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Introduction
Many studies have been dedicated to efficient screening and 
identification of causative genes and pathways implicated in 
cancerous phenotypes. Much attention has been drawn to 
gene prioritization that helps to select from a large number 
of candidate genes a subset of those that are biologically most 
relevant and are worth further validation experiments.

To understand the pathophysiological mechanisms, it is 
insufficient to investigate only at the level of single-nucleotide 
polymorphisms (SNPs) or copy number variations (CNV) as 
in genome-wide association study (GWAS). This is partly due 
to the lack of statistical strength that plagues GWAS,1 which 
stems from the need to correct for multiple testing, and makes 
it difficult to implicate causative genes. On the other hand, 
cancers that involve complex and epistatic genetic traits cannot 
be adequately explained by additive genetic models. Moreover, 

cancer phenotypes necessarily involve the full scope of Omics 
including genomics, transcriptomics, epigenomics, proteom-
ics, and metabolomics, as well as their interaction and correla-
tion with pheno-types. Rather, levels in the Omic hierarchy 
need to be considered simultaneously and interactively. This 
is because the genes, RNAs, proteins, and epigenetic factors 
interplay in the form of signaling networks, metabolic net-
works, regulatory networks, etc. Moreover, biological net-
works further interact and exchange information among each 
other, as shown in Figure 1.

The importance of the integrated Omic view toward 
cancer is increasingly realized, and drives collaborative efforts 
toward development of shared expression, functional anno-
tation, protein–protein interaction (PPI) network, experi-
mental Omic data sources, literature, etc. Most data sources 
are structured and have predefined schemas for prioritization 
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tools to follow. In fact, gene prioritization tools have been 
progressively refining their customized components for ana-
lyzing structured data sources; see reviews.2–5 In contrast, 
text mining methods on literature data source and text 
descriptions in structured data sources have seen slow prog-
ress. Thus unlike previous reviews, this review focuses on the 
text mining methodology used in gene prioritization tools 
and recent developments on the emerging direction of path-
way prioritization.

Heterogeneous Data Sources
With recent advances in the Omic era, large volumes of data 
are gathered from multiple levels of the Omic hierarchy 
including genome, transcriptome, epigenome, proteome, and 
metabolome. These data sources may focus on different subsets 
of the Omic hierarchy. These data sources also present them-
selves in various formats such as sequence reads, numerical 
expression levels, and narrative text in the scientific literature. 
The increasing availability of high throughput technology 
such as next-generation sequencing (NGS) not only calls for 
a changing perspective on the Omic model, but also calls for 
upgrading hypotheses, algorithms, and software that inte-
grate the evolution of knowledge. In particular, in addition to 
subsequent analysis on GWAS results to accumulate evidence 
by statistical procedures,6 gene prioritization methods also 
need to integrate an increasing number of heterogeneous data 
sources, in terms of both content and data formats.

There are a multitude of data sources that encode different 
types of information regarding the Omic hierarchy and infor-
mation exchange. These data sources have been conventionally 
categorized based on their purposes, for example, functional 
annotation, ontologies, and sequence data. Here, we try to 
summarize the currently active data sources that have been 
used by gene prioritization tools as well as by cancer biologists 
and clinicians in their routine research and practice, group-
ing them according to their primary utility categories. Table 1 
lists the summarized data sources. From the table it can be 
seen that many data sources contain narrative text or litera-
ture, suggesting the broad applicability of text mining to gene 
prioritization. Thus closer understanding and more improve-
ments on text mining methods in gene prioritization is likely 
to make a general impact.

Text Mining in Gene Prioritization
This section provides an extensive review of computational 
tools for gene prioritization. Because we are focusing on text 
mining in such tools, we categorize them according to the 
characteristics of their text mining components. In each cat-
egory, prioritization methods are ordered chronologically.

Prioritization without text mining. Despite the preva-
lence of literature and narrative text segments in many data 
sources, earlier gene prioritization methods may leave out 
the text mining component and simply rely on mining struc-
tured data.
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Figure 1. The Omic hierarchy on the left, biological networks on the right, and their interactions. TF stands for transcription factor, The figure shows some 
typical network interaction scenarios such as: a signaling network activates transcription factors for a regulatory network; transcription factor complexes 
that control a regulatory network may be formed through protein interactions (eg, binding); a metabolic network may produce energy (through catabolism) 
and amino acids (through anabolism) that are necessary for other functional networks; and enzymes that catalyze many metabolic networks are in fact 
proteins and are produced and regulated by other biological networks. Note that regulatory networks often have participants from multiple levels of the 
Omic hierarchy.
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GeneSeeker86 depends on gene positional data and 
expression data, as well as phenotype data extracted using 
keyword search from MEDLINE and OMIM. GeneSeeker 
uses synonym lists compiled from Swiss-Prot and the now 
inactive Human Genome Database87 to unify nomenclature 
across different data sources. Prioritizer88 constructs the gene 
network using Bayesian integration to account for both manu-
ally curated protein interaction and pathway information as 
well as co-expression data, yeast-two-hybrid (Y2H) interac-
tion data, etc. To initialize the network, known contributing 
genes are identified by text mining on the OMIM disease 
entries. CANDID89 asks the users to input keywords related 
to the traits of interest and uses them to query the literature 
and protein domain descriptions (keyword matching). CAN-
DID also uses other data sources to generate source-specific 
numeric scores, such as those on phylogenetic conservation, 
gene expression, protein interactions, linkage, SNP associa-
tion, and user provided gene scores.

All source-specific scores are merged into a final score by 
user provided weights. PGMapper90 uses keywords to search 
phenotype databases such as OMIM and PubMed, and com-
bines linkage, expression, and sequence data sources to search 
candidate genes for 16  species including human. GenePros-
pector91 keeps an in-house literature database by first using 
text mining to screen PubMed, and then having curators 

Table 1. Data sources for gene and pathway prioritization according to their primary utility. 

Utility Category Data Sources

Literature PubMed9, MEDLINE, OMIM10

Terminology & Ontology GO11, UMLS12, DO13, MeSH14, eVOC15, HPO16, MPO17

Pathway KEGG18, BioCarta19, BioCyc20, Reactome21, GenMAPP22, MSigDB23, Brenda24, CTD, 
HPRD25, GXD, BIND, MGI, PharmGKB, PID26

Protein sequence & Domain InterPro27, Aceview28, Pfam29, SMART30, PROSITE31, Gene3D32, ProDom33, Ensembl, 
Swiss-Prot, TrEMBL, HPRD, RefSeq, GenBank, MGI, CDD34, Entrez Gene35

Regulation MSigDB, TargetScan36, TRANSFAC37, BioCyc, Reactome, Brenda, TOUCAN

Gene expression Ensembl38, BIOGPS39, GEO40, MBA41, HBA42, Reactome, GenMAPP, GXD, STRING, MGI, 
SOURCE43

Gene-Protein and Disease CTD44, HPRD, GXD, COSMIC, TCGA, MGI, ClinVar, NHGRI GWAS, Phar-mGKB,  
Orphanet45, HuGENavigator46, GHR47, SOURCE, GAD48

Gene & Protein variation Ensembl, OMIM, HGMD49, Swiss-Prot50, HPRD, GXD51, TrEMBL52, COSMIC53, TCGA54, 
dbSNP55, GEO, RefSeq, ClinVar56, NHGRI GWAS57,58, PharmGKB59, GeneTests60, MGI, 
CDD, GHR, ALFRED61, HapMap62

Gene function annotation PROSITE, GO, BioCyc, Reactome, GenMAPP, Brenda, BIOGPS, Swiss-Prot, TrEMBL, 
dbSNP, MGI, SOURCE

Gene, Protein & Chemical interaction STRING63, HPRD, BioGrid64, BIND65, IntACT66, DIP67, Gene3D, Drugbank68, Matador69, 
CTD, Stitch70, Swiss-Prot, TrEMBL, HPRD, PharmGKB, Entrez Gene, PID

Gene sequence & Locus BLAST71, RefSeq72, TOUCAN73, GenBank74, BioCyc, Brenda, MBA, HBA, HPRD, GXD, 
STRING, BIND, MGI, Entrez Gene

Homology analysis MGI75,76, HomoloGene77 and OMA78, Inparanoid79, BioCyc, Reactome, GXD, Ref-Seq, 
Entrez Gene

Notes: Bold font indicates the source has narrative text and is suitable for text mining. This does not include data sources that only points to literature data sources 
such as PubMed. We also exclude data sources that are built solely by automatic mining of other data sources, eg, GeneCards.7,8

Abbreviations: OMIM, Online Mendelian Inheritance in Man; GO, Gene Ontology; UMLS, Unified Medical Language System; DO, Disease Ontology; MeSH, 
Medical Subject Heading; HPO, Human Phenotype Ontology; MPO, Mammalian Phenotype Ontology; GEO, Gene Expression Omnibus; CTD, Comparative 
Toxicogenomics Database; GXD, Gene Expression Databas; MGI, Mouse Genome Informatics; HPRD, Human Protein Reference Database; HGMD, Human Gene 
Mutation Database; MBA, Mouse Brain Atlas; HBA, Human Brain Atlas; CDD, Conserved Domain Database; GHR, Genetics Home Reference; GAD, Genetic 
Association Database; OMA, Orthologous Matrix. 

POCUS80 relies on statistics composed of term IDs in 
functional annotation databases that are shared by gene–
disease pairs. PROSPECTR81 uses alternating decision 
trees to classify whether the candidate genes and known 
disease genes share similar sequence patterns. Gentrepid82 
is directly based on biological data including protein domain 
similarity, protein interaction, and pathway membership. 
PhenoPred83 is a supervised method based on experimen-
tal PPI networks, protein–disease association, protein 
sequences, and protein function annotations. PhenoPred 
encodes gene features using shortest-path distances to all 
disease genes or genes with known function annotation, as 
well as sequence and function features using physicochemi-
cal or predicted structural properties (real-valued) and GO 
terms and PROSITE patterns. Principal component analy-
sis (PCA)84 was used to reduce dimensionality and support 
vector machine (SVM)85 was used to predict individual 
disease–gene correlation.

Prioritization with keyword search text mining. 
Prioritization methods falling in this category rely on key-
word matching when retrieving literature or text segment in 
response to query terms such as phenotype descriptions or 
gene names. Indexing is frequently performed to preprocess 
the narrative text in data sources in order to categorize the 
literature and reduce the search time.
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review and manually index screened abstracts. Indexing tasks 
include associating the publications with gene symbols, pre-
defined categories, and study types, in order to calculate a 
heuristic score for each gene. MaxLink92 relies on clues based 
on connectivity of candidate genes to the known disease genes 
in a PPI network to rank genes and uses keyword searches to 
provide known gene sets.

Prioritization with vector space model based text min-
ing. Vector space model represents text document and seg-
ments as vectors of identifiers, eg, index terms. Compared 
with keyword search, vector space model can take into consid-
eration counts and weights of index terms. Vector space model 
based text mining is frequently explored in gene prioritization 
tools.

G2D93–95 performs text mining on MEDLINE to associ-
ate MeSH phenotype terms with MeSH chemistry terms and 
to associate MeSH chemistry terms with GO terms. For both 
associations, co-occurrence statistics are calculated. Associa-
tion between MeSH phenotype terms and GO terms is then 
calculated transitively from the two associations, based on 
fuzzy set theory. G2D then searches the RefSeq and STRING 
databases and assigns gene score by averaging across GO terms 
matching that gene. SNPs3D96 uses text profiling on MED-
LINE abstracts to rank candidate genes. More specifically, 
the authors collected nouns and adjectives as keywords, tal-
lied the raw counts of keywords and gene–keyword pairs within 
the corpus, devised heuristic scores for gene–gene interaction 
and disease–gene, and applied a rule-based approach  
to assign the final rank. MimMiner97 uses the anatomy and 
the disease sections of MeSH to extract terms from OMIM 
records and builds a vector space model, weighting the vector 
element according to the MeSH hierarchy and inverse docu-
ment frequency. The authors reported correlations between 
phenotype similarity and gene sequence similarity, correla-
tions between phenotype similarity and protein interaction, 
correlations between phenotype similarity and gene func-
tions in pathways, and the implication of phenotype grouping 
on the modular nature of human disease genes, all derived 
from text mining. Endeavour98,99 trains separate models on 
different data sources including literature, functional annota-
tion, gene expression, protein domains, protein interactions, 
pathway membership, cis-regulatory modules, transcriptional 
motifs, sequence similarity, and user provided data. Endea-
vour then ranks the target genes against individual models 
and pools the individual ranks to get an overall rank, using 
a customized Q-statistic. CAESAR100 accepts as input a text 
excerpt containing previously implicated genes, performs text 
mining (vector-space model) against phenotypic, anatomic, 
and genetic ontologies and extracts ontology terms. CAESAR 
then maps such terms to candidate genes in expression, inter-
action, and pathway data sources and generates data-source 
specific gene scores that are in turn aggregated into a final 
score. ToppGene101,102 uses co-citation counts in PubMed as 
an indication of gene relationship. Using data sources covering 

gene, protein, and pathway; ToppGene implements two gene 
prioritization systems: one based on function annotation and 
the other based on interaction network. CIPHER103 is a net-
work based prioritization method integrating PPI networks, 
disease phenotype similarity, and known gene–phenotype 
associations. CIPHER uses the text mining component of 
MimMiner97 to calculate phenotype similarity. GeneDis-
tiller104 uses literature co-occurrence statistics to filter the 
candidate genes, besides integrating data sources on genes, 
proteins, and pathways. PRINCE105 is a network based algo-
rithm that not only predicts gene associations but also infers 
protein complex associations with diseases. The construction 
of the network begins with scanning causal genes of known 
diseases that share phenotype similarity to the target disease, 
where the authors used the MeSH based phenotype similar-
ity metric from MimMiner.97 The network is then initialized 
with prior knowledge and gene scores are computed using an 
iterative network propagation algorithm. The web tool Poly-
Search106 searches PubMed abstracts as well as gene, protein, 
pathway, and metabolite data sources to integrate their text 
content. PolySearch manually curates a corpus consisting of 
terms and synonyms from dictionaries compiled from gene 
function databases. PolySearch also adopts a heuristic scoring 
system to rank disease queries and matching gene terms where 
scoring is based on a discretized sentence relevancy. Gene-
Wanderer107 applies random walk and diffusion kernel on PPI 
networks and compares the PPI domain knowledge collected 
with and without text mining. The authors pointed out that 
integrating literature data may lead to better performance on 
retrospective studies than prospective settings, a phenomenon 
referred to as “knowledge contamination” as retrospective 
knowledge is already present in the literature. GPsy108 profiles  
candidate genes using data sources on gene sequence, expres-
sion, function annotation, and gene–disease association, 
augmented with orthologous genes extracted from Homolo-
Gene77 and OMA (Orthologous MAtrix).78 Text mining is 
used to extract phenotype annotation based on co-occurrence 
statistics in the biomedical literature.

Prioritization with text mining using ontology struc-
ture. In addition to using vector space model and using ontol-
ogy only as a terminology mapping tool, gene prioritization 
methods in this category further explore the ontology struc-
ture (eg, the is-a relation between parent and child nodes in an 
ontology), in order to better quantify the semantic similarity 
between concepts.

Tiffin et  al.109 use the eVOC anatomical ontology to 
combine literature text mining and gene expression data. 
The eVOC terms serve as a bridge to connect the PubMed 
literature (via association frequency between eVOC term 
and disease names) and RefSeq genes (via frequency of Ref-
Seq genes annotated with eVOC terms). A heuristic ranking 
score is then used to prioritize the bridged disease–gene pair. 
SUSPECTS110 uses four data sources including gene sequence 
patterns (obtained from PROSPECTR), gene expression, 
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shared rare protein domains, and semantic similarity of the 
associated GO terms between the candidate and seed genes. 
The calculation of semantic similarity is done using the met-
ric of information content proposed by Lord et  al.111, which 
is based on counting how many times a GO term occurs in 
the Swiss-Prot database. MedSim112 uses GO terms as the 
function annotation of a gene and experiments with multiple 
configurations on whether to include GO terms of ortholog 
genes, interacting genes, or semantically similar GO terms. 
The semantic similarity is calculated with the simRel score, 
taking into account the differences, commonalities, and speci-
ficities of GO terms.113

Prioritization with statistical text mining. Recently, 
statistical text mining in gene prioritization has gained trac-
tion, where a pre-defined distribution or a Bayesian model is 
used to fit the data in order to boost the prediction power.

GRAIL114 is a text mining approach that resembles cor-
relating gene pathways to diseases in that it identifies not 
only the disease genes but also their biological relationships. 
GRAIL takes seeds from the implicated SNPs identified by 
GWAS to anchor seed chromosomal regions, so it is less sus-
ceptible to knowledge contamination. A gene is represented as 
a feature vector by using a term frequency-inverse document 
frequency (tf–idf) weighted vector space model to analyze the 
PubMed corpus, from which the relatedness between genes 
can be calculated and connections between candidate genes 
and seed regions (containing implicated genes) can be made. 
By fitting a Poisson distribution over the connections between 
candidate genes and seed regions, a P-significance can be 
calculated to show how likely a candidate gene is implicated. 
Besides text similarity-based gene relatedness, GRAIL also 
calculates annotation-based relatedness and expression-based 
relatedness to quantify biological relations between genes. 
Genie115 is a literature-based prioritization method that mines 
MEDLINE abstracts and explores orthologs to identify more 
abstracts containing related orthologous genes to complement 
the genes of under studied organisms. In order to retrieve 
orthologous genes, a sample set of abstracts with the genes 
from the target organism is used to train a Bayesian linear clas-
sifier that picks discriminative keywords to be used in ortholo-
gous gene abstract search. MetaRanker116 applies large-scale 
text mining on all MEDLINE abstracts available by then 
using customized statistical models of genes and MeSH terms 
adjusting for publication bias, similar to GRAIL. In addition, 
MetaRanker also integrates GWAS SNP–phenotype associa-
tions, PPI networks, linkage analysis data, gene expression, 
CNV, and user provided NGS data.

There are also efforts toward comparing and integrating 
computational tools for correlating candidate genes, such as 
gene prioritization portal117, which links to 19 previous com-
putational solutions. In Ref. 118, the authors compared algo-
rithms that use PPI networks including network neighbor 
analysis, unsupervised clustering, semi-supervised clustering, 
network flow with prior information, and random walks, and 

reported superior performance of random walk on network 
data. Although both works did not have text mining as their 
focus, they can potentially shed lights on best practice when 
integrating analysis on structured data with text mining in 
gene prioritization. They also serve to illustrate the imbalance 
between the advances in mining structured data and mining 
text in gene prioritization, which is readily evidenced by the 
complexity of models employed. We summarize the text min-
ing components in the above gene prioritization methods in 
Table 2, grouped using the same categorization as we intro-
duced these methods. We also briefly comment the advan-
tages and disadvantages of the text mining components.

Challenges of Text Mining in Gene Prioritization
From the progression of gene prioritization methods over time 
as summarized in the previous section, it becomes clear that 
the application of text mining has seen slow methodology 
advance. In our opinion, the evidence from the literature has 
been largely treated in an oversimplified fashion. This section 
lays out some of the challenges encountered by text mining in 
gene prioritization, and the next section enumerates several 
promising directions emerged lately.

Noisy, contaminated and biased knowledge. Repre-
sentation of gene–disease relations extracted by current text 
mining in gene prioritization is often noisy because of the 
insufficient level of detail in co-occurrence counts or simple 
statistics. Mined relations are also biased toward genes and 
phenotypes that are already present in the literature and may 
offer only limited insights to new discoveries. This effect of 
knowledge contamination is said to make the prioritization 
task easier for retrospective discovery than for novel discov-
ery. In fact, this problem is not specific to text mining only, 
because after publication in literature, knowledge is also 
quickly integrated into structured data in sources such as 
KEGG, STRING, and InterPro. Thus cross-validation based 
methods for checking generalizability may not guarantee good 
performance on novel genes. Previous works usually tried to 
reduce such overestimation by sub-setting data prior to the 
real discovery of the cross-validated genes. However, this 
does not eliminate another, more subtle form of knowledge 
contamination, as literature based text mining may still pres-
ent bias toward existing concepts about the disease. GRAIL 
addressed this problem by not using known pathways and 
genes at all, but increased the risk of reinventing the wheel 
for known discoveries. A finer statistical approach should be 
devised to utilize existing knowledge and eliminate or offset 
the potential bias.

Evaluation of text mining components in gene pri-
oritization methods. Ideally, we need objective evaluation 
for this ever expanding array of text mining components in 
gene prioritization methods. In typical text mining settings, 
a ground truth needs to be established as a gold standard to 
perform intrinsic evaluation and compare different text min-
ing approaches as isolated systems. For example, in a related 
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task of extracting mentions of genes from documents, experts 
need to first manually annotate the corpora and mark the gene 
mentions. With such a ground truth produced, evaluation 
metrics such as precision, recall, and f-measure can be used to 
assess the effectiveness of text mining approaches in recogniz-
ing gene mentions. Let TP denote the number of true posi-
tives in the contingency table, FP denote the number of false 
positives, and FN denote the number of false negatives, the 
definition of precision is P = TP/(TP + FP), recall is R = TP/
(TP + FN), f-measure is F = 2 × P × R/(P + R). However, the 
task of text mining for gene prioritization is more involved, 
and the structure of the ground truth is less obvious. This is 
further complicated by the fact that text mining is embed-
ded inside the pipeline of gene periodization as one compo-
nent, which often requires extrinsic evaluation that assesses 
the performance of the overall task. Because of the explor-
ative nature of gene prioritization tasks, experimental bench-
marking and statistical benchmarking by cross-validation are 
frequent choices of assessing prioritization methods.2 Experi-
mental benchmarking requires lab experiments to determine 
the proportion of false positives in the top ranked genes. 
Statistical benchmarking requires known disease-associated 
genes and evaluates how well the top ranked genes overlap 
with the known set of genes. Note that both benchmarking 
evaluations are necessary but not sufficient conditions for a 
good prioritization.

Problems with guilt-by-association. Network based 
gene prioritization methods integrate evidence from text 
mining and similarity profiling, as well as function and inter-
action annotations. The assumption shared by those methods 
is the so called Guilt-by-Association (GBA), which states that 
functionally related genes will give rise to similar mutational 
phenotypes. GBA has been used to statistically infer previ-
ously unknown functions of a gene from prior knowledge  
about known genes and association data such as PPI and 
co-expression. However, recent studies have shown that GBA 
may not in general hold true.119,120 Further, most prioritiza-
tion tools do not distinguish the types of gene relations, hence 
they are “black-box” in nature. The black-box nature is partly 
responsible for the poor performance of GBA. Typically, the 
construction of functional networks is done by aggregating 
context independent data such as physical PPI and context 
specific data such as co-expression121 without distinguishing 
them. This is especially true for gene and protein interactions  
extracted from literature using text mining with simple 
co-occurrence or co-citation statistics. Separating context 
specific evidence may lend better insights to improve the 
robustness of the results.122 Thus taking finer semantic 
information into text mining consideration is likely to 
improve the accuracy of the mined relations. For example, 
distinguishing “gene A promotes expression of gene B”, 
“gene A inhibits gene B,” and “gene A inhibits gene B under 
the co-expression of gene C” will produce more context spe-
cific relations and networks than “gene A and gene B are 
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related”. Further, improving explanatory power can also 
help elucidate molecular mechanisms of major pathways that 
underlie cancer development.

Heterogeneous data sources. In gene prioritization, mul-
tiple heterogeneous data sources often need to be taken into 
account, such as expression level, protein interaction, domain 
interaction, sequence reads, and literature data. Although pre-
vious works strive for increasingly comprehensive coverage for 
those data sources, to date none covers all data sources. More-
over, the inter-operative information exchanges between data 
sources in previous gene prioritization approaches are largely 
based on customized ontology and keyword term matching. 
On the other hand, most gene prioritization methods analyze 
different types of evidence separately and only pool scores 
produced by individual types of evidence at a later stage. In 
keeping with the integrative Omic view in Figure 1, data inte-
gration should happen at an earlier stage so that reasoning can 
be on a more integrative level: “enrichment in expression of 
gene A” (expression evidence) and “protein A binds protein B” 
(PPI evidence) together implicate a phenotype C. This level 
of integration is yet to be achieved and there is still no prin-
cipled way to construct a unified reasoning platform across 
data sources.

Cross-species insights. There are genetic knowledge 
bases describing thoroughly studied model organisms, such as 
gene–phenotype associations in mouse, worm, fly, and yeast in 
the STRING database. They can be leveraged to draw insights 
into human pathways that are not as heavily investigated, 
through orthologous genes,79 or through cross-species anno-
tation transfer of interolog PPIs.123 In fact, some gene priori-
tization methods have exploited ortholog and interolog data 
sources to cover the understudied human cancer phenotypes 
or genes, using either manually curated lists (eg, GPsy108) or 
text mining on the literature (eg, MedSim,112 Genie115). How-
ever, transferring knowledge across species remains a signifi-
cant challenge as biological context and environmental factors 
also contribute to the ways genes and proteins interact. Thus, 
there is no guaranteed mapping from sequence similarity to 
functional similarity. For this reason, we also expect that tak-
ing finer semantic information into text mining consideration 
to provide context specificity to ortholog and interolog gene 
relations is likely to help the overall prioritization task.

Emerging and Future Directions
This section presents several recent advances that may provide 
partial solutions to some challenges raised in the analysis of 
the previous section.

Converting literature and clinical records to networks. 
The task of automatically annotating biomedical text with 
semantic information is an area of active research of medi-
cal Natural Language Processing (NLP). There are existing 
methods that extract named entities such as genes and pro-
teins, as well as their relations (see related work section of124 
for an overview). Previous gene prioritization methods have 

partially used these methods to identify gene and protein 
names, but not as much their relations, when constructing 
gene and protein networks. This is partly due to the fact that 
most NLP based semantic relation extraction tools identify 
only binary relations that are too coarse for gene prioritization 
tasks so that they do not offer much more information com-
pared to simple co-occurrence statistics. Recently, Luo et al.124 
proposed an algorithm that translates text into a network rep-
resentation, where the nodes of the network may be nominal  
concepts such as genes and proteins or relational concepts such 
as a verb specifying an interaction. The edges are syntactic 
dependency links. We give an example sentence–network 
translation in Figure 2, which shows the network represen-
tation for a sentence from the first paragraph in an example 
paper,125 along with two of its sub-networks.

Given the text translated networks, useful sub-networks 
can be harvested under predefined criteria (eg, frequency, 
P-significance, or other customized criteria). With proper set 
criteria, sub-networks may be chosen to represent context spe-
cific associations between genes and proteins.

Pathway prioritization. Most gene prioritization meth-
ods only focus on using network analysis to rank genes’ relat-
edness to diseases. A particular gene often participates in 
multiple pathways, yet maybe only some of those pathways are 
implicated in a cancer phenotype. Moreover, existing pathways 
may only have part of themselves involved in a disease process. 
To this end, associating and prioritizing genetic networks or 
sub-networks instead of genes can be both more discriminative 
and more informative, to identify new pathways. Finding can-
cer correlated pathways is mostly carried out on a case-by-case 
basis, targeting specific cancer types (eg, 126,127). Moreover, 
identifying such pathways often starts from implicating can-
didate genes, and known functional pathways are then filtered 
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Figure 2. (A) The network representation for the example sentence: 
“More recent data have suggested that targeting mutations in BRAF, 
AKT1, ERBB2 and PIK3CA and fusions that involve ROS1 and RET may 
also be successful”. (B) and (C) are two sub-networks of (A).
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(sometimes manually) based on prior knowledge. In reality, 
cancer pathogeneses range from monogenic and oligogenic 
disorders to complex and epistatic disorders. Direct identifi-
cation of carcinogenesis pathways may provide more intuition 
about the underlying molecular mechanisms and hence be 
more amenable for experimental biologists to start with. On 
the other hand, gene prioritization methods on direct iden-
tification of pathways involved in carcinogenesis have been 
studied little. GRAIL can be seen as an initial step toward 
this goal in that it identifies biological relationships among the 
genes in addition to ranking them. However, GRAIL does not 
identify what types of relations hold between genes. Hence the 
predicted genes plus their relationships do not form a pathway 
as they lack putative mechanism information. The aforemen-
tioned text-to-network translation tool may be used for pro-
ducing context specific gene associations with detailed relation 
types in order to “build the bridge to the pathway”.

Conclusions
In this review, we focused on text mining in gene prioritization 
approaches, which is demonstrably an important component 
because of the large volume and the prevalence of the biomed-
ical literature and narrative text across many heterogeneous 
data sources. We reviewed and categorized gene prioritiza-
tion text mining methods according to progressively advanced 
models employed, and pointed out that they have seen slower 
advances compared to the other components in gene prioriti-
zation that analyze structured data. We discussed several key  
challenges to text mining in gene prioritization. We also 
identified promising future directions including text–network 
translation to provide finer semantic information and pathway 
prioritization to offer more mechanism information.
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