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Indecomposability

of entanglement witnesses
constructed from symmetric
measurements

Katarzyna Siudzinska

We propose a family of positive maps constructed from a recently introduced class of symmetric
measurements. These maps are used to define entanglement witnesses, which include other popular
approaches with mutually unbiased bases and mutually unbiased measurements. A particular interest
is given to indecomposable witnesses that can be used to detect entanglement of quantum states with
positive partial transposition. We present several examples for different number of measurements.

Quantum entanglement is an essential resource that plays a fundamental role in quantum information processing,
quantum communication, quantum computing, and other modern quantum technologies?"*!. In particular, any
bipartite entangled state enhances the teleportation power®® and displays hidden nonlocality®. The usefulness of
quantum tasks usually increases with the amount of entanglement**#2. Characterization of entangled states is
essential both in theory and practice. However, the problem of distinguishing between separable and entanged
states remains open; in fact, it is NP-hard™.

For qubit-qubit and qubit-qutrit systems, the necessary and sufficient separability condition is given by the
celebrated Peres-Horodecki positive partial transposition (PPT) criterion'**. In higher dimensions, this condi-
tion is only necessary, which first was shown for a qutrit-qutrit system'®. More refined detection methods include
the computable cross-norm or realignment (CCNR) criterion*®'%, the correlation matrix criterion®'?, the local
uncertainty relationship criterion's, the reduced density matrix criterion?, and the covariance matrix criterion'.

Another approach to entanglement detection is through entanglement witnesses, which are Hermitian block-
positive (but not positive) operators. Hence, any such operator is positive on separable states, and a state p is
separable if and only if Tr(o W) > 0 for every entanglement witness W. All entangled states have witnesses that
detect them****, In other words, if p is entangled, there exist a (non-unique) witness W of its entanglement such
that Tr(oW) < 0. The problem lies in finding a suitable witness for a given state. The advantage of choosing
entanglement witnesses over other detection methods is that non-separability of a state is decided upon calcu-
lating expectation values of W in that state. Therefore, it requires less information than a full state tomography,
which also means less experimental devices and fewer measurements performed.

There exists a special class of witnesses that can detect quantum states with positive partial transposition, also
known as bound entangled states'”**242>%, They are called indecomposable because they cannot be decomposed
into W = A 4 B" with positive A and B, where I is a partial transposition. There is no general construction
method for such operators, and it is often hard to determine whether a witness is decomposable or not. How-
ever, several classes of indecomposable entanglement witnesses have been found, like the ones related to the
well-known realignment or computable cross-norm (CCNR) separability criterion®®** and covariance matrix
criterion'®'>?%, as well as their generalizations®”%.

In the construction of entanglement witnesses, one often uses mutually unbiased bases (MUBs). Orthonormal
bases in C% are mutually unbiased if and only if the transition probability between any two vectors that belong to
different bases is constant!. In ref.%, the authors used MUBs to define a new class of witnesses and analyzed their
properties in d = 3. This construction has been generalized in many ways. Li et al. introduced analogical opera-
tors for mutually unbiased measurements (MUMs)?” and symmetric informationally complete measurements
(SIC-POVMs)?. Wang and Zheng® considered the MUB-based witnesses in composite systems with different
dimensions. Hiesmayr et al.'* showed that inequivalent and unextendible sets of MUBs are sometimes more
useful to detect entanglement, whereas Bae et al.! found that more than d/2 + 1 MUBs are needed to identify
bound entangled states. The MUMs encompassing a full range of purity were shown to detect entanglement with
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as little as two measurement operators®®. Recently, it has also been proven that the witnesses constructed from

MUMs belong to the class based on the CCNR criterion®.

In this paper, we construct a class of entanglement witnesses based on symmetric measurements introduced
in ref.**. These measurements include mutually unbiased bases, mutually unbiased measurements, and sym-
metric informationally complete POV Ms as special cases. Therefore, they can be used to define broader families
of positive maps and witnesses of quantum entanglement. In any finite dimension d > 2, one has at least four
informationally complete sets of symmetric measurements. Their ability to detect quantum entanglement has
already been shown*. We recall the definition and basic properties of such operators, together with the construc-
tion method. Next, we use a (not necessarily complete) set of measurements to establish a family of positive,
trace-preserving maps and the associated entanglement witnesses. These witnesses are also related to the class
based on the CCNR criterion®. Also, they do not depend on the purity of measurement operators but on their
number inside each POVM. It turns out that one can construct the same entanglement witness using different
measurements. Finally, we provide examples of indecomposable witnesses that belong to our class. Such witnesses
are very important because they can detect bound entangled states. However, no general method of construction
exists, and it is generally hard to determine whether a given witness is decomposable or not. This is the reason
why finding more examples of indecomposable entanglement witnesses is so important.

Classes of symmetric measurements

Quantum measurements are represented by positive, operator-valued measures (POVMs), which are families
of positive operators that sum up to the identity. For a given density operator p, the probability outcome associ-
ated with a POVM element E, is py = Tr(Ey p). Recently, a general class of symmetric measurements has been
introduced®. Let us summarize its definition and main properties.

Definition 1 An (N, M)-POVM is a collection of N d-dimensional POVMs{Eyx; k=1,...,M},a = 1,...,N,
that satisfy the symmetry conditions

d
Tr(Ea,k) = M’
Tr(Ey ) = x,
d — Mx (1)
Tr(Ea,kEa,L’) = m; L # k,

d
Tr(EqkEpe) = Yk B #a,

with a free parameter x that belongs to the range

d . d? d
W<x§m1n M (2)

If x = d?/M?, then the (N, M)-POVM describes projective measurements. Moreover, Eq. (2) implies that
there are no projective (N, M)-POVM:s for M < d. Symmetric measurements are informationally complete if
and only if

-1
NZ?\Z/I—I' (3)

Observe that if d = 2, there are only two possible choices of admissible M and N: (N = 1, M = 4) for the
general symmetric, informationally complete (SIC) POVMs?? and (N = 3, M = 2) for mutually unbiased meas-
urements (MUMs)?. In this case, Definition 1 only provides a unified method to describe generalizations of SIC
POVMs and mutually unbiased bases (MUBs). However, this changes for d > 2.

Proposition 1 In any dimension d < oo, there exist at least four distinct classes of informationally complete (N, M)-
POVMs depending on the choice of M and N:

(i) M = d?and N = 1(general SIC POVM),
(il) M=dandN =d+ 1(MUMs),
(ili) M=2andN =d>—1,
(iv M=d+2andN=d—1

Informationally complete (N, M)-POVMs can be constructed in arbitrary dimensions using orthonormal
Hermitian operator bases {Gy = ]Id/\/a, Gyr; o=1,...,N, k=1,...,M — 1} with TrG, x = 0. Namely,

1
Eyk = Mﬂd + tHy k> (4)

where
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Gy —VMWM+1)Gyg, k=1,....M—1,
Hyy = (5)
WM +1)Gy, k=M,
and Gy = ZQ/I: 711 Gy k- The parameter ¢ is related to x via
d
¥= o5+ M= DM+ 1D (6)
The optimal value x,pt, which is the greatest x such that E, x > 0, depends on the operator basis.
Symmetric measurements admit an important property that becomes useful later on.
Proposition 2 For L < N and an arbitrary state p, the elements of an (N, M)-POVM satisfy
L M
Z Py < L n (M?x — d)[dTr(p*) — 1], )
@k = pp dM(M — 1)

a=1 k=1
where pyx = Tr(Eq kp).

Proof We follow the method presented in ref.?>. First, observe that H,, j are traceless operators that satisfy the
relations

Tr(HZ,) = (M — DM +1)?,
Tr(HoiHae) = —(VM + 1% L #k (8)
Tr(HyxHpe) =0, B #a.

Now, similarly to Gy x, Hy k span the space of traceless Hermitian operators. Therefore, any quantum state p can
be represented as

. N M
o= E]Id + Z Z ok Ha k 9

a=l1 k=1

with real-valued parameters r, x. Next, we calculate

M
Pk = Tr(PBa) = - IR0 Hei) = 2+ D g Tr(HHog) = -+ 1/ o+ 1 (Mg = 1),
- (10)
wherery, = Eiw: 1 Ta k- The sum of squares reads
M 1 M
D Pak =g HEMEIM + D (Mer,k - r§>. (11)
k=1 k=1
Finally, we take the sum over@ = 1,...,L and get
L M I L M
S> pii= Vi EMEM+1D*Y (MZré,k - rg). (12)
a=1 k=1 a=1 k=1

It remains to notice that

N M L M
1
Tr(p) = 2= D Faktad Tr(HagHat) 2 Y D taitag Tr(HajHar) = (VM +1)°

M
2 2
MZra‘k—ra .

a=1kt=1 a=1kt=1 k=1

(13)

Applying this result in Eq. (12), we arrive at

L M 2 2
L 1 L (M%x — d)[dTr(p?) — 1]
ok < — +EMEM+ 1D Tr(p®) — = | = —
;;pa”“M’L WM DM T = 31 = 3t ar— 1y (4
after using the correspondence between t and x in eq. (6). 0
For L = N, the relation in Eq. (7) is an equality and it reproduces the result first obtained in ref.?’,
N M
d(M?*x — d)Tr(p?) + d* — M*x

> D Pak= : (15)

o dM(M — 1)

On the other hand, for pure states p, Eq. (7) reduces to
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L  (d—1DM*x—d)
=uT aMM —1) (16)

Mz

>

a=1

P k=

RN
Il

1

Positive maps and entanglement witnesses
Using any (N, M)-POVM (that is not necessarily informationally complete), define N trace-preserving maps

M
M
CulX] =~ > O Bk Tr(XEqy), (17)
k=1
where 0@ = (O,E‘Z)) are orthogonal rotations that preserve the maximally mixed vector n, = (1,...,1)/ V.

Proposition 3 The linear map

5 |a®o+ Z Pq —Z@ (18)

a=L+1

witha =b — N +2Landb = (d — 1)M(x — y)/d is positive and trace-preserving. ® is the maximally depolar-
izing channel.

Proof 1t suffices to prove that

1
Tr(®[P])? < ——

H(@IP]? < —— (19)

holds for every rank-1 projectors P%. For simplicity, introduce the map ® = b®, and then calculate

~ L N N
Tr(®[P)? = Tr{a%Do[P]2 + Y PalPIP[PI+ D PulPIPg[PI+2a Y olPly[P]
a,f=1 ao,f=L+1 a=L+1
L N L (20)
—2a) ®PI0u[PI—2 Y Y @a[P]CID,g[P]}.
a=1 a=L+1 =1

First, let us simplify the terms in the brackets using the properties of (N, M)-POVMs and the orthogonal rota-
tion matrices,

M M
S0 =Y o =1, zo,i?ow = son o
One has
1
Tr(do[P1*) = Tr(do[P]Py[P]) = Tr(®y[P]Pg[P]) = 7 a# B, (22)
as well as
M M 2
2y _ 2, _
Tr(@ulPP) = 50— 1){d Mx + (M’x d)kz:; [Tr(PEyx)] } (23)

Now;, Eq. (20) can be rewritten as

Tr(®[P))? = é [az +(N—L(N—-L—1)+L(L~-1)42aN — L) — 2aL — 2L(N — L)]

M R N M
—I—dz(M{N(d Mx) + (M*x —d) > > [Tr(PE, )] }

a=1 k=1

N M
:é[(u+N—2L)2_N] N(d—Mx)+(M2x_d)ZZ Tr(PEak) }

M
(M —1)

a=1 k=1
(24)
Finally, Eq. (7) from Proposition 2 and the definition of a allow us to write
~ b —N  MN(d—-Mx) MM>x—d)[N  (d—1)(M>x—d) b
Tr(®[P])? — = ,
WP = ——+ "par—n T a2ei-) {M MM — 1) } i
which finally proves the validity of condition (19). O
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Note that, in the above proof, the conditions E, x > 0 were not used to show the positivity of ®. Therefore, this
map can actually be defined using E, x # 0, which makes the construction more general than initially assumed.
Positive maps are used in the theory of quantum entanglement to detect entangled states; that is, states that
are not separable. Positive but not completely positive maps @ define entanglement witnesses W through the
Choi-Jamiotkowski isomorphism,
d—1
W= > k)l ® [k (L], (26)

k,t=0

where |k is an orthonormal basis in C?. In particular, the positive map ® from Proposition 3 gives rise to
1/ a N L
W= b<dﬂdz+ > Ka—ZKa>, 27)
a=L+1 a=1

where

M M
— § : (7
Ky = d o Okg Ea,l ®Ea,k> (28)

and Eg ¢ denotes the complex conjugate of Ey ¢. In any dimension d, one can always construct informationally
complete (N, M)-POVM:s by using an orthonormal basis {I;/ Jd, Gy k) of traceless Hermitian operators Gg .
Then, the entanglement witness can be expressed in terms of the operator basis,

N L
— b d—1
W=oW="m MM+ D Tp+ Y Jo= Jo (29)
a=L+1 a=1
where
M
M _
Jo=7 > O Hye ® Hyp. (30)

k=1

Note that this witness does not depend on the parameter x. This is because x characterizes symmetric measure-
ments rather than operator bases. However, the dependence on the choice of symmetric measurements manifests
itself through the number M of measurement operators inside a single POVM. The greater the value of M, the
greater L can be (the more can be subtracted).

Going a step further, W can be directly written in terms of the operator basis elements G k. Using egs. (5)
and (30), it is straightforward to find

M M-1 .
Jo=— > 0 Ga ® Gak (31)
k=1
with
Qi) = M©O§py — 1)+ MWM + 1?07 — M(VM + 1)(Of) + O5D. (32)

Such Q@ are rescaled orthogonal matrices since they satisfy
QWTQ® = QW QT = M* (VM + 1)'Iy-1. (33)
For the special case with O@ = I, one has
Q) = M(VM +1)5. (34)

Now, let us show how W from eq. (29) relates to a well-known class of entanglement witnesses. For now, assume
that the (N, M)-POVM is informationally complete and L = N. In this case, the associated witness reads

N
> Jals (35)

a=1

— M?
wzj(\/ﬁw)2 Iz — Go ® Gy —

d
M2(V/M +1)?

where Gy = I;/4/d. A simple relabelling of indices («, k) —> w allows us to write

N AW d*—1
W=— " =Ip— > QuG.®G, (36)
2 2 "
M?*(VM +1) Pty
where we introduced the block-diagonal orthogonal matrix
Scientific Reports|  (2022) 12:10785 | https://doi.org/10.1038/s41598-022-14920-5 nature portfolio



www.nature.com/scientificreports/

MM + 1)?

1 Q(Z)T

= MM+ 1)? 7)

Q(N)T

Now, it becomes evident that entanglement witnesses W constructed from symmetric measurements are a part
of a larger class

d?-1
W =Ip— Y QuG.®G, (38)
w,v=0

which is related to the CCNR criterion®. In the above formula, G, are the elements of an arbitrary orthonormal
Hermitian basis and Q,,, is any orthogonal matrix (QTQ = I;2). However, it is enough that QTQ < I 2. Hence,
our discussion also holds true for any (N, M)-POVMs and L < N, provided that the rotation matrices O get
replaced with O@ that are allowed to change the sign of n, (O@nq, = +n,) or vanish (0@ = Qy).

Example 1 Take any informationally complete (N, M)-POVM. From eq. (34), it follows that fixing all 0@ =Ty,
and L = N always results in Q = I 2. The corresponding entanglement witness has the form

d*-1
W =Igz— > Gi®Gy. (39)
n=0

Therefore, it is possible to produce the same witnesses W’ using different (N, M)-POVMs, provided that they
arise from the same Hermitian orthonormal basis. In particular, for the Gell-Mann matrices, one recovers the
reduction map W’ = [ p — dP,7*.

Example 2 If M = 2, then the only admissible choices for the rotation matrices are 0@ =1, 0rO@ = gy. This
means that all witnesses constructed from (N, 2)-POVM:s have the form

N L
W=Ip+ > GI®Gy— > Gi®Ga (40)
a=L+1 a=0

where N < d? — 1.

Indecomposable witnessesind = 3

Let us consider composite quantum systems with the underlying Hilbert space H ~ C* ® C?, which corresponds
to fixing d = 3. These are the lowest dimensional bipartite systems where the Peres-Horodecki PPT criterion is
only necessary for separability. Therefore, more sophisticated methods of entanglement detection are needed.
An important class of entanglement witnesses are indecomposable witnesses, which detect more entanglement
than transposition T. Recall that a witness is decomposable if and only if it can be represented as W = A + B
with A, B being positive operators andI" = 1 ® T denoting a partial transposition. Otherwise, it is indecompos-
able. Construction of indecomposable witnesses is hard but rewarding, as they can detect quantum states with
positive partial transposition (PPT states).

Below, we present several examples of indecomposable witnesses that can be obtained from symmetric meas-
urements. To show indecomposability of a witness, it is enough to find a single PPT state that it detects. This
state is then known to be PPT entangled. Hence, in what follows, we postulate the form of p analogical to W, and
then look for a relatively simple set of parameters for which pT > 0and Tr(Wp) < 0. A proof that the proposed
states are indeed PPT can be found in Appendix C.

Example 3 First, consider a full set of N = 4 mutually unbiased measurements (M = 3) constructed from
the Gell-Mann matrices (see Appendix A). Note that for this choice of an orthonormal basis, the parameter
x =5/9 < Xopt = 1is not optimal. Now, for L = 3 and the permutation matrices

010
O®=1001], (41)
100
the associated entanglement witness
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i 2 3 =iV3) | - 31 =iV3) ]
. 8.
- . . ) . 1 .
W= |30+iV3) - - 2 301 —iv3) (42)
12
L3(1+iv3) - |- 30 +iV3) |- - 2
is indecomposable, as it detects the PPT state
o125 o] =5(B—12) - | - - —5(5-12i)7
) 125 - | - . N )
34| -
) : .34 ; . :
ol=—| =5G+12) - |- 125 Sl =56 —12i) . (43)
579 : R . 125 - - )
125 -
. A . A .
L—-5G5+12i)) - |- —=50G6+12i) - B 125 ]

Therefore, we show that x does not have to be optimal in order to produce indecomposable witnesses, which
was inconclusive in ref.*. Also, note that the state p; is not detected if the witness in Example 3 is analogously
constructed from the MUBs instead. This means that an entanglement witness constructed from measurements
with x < xopt can detect entanglement undetectable with x = xopt.

Example 4 Now, we take the (2, N)-POVM constructed from the orthonormal Hermitian basis presented in
Appendix B, for which x = 3(5 — 24/3)/4 ~ 115 < Xopt = 3/2 is not optimal. Assume that all the rotation
matrices are 0@ = I,. An indecomposable witness follows for a non-maximal number of N = 7 POVMs and
L = 3. Indeed, one has

[2+4/3 - . . 2 . . . 27
. 5 . . . —4 —4 . .
5-43—-4 - . . —4
—4 5 R . . —4
— 1
Wo=—| 2 : : S 2—43 - 2], (44)
-4 : - 5443 —4
—4 . . . —4 [5-4/3
—4 |—4 . - 5443
| 2 2 2 |

which detects the PPT state

r3 -1 - 17
2202
212 . .2
RERFIE 2 -
pp=—|1--]-3-|--1]. 45
2L o | 2202 . (43)
2 -1 - 22
212 . .2
L1 - -|-1- 3]

Hence, the full set of N = 9 POVMs is not needed to construct indecomposable witnesses.

Example 5 Let us analyze an entanglement witness defined using the (5, N)-POVM with the associated Hermi-
tian operator basis of the Gell-Mann matrices (see Appendix A). Also for M = 5, the Gell-Mann basis produces
symmetric measurements with the parameter x > 0.183 < xopt = 9/25 that is not optimal. In this example, we
assume that only subtractions are present (L = N) and that the (M, N)-POVM is not informationally complete
(N = 1). Now, if we take the permutation matrix

oW = (46)

[eNe Nl =l
[eNe No Nl
o= O oo
— o O oo
OO OO -
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the decomposability property of the resulting witness W3 is inconclusive. However, by subtracting 5(1 + v/5)?
times more of the term for « = 1, one obtains

4 . . | . B*C| - D* BT
o4 AT | =300
.4 30 - -] —A
A e
Wy=—|B - - |- 4 , (47)
6|c . ) .4 .
300 —AY| - - -] 4 -
D - . A T R
| B - . A . 4]
where
A=15(1—- )2 —i++/5), (48)
B=15(1-)Q2+i+5), (49)
C=-30v/52+5), (50)
D = 30(1 — 2i)(2 + V/5). (51)
This entanglement witness is indecomposable, and it detects the PPT state
rio - . . . . S
10 . |3—6i :
. 10 . =3—6i
L |3 : 0 - - . .
=1 . . . .10 - . .
STl I . | R, (52
—3+6i| - - -| 10 -
. . .o . 10 -
L 10 |

that was undetectable by the previous (not optimal) witness W3.

Recall that the positivity conditions for ® in Proposition 3 are only sufficient. Therefore, it is not surprising
that we found an entanglement witness W’ which does not fall into the same class as W defined by such ®.

Indecomposable witnessind = 4

Our construction allows for considering higher dimensional quantum systems. Let us set d = 4, which is equiva-
lent to taking a composite system with the Hilbert space H ~ C* ® C*. For d = 4, it was shown that there
exists an optimal informationally complete (N, M)-POVM with N = 15, M = 2,and x = Xopt = 2 such whose
measurement operators are rank-2 projectors®. They were constructed from the Hermitian basis that consists
in a normalized tensor product of the Pauli matrices; that is, Gog = 04 ® 0/2, where o, 8 = 0, 1,2, 3. In what
follows, we use Gyp to define an indecomposable entanglement witness. For M = 2, a general form of an entan-
glement witness is given in Example 2. Hence, taking N = 15 and L = 12, we construct the witness

3 303
Wy =T+ Zéols ® Gog — Goo ® Goo — Z Zéaﬂ ® Gagp, (53)
p=1 a=1p=0
whose matrix representation reads
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Wy =

e (54)

N | =
o .
w
|
w
)

3. . =3 . 1 e o 2

This witness is indecomposable, as it detects the 2-parameter family of PPT entangled states

p P S q+2 - q
.. 2.
L p p q q+2
where
1 <4 4 <3
{ =3 v {3<p—2’ (56)
—1+p=<q<-2+2p —1+p=<q=<2-p

For a proof that pg, is indeed PPT entangled, see Appendix D.

Conclusions

In this paper, we used a wide class of symmetric measurements to construct a family of positive, trace-preserving
maps as well as the corresponding entanglement witnesses. Next, it is shown that our construction belongs to
the family of witnesses that are based on the CCNR separability criterion*. The entalglement witnesses from
symmetric measurements are recovered for a block-diagonal orthogonal matrix and the Hermitian orthonor-
mal basis consisting in traceless operators and the identity. Several examples are provided using different sets of
(N, M)-POVMs constructed from different operator bases. There remains an open question of generalizing our
results to bipartite systems of different dimensions or even to a multipartite scenario.

Data availability
All data generated or analysed during this study are included in this published article and its supplementary
information files.
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