown in Donnelly

(1983) that the length of IBD tracts follows an exponential dis-

tribution exp(Mr), where M is the number of meioses between

two individuals, and r is the recombination rate with value as

10�8 for the whole genome. Therefore, if we consider

6159 SNPs only, the recombination rate becomes

3� 109=6159� 10�8. For simplicity, we only consider the

group-wise IBD tracts reported by IBD-Groupon for siblings,

namely, the numbers of meioses between them are all two. For

a group of n siblings, their expected IBD tract length between

either paternal or maternal haplotypes is 1=n
3�109

6159 �10
�8
. As for each

group of siblings, there are two types of haplotypes, one for pa-
ternal and one for maternal, the expected IBD tract length should

be doubled. We consider the length of the IBD tracts simply as the
number of SNPs in the IBD tracts. We show the length of IBD
tracts reported by IBD-Groupon for different IBD group sizes

and that of the expected in Table 6. As we can see, the reported
group-wise IBD tract lengths are consistent with those of the

expected, indicating that our method is accurate. What is more,
most of the group-wise IBD tracts of group size 3 and 4 would

not be detected by exiting pairwise IBD tract detection methods,
as they are much shorter than the pairwise IBD tracts.

Finally, we compare the performance of DASH (Gusev et al.,
2011) and IBD-Groupon for the same 90 individuals. As DASH

also requires pairwise IBD tracts as input, we use Beagle to gen-
erate the pairwise IBD tracts for both DASH and IBD-Groupon

for a fair comparison. We also vary the Beagle threshold as 10E-
8 and 10E-4. As DASH has a few parameters (subgraph density,

window size and so forth) to tune, we tuned these parameter and
showed the best results. DASH finished in 1 s for each set of

parameters, whereas IBD-Groupon finished in a few seconds.
As we can see in Table 7, IBD-Groupon achieves better precision

and recalls in general for both thresholds, indicating using a
global probabilistic framework, such as HMM, which is able

to generate more accurate results. We also observe that both
precision and recall drop for DASH when we increase the thresh-
old of Beagle to produce shorter IBD tracts, indicating that

DASH targets mainly on long group-wise IBD tracts, and it
lacks of an effective strategy to identify the true short group-

wise IBD tracts when many false positives are present. IBD-
Groupon on the contrary has much better performance to

detect short group-wise IBD tracts, which is a benefit of
HMM. IBD-Groupon also has the benefits of parameter free,

as the HMM determines the size of the IBD groups and the
length of the group-wise IBD tracts.

4 CONCLUSION

In this work, we proposed an efficient method IBD-Groupon to
detect group-wise IBDs in multiple individuals simultaneously

based on pairwise IBD relationships. An HMM is created, and
the values of the states are efficiently generated using depth first

search and shortest path algorithms. Our method is the first
practical method to handle large data sets with hundreds of in-

dividuals and thousands of SNPs, and in the meanwhile, has
good performance for both long and short group-wise IBD

tracts. It is shown that our method is not only much more
efficient but also reports much fewer false positives than the

Table 7. Performance of IBD-Groupon on real data with respect to different number of individuals

DASH IBD-Groupon

Threshold Precision (%) Recall (2) (%) Recall (3) (%) Recall (4) (%) Precision (%) Recall (2) (%) Recall (3) (%) Recall (4) (%)

10E-8 63 62 32 25 85 86 62 NA

10E-4 43 50 30 13 43 100 75 75

Note: The top-100 values are saved for each state. The precision is for all IBD group sizes. The recall is for different IBD group sizes. Beagle threshold¼ 10E-8. No. of

individuals¼ 90.

Table 5. Performance of IBD-Groupon on real data with respect to IBD

tracts of different lengths

IBD tracts

length (SNPs)

Beagle

precision (%)

IBD-Groupon

precision (%)

Beagle

recall (%)

IBD-Groupon

recall (%)

� 100 90 34 87 100

� 200 90 83 73 93

� 300 90 88 67 67

� 400 91 86 47 47

Note: The top-100 values are saved for each state. We only consider pairwise IBD

tracts. Threshold for Beagle is 10E-8 and for IBD-Groupon is 10E-4.

Table 6. Expected IBD length versus IBD length reported by IBD-

Groupon on real data for 100 individuals and top-100 values are saved

for each state

2 3 4

Expected length 236 133 100

Reported length 205 137 102

Note: Length of the IBDs is simply the number of SNPs in the IBDs.
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state-of-the-art methods. It also takes LD into consideration, as
LD is considered when the pairwise IBD tracts are detected. A
possible future work is to apply this method to help reconstruct
pedigree, where the group-wise IBD tracts contain much more

family relationship information than the pairwise IBD tracts do.

Conflict of Interest: none declared.
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