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immune cell type, cell activation, 
and single cell heterogeneity 
revealed by label-free optical 
methods
nicolas pavillon   & nicholas i. Smith

Measurement techniques that allow the global analysis of cellular responses while retaining single-
cell sensitivity are increasingly needed in order to understand complex and dynamic biological 
processes. in this context, compromises between sensitivity, degree of multiplexing, throughput, and 
invasiveness are often unavoidable. We present here a noninvasive optical approach that can retrieve 
quantitative biomarkers of both morphological and molecular phenotypes of individual cells, based on a 
combination of quantitative phase imaging and Raman spectroscopy measurements. We then develop 
generalized statistical tools to assess the influence of both controlled (cell sub-populations, immune 
stimulation) and uncontrolled (culturing conditions, animal variations, etc.) experimental parameters 
on the label-free biomarkers. These indicators can detect different macrophage cell sub-populations 
originating from different progenitors as well as their activation state, and how these changes are 
related to specific differences in morphology and molecular content. The molecular indicators also 
display further sensitivity that allow identification of other experimental conditions, such as differences 
between cells originating from different animals, allowing the detection of outlier behaviour from given 
cell sub-populations.

Cells have numerous traits that can be used to identify them: genetic, epigenetic, behavioural, compositional, 
or morphological features can all be used to define the phenotype of a given cell. As the discrimination capa-
bilities of measurement systems improve, newly defined cell sub-types can emerge1,2. Predictive biomarkers are 
also increasingly important for customized therapy3. However, with increased sensitivity in the detection of spe-
cific markers, the inherent cell heterogeneity becomes more important4, and methods to assess the meaning and 
significance of such variability become increasingly needed5. The implication of such cellular heterogeneity is 
particularly important in the field of immunology, where diversity is at the core of an efficient immune defence 
system6. Several methods have been reported in recent years that can reveal different response patterns among 
individual cells7. In particular, fluorescence has emerged as a tool of choice in the field of proteomics, enabling the 
study of single-cell level intracellular protein expression8, or allowing the study of multiple effector molecules for 
deeper assessment of cellular heterogeneity through massively multiplexed systems9,10.

However, fluorescence-based methods modify the cell, and are generally limited to a relatively low number of tar-
gets, albeit with high specificity. Furthermore, most markers rely on surface proteins, since measuring intracellular mol-
ecules and dynamics requires more invasive procedures such as transfection11. On the other hand, different emerging 
techniques such as single-cell sequencing can provide highly specific information, but at the cost of being destructive12. 
A single-cell measurement system that can simultaneously examine a wide range of cell molecules, while remaining 
non-invasive should therefore have significant advantages in studying small cellular population phenotypes.

As a step towards this goal, we recently demonstrated the use of all-optical multimodal label-free analysis to 
characterize individual cell activation states13. This system is based on quantitative phase imaging (QPI)14 and aut-
ofluorescence, that provide images from which label-free morphological indicators can be extracted, and is com-
bined with Raman scattering spectroscopy15. Both techniques have recently been used with multivariate analysis or 
machine learning approaches to develop label-free biomarkers, either through morphological16–20 or molecular21–23 
indicators.
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Having previously demonstrated the ability to discriminate between activation states of a macrophage cell 
line (Raw264), in this report we show that primary cultured peritoneal cavity macrophages—either resident or 
elicited populations24—exposed to lipopolysaccharide (LPS) manifest phenotypic changes in both morphology 
and molecular content that can be discerned by our label-free optical system. Such experiments involve several 
sources of variability, either controlled, such as the LPS exposure and the choice of extraction method, or uncon-
trolled, such as culturing conditions, drug response level, etc. The single-cell heterogeneity within any of these cell 
populations can then be compared to any other population by multivariate analysis, where high-level indicators 
such as the ones derived from label-free measurements will be influenced by all these factors at different degrees. 
Simple principal component analysis (PCA) shows that the largest contributions to the variance in the label-free 
data comes from the activation state and the cell type, which are both highly relevant phenotypic parameters. 
Other more subtle morphological or molecular features also emerge as characteristics of cell populations, and in 
some cases highlight a possible split, leading to sub-populations of potential interest for further study.

In order to systematically study more subtle heterogeneities, we create a generalized method for assessing the 
effects of both controlled and uncontrolled variations within cell populations over multiple days, animals and 
culture dishes by using the F-test values, common in analysis of variance (ANOVA). It is possible through this 
approach to identify cells from individual mice as having distinct populations, and some mice could be identified 
as the source of outlier populations, although the overall variance from these experimental parameters is small 
compared to the main phenotypic features originating from cell type or activation.

Machine learning is not required to perform such exploratory analyses, but when supervised learning is 
applied in addition, high performances in cell classification can be achieved, and predictive label-free indicators 
can be derived to assess both the cell type as well as LPS-induced activation. The feature vectors generated with 
our system are able to also detect whether the cell is from the population of resident or recruited peritoneal cavity 
macrophages, which have recently been shown to be separate sub-populations with different progenitors25 and 
function26.

Results
Data organization. To assess the main factors influencing cellular variability, we selected different types of 
macrophage cells that we measured in control and stimulated environments, providing different controlled condi-
tions that we employ to study their influence on cellular variability. In particular, we use the macrophage-like cell 
line Raw264, as well as primary macrophage cells extracted from the peritoneal cavity, which are macrophages 
fully differentiated in vivo, and known for having a large inner population variability26. We also study both resi-
dent peritoneal macrophages (RPM), which are composed of the inherent population present in the peritoneum, 
and elicited macrophages (EPM) that are recruited into the peritoneal cavity upon external stimulation. Elicited 
macrophages have been employed in numerous studies to circumvent the poor yield of RPM and ensure a suffi-
cient amount of cells to study while minimising animal usage24, although it has also been demonstrated recently 
that the extracted cells can be functionally different25,26. Furthermore, cells are also stimulated with lipopolysac-
charide (LPS), a compound that is found at the surface of Gram-negative bacteria.

Figure 1. (A) Data structure showing the different conditions and sample sizes at each level of the experiment 
for both morphological and Raman parameters, respectively. (B) Measurement setup providing label-free 
quantitative phase imaging as well as single-cell Raman spectra.
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These experimental settings, composed of 3 cell types and 2 conditions (Control and LPS) yield 6 main sets 
of controlled conditions as shown in Fig. 1A, where measurements have been approximately evenly distributed 
between them. To understand how uncontrollable variability might affect the results, the measurements are per-
formed over several days, with cells plated onto different dishes to account for differences in cell culture, where 
200–400 cells are measured per dish. This ensures that each data subset can be considered as statistically relevant, 
with 3–6 dishes per condition and day. In case of RPM, the low yield per mouse implies that cells extracted from 
one mouse could be employed to prepare only one set of experiments, while the larger amount of cells in case of 
EPM allowed the preparation of several dishes.

Label-free measurements. The measurements are performed through a label-free multimodal optical 
platform previously reported13,27, described in more details in the Methods, and illustrated in Fig. S1. Briefly, we 
combine the imaging information from quantitative phase imaging (QPI) recorded with off-axis holography and 
auto-fluorescence (AF), along with Raman spectroscopy, to retrieve single-cell level indicators enabling the analy-
sis of cellular responses and conditions, as shown in Fig. 1B. QPI and Raman spectra are acquired simultaneously 
with an approach based on spectral separation27. To increase measurement throughput, Raman spectra from the 
cells present in the QPI field of view are recorded as point spectra, where the excitation laser is rapidly scanned 
within each cell body to retrieve an averaged spectrum more representative of the whole cellular content28. AF 
images are recorded sequentially in a standard epi-fluorescence system provided by a set of flipping mirrors (see 
Fig. 1B).

The imaging data is then reduced by registering both QPI and AF images together, and segmenting individual 
cells to extract various parameters based on the cellular morphology through the use of different modules of the 
CellProfiler program29. As it has been observed that data from morphology and spectra provide complementary 
information13, they are here analysed separately.

Typical data is shown in Fig. 2, where average signals from the whole dataset (N = 20,798) for each cell type 
are displayed. While Raman spectra are very similar between cell types (see Fig. 2C), there are small differences 
that can be visually identified, such as stronger peaks at 750, 1050 and 2854 cm−1 for peritoneal macrophages 
compared to Raw, but a weaker main CH peak at 2935 cm−1. In addition to differences in the values themselves, it 
is also possible to identify differences in the variance, where for instance peritoneal macrophages appear to have 
larger standard deviations in the CH stretching region than Raw cells. Such comparisons can also be performed 
on the cell morphological phenotypes, where the overall morphology appears to be quite different between cell 
types for some cell sub-populations, as shown in Fig. 2A for representative QPI images. This is also shown when 
observing some average values extracted from segmented cells, which are a small subset of the 301 morpholog-
ical values (see Fig. 2B, and the Methods section for the derivation procedure). It is possible, for instance, to see 
that peritoneal cells are more elongated (smaller Form factor) and induce a smaller median phase shift than Raw 
cells, which is consistent with the representative QPI images, or that RPM have a much larger variation in the 
auto-fluorescence signal compared to both EPM and Raw cells.

Figure 2. (A) Typical QPI images for all cell types. (B) Selected average morphological parameters extracted 
from CellProfiler (see full list in Table S3) that display the most significant differences between cell types, 
where values have been normalized based on the ones of Raw264 (errors bars indicate standard deviation). (C) 
Average cellular Raman spectrum, per cell type. Standard deviation is represented by the shaded colour regions.
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Phenotype and molecular content highlight different features. To further analyse the data, we then 
apply PCA to derive the main influences on data variability. By considering the contribution to variance from 
each principal component (see Fig. S2), it is possible to identify a shoulder at PC8 and PC7 for morphology 
and Raman, respectively, where the contribution falls below 2%. We therefore restrict our analysis to the first 8 
principal components. The score plots (represented as density maps) are shown in Fig. 3, where the same plots 
are displayed twice, first by colouring the distribution of the three cell types observed in the experiments, and a 
second time by showing the distributions of both control and stimulated cells.

It is possible to see that these two main sets of conditions (cell type and stimulation) are both significantly 
separated by both sets of variables, but by different components. One first striking point is the similarity of the 
overall distribution of the score plot for the first two PCs for both morphology and Raman, where PC1 essentially 
differentiates control from stimulated cells, while PC2 separates Raw and peritoneal macrophages. Even though 
morphology and Raman are independent and measure different aspects of cell phenotype, the strongest variance 
in both types of measurement is remarkably similar and separates cells based on their level of stimulation (PC1) 
or cell type (PC2). When combined, PC1 and PC2 contribute for 43.43% and 50.48% of the variance in morphol-
ogy and Raman, respectively. This implies that approximately half of the variance is related to the separation of 
the main experimental factors under consideration here (cell type and cellular state).

The score plots are then rather different for higher PCs, where differences between the two label-free modes 
appear more clearly: morphology mostly differentiates control vs. LPS, while Raman is more specific on cell 
types, as summarised in Table 1. In particular, Raw is clearly distinct from peritoneal cells in both data sets as it 
is singled out by several PCs, while the difference between RPM and EPM is picked only in higher PCs; PC7 in 
morphology partly separates RPM, while PC3,4 in Raman clearly separate all cell types.

Figure 3. Principal component analysis score plots, where the colours and corresponding contour lines 
represent the data density, for PC 1–8 of morphology and Raman data, respectively, showing the contribution of 
each cell type and drug response to data variability.
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It should also be noted at this point that the analysis performed here is purely based on intrinsic variance of 
the data through PCA, without supervised learning. The classification power of the studied parameters might 
then be different from these observations, if supervised learning methods were employed.

The loading vectors corresponding to each principal component are shown in Figs S3 and S4, for morphology 
and spectra, respectively. The morphological loading vectors are all composed of a mixture of parameters, making 
the interpretation difficult, although some main tendencies (mostly shape, overall intensity, etc.) can be extracted, 
and are summarised in Table 1. Interestingly, the vector with the clearest features, PC8, which are concentrated on 
radial phase features, is also the one providing the least clear separation between experimental conditions. This 
shows that the ability of separating between cell classes requires a mixture of morphological variables. Another 
striking point is that there are strong correlations between QPI and AF parameters, where most vectors are either 
highly correlated (PC1,2,6) or anti-correlated (PC3,5), while the others display strong directionality (overall pos-
itive intensity parameters in PC4, for example).

The Raman loading vectors are displayed with multiplication by the PCA scaling factors so that they are sim-
ilar to actual Raman spectra, with their main contributions summarised in Table 1. In details, PC1 is very similar 
to typical spectra recorded through hybrid scanning28, and contains features from general cellular components. 
PC2 is more specific, with negative peaks that can be attributed to cytochrome C (750, 1129, 1586 cm−1)30, while 
positive bands are essentially representative of protein secondary structure (Amide I, 1650, 1684 cm−1 and Amide 
III 1245, 1328 cm−1)31. PC3 contains similar peaks of cytochrome C, but appears combined with lipids bands 
(CH2, 2854 cm−1 and CH3, 2890 cm−1)32, along with unsaturated lipids (C = C, 1661, 3014 cm−1)33.

The following vectors become more complicated, where PC4 is mostly composed of lipids (1438, 2850, 2890 cm−1), 
but with differential features in the CH stretching region (2949, 2979 cm−1), and negative CH stretching (1340 cm−1), 
Amide I (1676 cm−1) and phenyl ring (1009 cm−1), indicative of proteins. PC5 contains again cytochrome C fea-
tures, along with ring stretching features (783, 1150–1370 cm−1) indicative of nucleic acids34,35, negative lipids (strong 
2854/2890 cm−1 ratio), and opposite unsaturated fatty acids (2923 cm−1). PC6 contains general CH stretching, with 
some positive features in amino-acids residues regions (744–876 cm−1)31, and especially tryptophan (756, 1009, 
1557 cm−1)36. PC7 is mostly indicative of proteins with CH stretching bands (1440, 2848, 2918 cm−1)37, and Amide I 
(1650 cm−1) and Amide III (1304 cm−1). PC8 is mostly composed of high wavenumber contributions.

Main separation Interpretation

Morphology

PC1 Control vs. LPS
Strong shape and texture contributions

Strong QPI/AF correlation (0.96)

PC2 Raw vs. Primary
Weak shape, overall QPI/AF contributions

Strong QPI/AF correlation (0.95)

PC3 Raw vs. Primary
Strong QPI/AF texture, QPI intensity

QPI/AF anti-correlation (−0.53)

PC4 Control vs. LPS
Overall parameters

Positive QPI/AF intensity

PC5 Raw vs. Primary (weak)
Weak shape, strong texture

QPI/AF anti-correlation (−0.55)

PC6 Control vs. LPS
Strong shape, QPI/AF radial

Strong QPI/AF correlation (0.84)

PC7 Resident vs. else
Weak shape

Negative AF intensity

PC8 Unclear Strong QPI radial

Raman

PC1 Control vs. LPS (+) General cell content

PC2 Raw vs. Primary
(+) Proteins

(−) Cytochrome C

PC3 Cell types
(+) Cytochrome C

(+) Unsaturated lipids

PC4 Cell types and stimulation
(+) Lipids

(−) Proteins

PC5 Resident vs. else
(+) Cytochrome C

(+/−) DNA/RNA residues

PC6 Raw sub-population vs. else (+) CH stretching, amino-acids

PC7 Cell types (weak) (+) Proteins

PC8 LPS (weak) (+) CH stretching

Table 1. Main features highlighted in the score plots of each principal component (see Fig. 3), along with the 
interpretation for each corresponding loading vectors (see Figs S3 and S4), separated in the case of Raman 
between positive (+) and negative (−) features.
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Different cell types have different variability levels. Interestingly, it is also possible to identify that 
Raw, a population composed of clone cells, appears to be overall less heterogeneous than peritoneal cells both 
in morphology and cellular content, as illustrated in PC1,2, where the distribution of Raw is smaller than RPM 
and EPM, except for PC2 of Raman, where Raw seems slightly wider. On the other hand, there seems to be a 
sub-population of Raw in higher PCs of Raman (PC4–6).

In order to quantify the variability of the different observed species, we compute the standard devia-
tion of the PCA scores for each PC (see Fig. 4). It can be identified that Raw indeed has less variation in most 
morphology-related PCs (see Fig. 4A), where it becomes especially apparent because the analysis is performed 
here separately on control and stimulated cells. Furthermore, RPM cells appear to have more heterogeneous mor-
phologies than EPM cells. On the other hand, the variability in spectral features seems more comparable, but with 
RPM being more variable than the two other cell types. A sub-population is also present in PC4–6 (see Fig. 3), 
which increases the variability of Raw. The exposure to LPS also consistently increases morphology variability for 
all cell types, and stimulated peritoneal macrophages appear to have significantly more variable spectral features 
in PC2,3, and to a lower extent PC1. It should be however noted that while the study through standard deviation 
is useful to extract main tendencies, it can lead to misinterpretations, as it assumes that the distributions can be 
approximated as Gaussian, which is clearly not the case for some of the score plots (see Fig. 3).

Label-free parameters provide reliable classifiers of activation and cell type. The multivariate 
analysis as performed above through PCA can provide important insight into the data structure, but it does not 
create sufficient separation between species to enable classification. It is however also possible to develop models 
based on supervised learning in order to account for the inherent variability in the data and actively distinguish 
the selected experimental conditions. We employ here models based on penalised logistic regression applied on 
either morphological or Raman data (see details in Methods), which have been demonstrated to be able to detect 
the LPS-induced activation state of Raw cells13. The logistic distribution is ideal to distinguish between binomial 
classes, and the model employs an L1 penalty term that shrinks the coefficients of variables that do not inde-
pendently contribute to the separation power of the classification model38. This approach effectively reduces the 
amount of variables used in the model, which contributes to its stability. We employed multinomial models with 
Raman parameters to distinguish between cell types and activation states, yielding 6 separate categories, where 
each specific category is separated from the other 5 classes by a dedicated model.

The models are trained with 15,000 random samples from all measurements, corresponding to approximately 
50% and 75% of the data for morphological and Raman variables, respectively. The models are then employed to 
predict the condition of the remaining data, as shown in Table 2.

Overall, the models can achieve sensitivities in the range of 87–97%, with comparable specificities, showing 
that is possible to create reliable models, even when including data across multiple conditions and including 
uncontrollable or unknown sources of variation (such as experiments being performed on different days, dishes, 
etc.). Interestingly, the errors are strongly correlated, where most of the misclassifications correctly identify the 
cell type but misidentify the activation state, or correctly finds the activation but confuses peritoneal cells. It is 
also possible to see that the identification of the Raw cells is especially accurate (~96–97%), which is consistent 
with the previous analysis not using supervised learning, where the Raw cell line was identified as being more 
different than the other cell types in the PCA score plots (see Fig. 3). Interestingly, with the addition of supervised 
learning, the Raman indicators are able to distinguish activation accurately, despite the separation not being 
obviously visible when simply considering the PCs displayed above. This shows that the higher order PCs from 
Raman measurements, although only responsible for a small amount of the total variation in the data, can also 
have significant discrimination powers and may serve as useful biomarkers or act as a basis for further study into 
the differences between cell types.

In the case of morphological parameters, it was not possible to create stable multinomial models able to accu-
rately predict the 6 different classes. However, it is possible to create models that can predict either the activation 

Figure 4. Standard deviation of scores for each PC, divided by cell type and stimulation condition.
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state or cell type, with 85–88% and 80–92% sensitivity, respectively, based on morphology. While the overall 
sensitivity is lower than in the Raman case, the overall behaviour is similar, with Raw cells being more different 
than peritoneal macrophages, and with the cell type being easier to differentiate than the activation state. It also 
shows that while the morphological phenotype can distinguish between resting and activated cells, or between 
Raw, RPM and EPM, it cannot alone disentangle the two effects.

It should also be noted that the label-free parameters (Raman and morphology) have been kept separate 
throughout this article to simplify the data interpretation and the study of the various parameters. It is however 
also possible to combine the two data sets by pairing the measurements. In that case, the size of the data set is 
slightly reduced since only cells that were measured in both morphological and Raman modes are used. This 
still leaves a significant (N = 17,507) amount of cells, out of which 10,000 (57%) are used for training the paired 
data model. A significant improvement in the classification can then be obtained, with sensitivities in the range 
of 91.5–99% (see Table S1) for multi-class models. This implies that while the morphological parameters are not 
specific enough to enable full classification by themselves between the 6 species, they can provide additional 
information to the spectral measurements to significantly refine the statistical models.

Quantitative assessment of the influence of the experimental factors. One important question 
is the degree to which different sources of variation in the data (such as known/controlled or unknown/uncon-
trolled experimental factors) can affect outcomes, and whether the single-cell heterogeneity is biologically signif-
icant5. Overall, the previous section showed that in this experiment, the main variation across the whole dataset 
is due to the parameters under investigation (i.e. cell type and/or cell activation). This implies that the study is 
robust in terms of uncontrolled parameters. However, it is still of interest to determine to what degree other 
factors can be seen to affect the results by performing further analysis on the dataset. As shown in the previous 
sections, it is complicated to analyse the influence of the different factors in highly multivariate settings. Even in 
the case of strong data reduction, as performed by PCA, only the cell type and activation state effects emerged, as 
clear separating features, while there are also other potential influences such as variations between the individual 
dishes used for measurements, or individual animals employed for cell extraction, as shown in Fig. 1.

Therefore, in order to assess the potential influence of these multiple experimental factors, we employ a metric 
that can be used to quantify the respective separating power of all PCs on the different experimental factors, thus 
allowing a semi-automated analysis of the numerous combinations. We employ here the F-test statistic, which is 
defined as the ratio of the between-group variance to the within-group one38. We then use the value of the F-test as 
a quantitative indicator of how well a given PC can separate groups based on a given experimental factor, allowing 
us to systematically assess the influence of all components.

This analysis, displayed in Fig. 5, confirms the main tendencies observed in Fig. 3. It shows that morphology 
mainly differentiates control and stimulated cells on PC1,6, and also distinguishes to a lesser extent between cell 
types in PC2,3,7. On the other hand, spectral indicators are more efficient at separating cell type in particular 
through PC2,3, but can also separate the stimulation with PC4,9.

The quantitative values in Fig. 5 can also be used to study the influence of other parameters which might have 
undesired influence on the data variability. In the case of morphology, it is possible to see that the F-test values 
computed between days, mice or dishes are either of much lower intensity than the main parameters of cell type 
or culturing condition, and/or follow a pattern that is very close to the one of cell types. This shows that the dif-
ferences which appear to be originating from these factors are due to the fact that only one cell type is measured 
per single day or mouse.

To further confirm the influence of the different parameters, it is also possible to compute the F-values sepa-
rately for each cell type. In the case of morphology, this decomposition indeed leads to F-test values that do not 
exceed 150 for low-order PCs, or values that can be attributed to cell type (see Fig. S5), showing that morpho-
logical parameters are only minimally influenced by day-to-day or dish-to-dish variations. This is illustrated in 
Fig. S6, where scores per dish are shown for representative values of PC1,3, previously attributed to cell type and 
condition. It can be seen that while there are some differences for particular dishes, the values are overall consist-
ent even within the two PCs having the largest F-test values.

Raman Raw Resident Elicited

N = 5,798 Control LPS Control LPS Control LPS

Raw
Control 96.74 3.32 0.086 0.176 0 0

LPS 3.02 96.26 0 0.088 0 0.101

Resident
Control 0 0.138 90.83 7.92 1.47 0.201

LPS 0 0 4.88 93.84 0.21 1.11

Elicited
Control 0 0 1.63 0.176 88.04 9.38

LPS 0.121 0.138 0 1.23 11.75 87.1

Morphology Raw Resident Elicited

N = 18,652 Control LPS Raw 92.3 0.928 6.36

Control 88.5 14.5 Resident 0.922 86.5 11

LPS 11.7 85.3 Elicited 7.41 15.3 79.7

Table 2. Confusion matrices for classification predictions. Raman: full multinomial separation between the 6 
species. Morphology: separate models to classify stimulation condition and cell type, respectively.
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Spectral parameters are partly influenced by days and dishes. On the other hand, Raman F-test 
values are larger overall for the days, animals and dishes (see Fig. 5), and the values per PC do not follow a pattern 
identical to cell types or condition, implying that these undesired parameters have some direct influence on the 
data variance. In particular, when considering the effect of different days, the first largest F-test values corre-
sponds to PCs that can also be attributed to other effects (PC2, cell type and PC4, condition). However, other PCs 
(PC5,9, etc.) also have F-test values that are significant. When considering the F-test decomposition by cell type 
(see Fig. S5), large values are also obtained when comparing days, but they are found only in Raw cells (PC4-5), 
while peritoneal macrophages have either much smaller values, or larger ones only in higher-order PCs (PC10, 
and most PCs above 13th).

These variations are shown in Fig. S7 with PC5,10 as a compromise between selecting high F-test values and 
favouring low-order PCs, so that they represent large data variance. It can be seen that the spectral scores are quite 
stable day-to-day, as most of the variation induced by days is driven by Raw cells. Two main groups of Raw can be 
identified, which can be explained by the very large time difference between these two batches of experiments (see 
Table S2), which are separated by 9 months, time during which consequent readjustments to the experimental 
system were performed. Significant differences can also be observed for EPM, where some experiments are sep-
arated by 3–4 months. These differences are however mostly observed on PC10, which represents only a fraction 
of the data variance.

Similarly, when considering the influence of dishes on the Raman signals, it is possible to see that most 
low-order values are quite low (see Fig. S5). However, PC4,6 have relatively larger values for both Raw and RPM. 
These scores are shown for representative values in Fig. S8, where small dish-to-dish variations can be identified, 
although these are fairly limited, and even smaller than day-to-day ones.

Raman features are sensitive to animals. By comparing the F-test values in Fig. 5 for different experi-
mental parameters, the variation from one mouse to another appears larger than variations due to days or dishes. 
As previously, some PCs can be attributed to other factors such as cell type (PC2), although several PCs have rel-
atively large values (PC6,8,13, etc.). The F-test values separated by cell types (see Fig. S5) also show quite different 
profiles and larger values for RPM (PC14,17) and EPM (PC8,15).

To illustrate this influence, we select the PC having the largest F-test value for each cell type that is within the 
ten first ones, giving PC 8 and 10 for RPM and EPM, respectively. Representative score plots for these PCs are 
shown in Fig. 6, where significant differences between mice can be identified. First, it can be seen that overall, 
RPM appear to have mostly less variation than EPM. There is also some influence from the day of experiment, 
that affects the average score values such as mice 7–8 and 9–10 for EPM, or mice 17–19 and 20–22 for RPM, 
although scores are overall fairly stable throughout all days.

When comparing mice, some of the most important differences are not necessarily in the average scores of 
the cells, but in the fact that certain mouse-derived populations have much larger variations, such as mouse 15 
on day 8, or mouse 19 on day 9. This effect is also restricted to RPM where certain populations have these outlier 
variances. EPM have overall larger variations, but do not display such outliers. All these trends are visible in the 
representative set of Fig. 6, and are also confirmed when considering the experiments from all the different days 
(see Fig. S9). Furthermore, similar behaviours could be identified when studying the scores of other PCs having 
significant F-test values. Taken together, these results show that using label-free analysis of mouse-derived pop-
ulations makes it possible to identify individual mice that produce cell populations with a variance that could be 
considered as an outlier.

Figure 5. F-test values for each known experimental parameter in the data structure (cell type, stimulation, 
days, animals and dishes) for both morphology and Raman variables.
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Discussion
The different label-free modalities employed in this study to characterise live cells rely on different contrasts, and 
provide quite complementary information, as illustrated during the analysis of the data, where it was for instance 
identified that morphological indicators are more sensitive to the LPS stimulation, while spectral ones are pri-
marily influenced by the cell type. These differences are consistent with the fact that all the measurements, namely 
quantitative phase and auto-fluorescence imaging, as well as Raman spectroscopy, are independent.

However, one striking point is the strong relation between the various measurements, for which very sim-
ilar trends were identified. The first loading vectors from PCA of morphological parameters showed strong 
correlation or anti-correlation between QPI and AF. Furthermore, similar trends can be identified from 
LPS stimulation and cell type in the first score plots of morphology and Raman variables, which account for 
40–50% of the data variance. This suggests that these measurements, which rely on different sources of con-
trast—molecular for Raman, morphological for imaging—are similarly influenced by these external factors. 
The two measurement indicators are nevertheless very complementary, as further PCA analysis reveals very 
different information between the available variables. In higher components, morphological indicators mostly 
highlight differences between stimulated and control cells, while molecular indicators emphasise differences 
between cell types.

The proposed approach makes it possible to distinguish between all cell types. Furthermore, it appears that 
Raw cells are strongly separated from peritoneal macrophages both in terms of morphological and molecular 
phenotype. This can be expected as it is a cell line, which should be less similar than two primary cell types origi-
nating from mice of the same species. Smaller differences, although still significant, can also be identified between 
both types of peritoneal macrophages, which is expected as it has been shown that RPM and EPM are distinct 
sub-populations that originate from different progenitors39.

It also appears that the inner variability within Raw cells is smaller than within peritoneal macrophages, 
both in terms of phenotype and molecular content. This is consistent with the fact that peritoneal macrophages 
are known to be quite heterogeneous40, while Raw cells have been reported to be functionally stable within a 

Figure 6. Representative density maps of score plots from Raman parameters where the influence of individual 
mice can be identified, plotted by cell type and day.
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reasonable amount of passage numbers41,42. However, the difference in variation is not especially large, showing 
that even cell lines can have a large inner heterogeneity. This is confirmed by the influence of LPS, which itself 
increases the inner variability by a comparable amount. It should be noted that inner variability is observed here 
through global indicators that are influenced by the ensemble of molecules whose influence is studied through 
multivariate analysis, compared to other studies where the behaviour of very specific molecules was reported8,9.

Such a label-free approach can therefore be applied to distinguish between close cell types, and between fine 
cellular states within these cells. As shown by the loading vectors resulting from PCA, the changes that differen-
tiate between the species are distributed over many different aspects of the phenotype, both morphological and 
molecular. For instance, texture parameters or protein bands contribute to both the differentiation of cell types or 
stimulation, showing that an accurate separation involves the combination of multiple variables. This shows that 
exploratory analysis such as PCA can provide valuable insight about the main influencing experimental factors 
and about the intrinsic variability in the data. However, if reliable training data is available, other methods based 
on supervised learning can be developed to also generate stable predictors.

Models created with these label-free indicators can reliably predict either the activation state, or the type at 
single-cell level. This is particularly true for Raman indicators, which can distinguish 6 cases, composed of 3 cell 
types and 2 stimulation conditions. Furthermore, pairing morphological and molecular indicators for individual 
cells identification yields a significant improvement in prediction performances, indicating that they both con-
tain uncorrelated information that can be employed for classification. Interestingly, the high sensitivity (>90%) 
implies that the vectors are robust to uncontrollable factors such as different days of measurements, or extractions 
from different animals. The predictors are also robust to impurities, as it is known that cells extracted from the 
peritoneum are not exclusively macrophages26.

It is also interesting to note that such a label-free multivariate approach can provide high classification 
sensitivities, as other more conventional approaches, such as fluorescence, often require several markers to 
non-ambiguously identify a specific cell type. For instance, differentiating between RPM and EPM can be typi-
cally performed through surface markers such as CD11b, F4/80 and MHC-II26. Furthermore, identifying multiple 
cell types can require additional markers. Raw264 is for example known to express also both CD11b and F4/80 to 
a significant degree41. Similarly, the detection of the activation state can be performed through fluorescence, but 
requires the staining of intracellular molecules such as NF-κB or iNOS8, and is hence destructive.

The multitude of experimental factors, both intended (cell types, stimulation), and unintended (dish or mice 
variations), cannot easily be analysed even with the data reduction provided by PCA. We therefore used the F-test 
values as a quantitative indicator of the separating power of each PC for a given parameter, to systematically 
analyse the influence of each component. This approach makes it possible to disentangle the effect of the different 
parameters, showing that some of them have effectively no significant influence, or to extract the PCs that have 
the strongest influence on a given parameter.

The results show that morphological parameters are not significantly influenced by additional factors such as 
days, dishes or animals. On the other hand, spectral variables display significant changes on higher components 
depending on days, which increase in case of experiments that are further apart, showing that this depends 
mostly on instrument drifts, despite the calibrations that are applied to the data. Such an approach might enable 
the extraction of the features induced by the drift, to further compensate for them. As discussed above, such drifts 
can also be compensated within supervised learning models.

Raman indicators are also influenced by individual mice, where cells extracted from separate animals dis-
play different features. The average scores are fairly consistent in the case of RPM, with cells from specific mice 
displaying an outlier behaviour. On the other hand, the average EPM scores are more varied, but no outliers 
can be identified. This might be explained by the fact that EPM result from mice treated with thioglycollate, 
so that the average changes could indicate a different response to the treatment. On the other hand, RPM are 
extracted from control mice, so that there is less variation for most cell sub-populations, but some animals 
with outlier scores may have unknown pre-existing conditions, or may have responded to unintended external 
conditions.

Materials and Methods
primary cells extraction. C57BL/6N mice were purchased from Japan SLC, and were maintained under 
specific pathogen-free conditions. All animal experiments were conducted with the approval of the Animal 
Research Committee of the Research Institute for Microbial Diseases in Osaka University, Japan (approval no 
H29-02-0), and were conducted in accordance with the guidelines of the Animal Care and Use Committee of 
Osaka University. Female mice aged between 6 and 9.5 weeks were used for all experiments.

The extraction of peritoneal macrophages is performed through standard procedures24. Briefly, to elicit mac-
rophages, 1 mL of a 3% w/v Brewer thioglycollate medium (Sigma-Aldrich) preparation in sterile DI water, aged 
for at least one month at RT, is injected in the peritoneal cavity, and left to react for 3 days. Mice (with or with-
out injection) are sacrificed, and 10 mL of cold phosphate buffer saline (PBS, Nacalai) with 1% bovine serum 
albumin (BSA, Sigma-Aldrich) is rapidly injected 2–3 times in the peritoneal cavity, and recovered to be kept 
on ice. Cells are then centrifuged at 300 ×g for 5 minutes, and resuspended in cold culture medium (Dulbecco’s 
modified Eagle medium (DMEM, Nacalai) supplemented with 10% fetal bovine serum (Gibco) and penicillin/
streptomycin (Sigma-Aldrich) with 10,000 units and 10 mg/mL, respectively, diluted at 10 mL/L. Cells are plated 
at 1–1.5 · 105 cells/cm2 on 3.5 cm quartz dishes (FPI) and incubated at 37 °C in a humidified atmosphere contain-
ing 5% CO2.

Quartz substrates are previously coated with poly-L-lysine (PLL) by immersing the surface in a 0.01% PLL 
solution (Sigma-Aldrich) during 30 minutes at room temperature (RT). The surface is then washed with deion-
ized (DI) water and left to dry for 2–3 hours at RT before plating the cells.
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cell culture. Raw264 cells (Riken BioResource Center) are cultured in 10 cm culture dishes and immersed in 
culture medium, and incubated as stated above. Cells are trypsinysed with a solution containing 0.25% trypsin 
and 1 mM ethylenediaminetetraacetic acid (EDTA, Nacalai) for approximately 5 min at 37 °C to detach them 
from the dish. They are then plated on quartz dishes at a density of 0.5 · 105 cells/cm2 and then incubated again as 
described above. Cells from passage number 12 to 18 were used for all experiments.

Then, 6–8 hours after plating, cell cultures (either primary cells or Raw264) are first rinsed with DMEM, which 
removes non-adherent cells in case of peritoneal cells, and cultures are then immersed in fresh medium contain-
ing LPS from E. Coli O111:B4 (Sigma-Aldrich) at 100 ng/mL.

cell measurements. After 24 hours of stimulation, cells are washed 2–3 times with PBS supplemented with 
glucose (5 mM) and MgCl2 (2 mM) before measurement.

Cells are measured with a multimodal microscope previously described13,28,43, illustrated in Fig. 1. The over-
all reconstruction and data processing procedure is also summarized in Fig. S1. Briefly, samples are imaged 
with a 40x microscope objective (NA 0.75), and holograms are recorded with a Mach-Zehnder interferometer 
illuminated with a laser diode (780 nm) in an off-axis configuration. QPI images are retrieved through Fourier 
filtering44. Cells in the field of view are excited with a continuous-wave 532 nm laser (170 mW/μm2), and the 
back-scattered light is separated from the excitation with a dichroic mirror, and sent into a spectrometer to meas-
ure the vibrational spectrum (535–3075 cm−1) with a cooled scientific CMOS detector (exposure time 3 s).

Auto-fluorescence images are acquired in a standard epi-fluorescence configuration, where the light from a 
mercury lamp is filtered with a DAPI filter set and sent onto the sample with a set of flipping mirrors. The fluores-
cence is then recorded with a scientific CMOS detector (exposure 100 ms).

Data analysis. For each image, cells are extracted from the field of view through segmentation with the 
CellProfiler program. QPI and AF images are then registered, and morphological features are extracted from all 
cells with the modules providing parameters for size, shape, intensity, radial distribution and texture29, yield-
ing a morphological vector of 301 parameters (a list of the complete set of features can be found in Table S3). 
Raman spectra are first baseline corrected with cubic spline interpolation and the silent region (1800–2700 cm−1) 
is removed. Spectra from different days are calibrated by interpolating them on a common grid based on a spec-
trum of pure ethanol measured each day.

Statistical analysis is performed with the R program45. Principal component analysis is performed on the data 
pre-scaled by variance with the prcomp function, and F-test values are obtained with analysis of variance (aov). 
Penalised logistic regression is performed with the glmnet package, where the penalisation factor that reduces the 
amount of variables used for classification is adjusted manually based on the results obtained with 10-fold cross 
validation.

Data availability
The raw data and datasets acquired and generated during the current study are available from the corresponding 
author on reasonable request.
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