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Abstract

This study presents the evaluation of ability-based methods extended to keyboard generation for 

alternative communication in people with dexterity impairments due to motor disabilities. Our 

approach characterizes user-specific cursor control abilities from a multidirectional point-select 

task to configure letters on a virtual keyboard based on estimated time, distance, and direction 

of movement. These methods were evaluated in three individuals with motor disabilities against 

a generically optimized keyboard and the ubiquitous QWERTY keyboard. We highlight key 

observations relating to the heterogeneity of the manifestation of motor disabilities, perceived 

importance of communication technology, and quantitative improvements in communication 

performance when characterizing an individual’s movement abilities to design personalized AAC 

interfaces.
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1 INTRODUCTION

An estimated 5 million Americans have speech impairments that require the use of 

augmentative and alternative communication (AAC) technology to meet their daily 

communication needs. Many AAC users rely on computers, tablets, or smartphones to 

supplement or replace their oral speech [1, 6, 12]. However, some individuals with 

concomitant motor disabilities—such as those with cerebral palsy, amyotrophic lateral 

sclerosis, Parkinson’s disease, and traumatic brain injury, among others—lack the manual 

dexterity necessary to control mainstream AAC technology. Instead of multi-input methods 

(e.g., ten-finger typing on a keyboard), these individuals must rely on alternative, single-

input modalities such as eye-tracking, head-tracking, and switch-scanning to effectively 

access virtual interfaces.

Unfortunately, current alternative communication technologies that incorporate single-input 

access and keyboard interfaces offer limited versatility and personalization for those with 

motor disabilities that result in severe dexterity impairments. For this population, text is 

primarily generated using a virtual keyboard. Most interfaces utilize the standard QWERTY 

layout, which has been described as “grossly inefficient” for single-input use for AAC 

[26]. Moreover, these devices often require extensive setup and maintenance by a caregiver, 

frequent recalibrations, and manual interface customizations that burden both caregiver and 

AAC user, leaving many individuals poorly served. Users may attempt to compensate using 

their own residual motor capabilities or through substantial reliance on caregiver support and 

troubleshooting [7]. These and other factors contribute to the nearly one-third of people who 

abandon their prescribed AAC device in favor of less effective dysarthric speech, gestures, 

among other communication methods [2, 13].

The communication potential of AAC interfaces has improved in recent years with the 

inclusion of basic automation features such as word prediction, abbreviation expansion, 

and the ability to save frequently used words and phrases. However, highly ubiquitous 

interface software such as Communicator 5 (Tobii Dynavox; Pittsburgh, PA, USA), 

Proloquo4Text (AssistiveWare; Amsterdam, the Netherlands), or Verbally (Intuary; San 

Francisco, CA, USA) still require time-consuming, manual support from a trained caregiver 

to accommodate common changes to personalize a keyboard to meet the needs of the user. 

The computational optimization of a computer interface to fit the abilities of the user can 

improve performance [9, 10], yet no existing AAC technology can automatically tailor a 

single-input keyboard interface to an individual’s unique motor abilities. Existing research 

has examined the effects of configuring a keyboard to given population (e.g., individuals 

with tremor) [24], yet this approach ignores any heterogeneity in motor abilities within 
the population [14, 22]. Prior work has also examined the use of automated models for 

classifying keypresses on virtual keyboards [8]; however, these models were constructed 
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for multi-input typing on a QWERTY keyboard. Thus, in this work, we build on the 

principle of ability-based design to develop and evaluate an AAC system that characterizes 

an individual’s cursor control abilities to automatically personalize the layout of a keyboard 

interface for improved communication. We present three use cases involving people with 

diverse motor disabilities who use this AAC system to create messages, comparing 

performance to the ubiquitous QWERTY keyboard and a computationally optimized but 

non-personalized keyboard.

2 ABILITY-BASED KEYBOARD GENERATION AND EVALUATION

This work expands on novel methods for ability-based keyboard generation in individuals 

without dexterity impairments [23], as well as prior work on generically optimizing a 

keyboard to improve communication in individuals with dexterity impairments due to motor 

disabilities [4]. Here, we examine the feasibility of ability-based keyboard generation for 

those with motor disabilities. We briefly summarize (see [23]) steps to algorithmically 

characterize movement and generate personalized keyboards below.

2.1 Characterizing User Cursor Control

Our methods for characterizing cursor control abilities expand on Fitts’ Law [16, 17] to 

estimate movement time and distance relationships relative to a given target angle rather 

than the typical approach of grouping time and distance data irrespective of angle. Users 

are presented with a modified version of the multidirectional Fitts’ Law-based point-select 

task, wherein a grid of hexagonal keys are configured on a computer screen and users 

must navigate to and select a highlighted key (or “target”). Targets are seeded to capture 

two-dimensional (2D) movements across a range of possible distances and directions. Each 

target is categorized into one of 16 pre-specified bins spanning (360/16 =) 22.5 degrees 

by the empirical angle of target selection relative to the previous target [23]. Within each 

bin, a linear regression is performed to yield constants a and b from Mackenzie’s Shannon 

formulation of Fitts’ Law (Equation 1) [16, 17]:

MT = a + b * ID, wℎere ID = log2
D
W + 1 (1)

Specifically, the movement time (MT; sec) to select a given target is calculated as the travel 

time of the cursor between those clicks; distance (D; pixels) is calculated as the Euclidean 

distance between those click locations. Each distance D is converted to an index of difficulty 

(ID; bits) with W representing a constant target width (pixels).

2.2 Generating a Personalized Keyboard Interface

Personalized keyboards are created by leveraging character-to-character (digraph) transition 

occurrences of a selected corpus, MT (calculated as in Equation 1 with respect to target 

width and movement distance), and target selection angle. The user-specific a and b 

constants derived from movement data are sampled relative to the angle of target selection, 

then applied to Fitts’ Law (Equation 1) to estimate MT and solve the quadratic assignment 

problem (QAP) via the Fast Approximate QAP Algorithm [27] of the GraphMatch function 

Mitchell et al. Page 3

Ext Abstr Hum Factors Computing Syst. Author manuscript; available in PMC 2022 October 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in graspologic (Microsoft, Redmond, WA, USA) [3]. Thus, each keyboard computationally 

prioritizes common letter transitions to be in directions easier for the user.

3 SYSTEM EVALUATION

3.1 Overview

Text input performance was evaluated for each participant when using a keyboard 

generated via our personalization methods versus that when using QWERTY or a generic, 

computationally optimized keyboard. To enable comparisons with QWERTY, the width of 

the space key on the QWERTY keyboard was set equal to all other keys and positioned to 

the right of the “M” key (see [23]), as prior work has shown that text input performance does 

not significantly differ in this configuration [23]. Distinct from the personalized keyboards, 

which are derived from user-specific a and b constants that vary according to movement 

direction, the generically optimized keyboard was generated using standard directionally 

static Fitts’ constants of a = 0.127 sec and b = 1/4.9 sec/bits across all target selection angles 

[21, 30]. Digraph transition occurrences for both the personalized and generically optimized 

keyboards were calculated from a standard corpus for evaluating text-entry techniques [20]. 

Computer access was standardized across participants via a validated access method [11] 

comprising an inertial measurement unit (IMU) for cursor movement (activated via head 

tilts) and surface electromyographic (sEMG) sensor for cursor clicks (activated via winks or 

blinks).

3.2 Experimental Protocol

Three participants with motor impairments (1 female, 2 male; 24–65 years) completed 1–2 

sessions based on availability. All individuals gave informed consent in compliance with 

the Madonna Rehabilitation Hospital Institutional Review Board (P1 and P2) or Western 

Institutional Review Board (P3) through either written consent or verbal consent witnessed 

by a communication partner as appropriate. Of the diagnoses (see Table 1), two were 

congenital (cerebral palsy; P1, P2) and one was acquired (Parkinson’s disease; P3). All 

participants reported that they primarily rely on their dysarthric speech for face-to-face 

communication. P1 also reported using eye-tracking (e.g., for writing school assignments or 

e-mails) and occasionally using their nose for touchscreen-based navigation.

For each participant, the inertial sensing component of the hybrid sEMG/IMU access 

method was secured to the center of the forehead—with the y-axis of the IMU parallel to the 

transverse axes of the head—and the EMG sensing component applied over the orbicularis 

oculi of the preferred eye. Computer access thresholds were calibrated by instructing each 

participant to comfortably tilt their head to the left and right twice, up and down twice, and 

wink or hard blink twice [11, 28]. These data were used to tune the 2D range of cursor 

movement, as described in detail in [28].

Participants then carried out a movement characterization task within a 9×9 honeycomb grid 

on a computer monitor with a 1920×1080 resolution to capture movement trajectories across 

a range of movement distance and directions when using the sEMG/IMU access method. 

Within the task, participants were instructed to navigate to and select the highlighted 
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target as quickly and as accurately as possible [31]. Participants completed this movement 

characterization task in 5-minute intervals until 30 minutes had been reached. Participants 

were allowed ample break time between each interval to minimize fatigue. The task 

terminated early (i.e., before the 30-minute threshold) if each angle bin contained 5 or more 

targets and exhibited at least a weak MT-ID correlation (R2 > 0.09 [5]). After completing 

the task, the 16 angle-specific Fitts’-based a and b constants were used to generate a 

personalized keyboard.

Each participant was then presented with the generically optimized keyboard and their 

personalized keyboard in a pseudorandomized order (i.e., generically optimized first 

or personalized first). Based on their assigned order, participants spelled out a subset 

of balanced phrases from the corpus used for digraph occurrence calculations [20] in 

alternating blocks. A final block using the QWERTY keyboard was performed to serve 

as a reference for communication performance (i.e., due to widespread familiarity in 

using the QWERTY keyboard for communication) once participants were familiar with 

the access method. Blocks comprised 10 minutes of interaction with one interface—not 

including participant-initiated breaks between sentences—followed by a survey to capture 

their experiences on a 10-cm visual analog scale [4]. The survey included questions about 

how fast it felt (where 0 cm is anchored as “Very slow” and 10 cm as “Very fast”) to use 

the generically optimized, personalized, and QWERTY keyboards, as well as how easily 
they understand the keyboard layout (0 cm as “Not easily” and 10 cm as “Very easily”) 

as an estimate of keyboard familiarity. After each survey, participants could take a break 

(10–20 minutes, as necessary) to minimize fatigue. At the end of the study, participants were 

surveyed on which of the two new interfaces they preferred (0 cm as “First Interface” and 10 

cm as “Second Interface”).

3.3 Data Analysis

User control was examined in the movement characterization task via a series of target-to-

target path trajectory metrics. Metrics included an estimate of target-to-target movement 

velocity, as well as standard, path-specific metrics of movement error, path efficiency, 

target re-entry, and selections per target [19, 25]. Keyboard communication task data were 

analyzed to assess communication performance via metrics of speed (words per minute, or 

WPM), target selection accuracy (%), information transfer rate (ITR; bits per minute) [29], 

and throughput (bits/min) [18]. Survey responses were also tabulated to assess user effort 

and preferences and are reported from 0 to 10 cm.

4 MOVEMENT CHARACTERIZATION

4.1 Target-to-target Path Trajectories

Participant target-to-target path trajectories resulting from our movement characterization 

task successfully show variations in 2D cursor control. These differences are exemplified in 

the path trajectories shown for each participant in Figure 1 and are further summarized via 

path trajectory metrics in Table 2.
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Each participant traveled at substantially different movement velocities when traveling 

between targets, wherein P3 navigated the fastest, followed by P2 then P1. P3’s fast cursor 

movements are further characterized by multiple target overshoots, which accounts for the 

observed low mean path efficiency. P2’s target-to-target movements were highly efficient, 

indicating precise movement with low target re-entries, yet large deviations from the target 

axis through a high movement error, suggesting a preference toward independent movements 

in x and y directions. Despite P2’s propensity to not overshoot the target, they often required 

more than one selection to accurately click the target. In addition to slow cursor movements, 

P1’s path trajectory results also demonstrate a slight preference toward coordinated 2D 

movements with minimal deviation from the task axis (via movement error) and a moderate 

mean path efficiency. On average, P1 exhibited approximately one target overshoot and 

more than one selection to accurately click the target.

Participants required an average of five 5-minute intervals to complete the movement 

characterization task (P1: 4, P2: 5, P3: 6). Notably, all participants exhibited large movement 

errors (138.0–172.9 pixels) compared to those in the literature for people with motor 

disabilities when using computer pointing devices (30.4 pixels [15]); this is likely due 

to differences in access method (sEMG/IMU vs. computer mouse) and experimental 

methodology (e.g., task instructions).

4.2 Relationship between Movement Time and Direction

The movement characterization algorithms effectively captured differences in movement 

time relative to distance and direction. On average, P3 required 10.2 sec (SD = 7.9 sec) 

to travel between targets, whereas P1 required 7.4 sec (SD = 5.9 sec) and P2 required 5.3 

sec (SD = 3.5 sec). MT-ID relationships were moderate-to-strong for each participant when 

accounting for movement direction (R2 = 0.35 for P1, R2 = 0.44 for P2, and R2 = 0.25 for 

P3) [5]; resulting values for Fitts’ constants a and b are shown for each participant relative to 

movement direction (0 to 360 degrees) in Figure 2.

Using these derived sets of a and b constants, a personalized keyboard was then generated 

for each participant (see section 2.2) to reflect their movement abilities. The keyboard for P1 

reflects the larger movement times required to navigate diagonally down and to the left via 

organizing fewer keys in that region of the keyboard. The keyboard for P2 is arranged in a 

cross-like pattern, which reflects P2’s large movement errors and preference for moving in 

independent (1D) x/y directions (i.e., by allowing for more independent x/y movements than 

would a compact, circular keyboard), and is also demonstrated via reduced a and b values in 

each cardinal direction in Figure 2. The keyboard for P3 reflects reduced a and b constants 

within the horizontal plane, as the keyboard is wider than generically optimized keyboard; 

this configuration describes a preference for P3 to move left and right (i.e., rather than up or 

down). Contrastingly, the generically optimized keyboard shows effect of directionally static 

constants its circular geometry.

5 KEYBOARD COMMUNICATION

Keyboard communication results for personalized, optimized, and QWERTY keyboards are 

shown in Figure 3.
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P1 completed two blocks each with generically optimized (presented first) and personalized 

(presented second) keyboards, followed by one block with the QWERTY keyboard. P1 

demonstrated superior communication performance when using their personalized keyboard 

compared to either the optimized or QWERTY keyboards for WPM, ITR, and throughput. 

When surveyed about each keyboard, P1 consistently reported that it felt faster to use 

their personalized keyboard (7.4±1.0 of 10 cm) than either the optimized (4.3±0.2 of 10 

cm) or QWERTY (6.6 of 10 cm) keyboards. P1 additionally indicated the most familiarity 

with QWERTY (10 of 10 cm), but that it was easier to understand the layout of their 

personalized keyboard (7.9±1.1 of 10 cm) than the optimized keyboard (6.2±0.7 of 10 

cm). P1 ultimately designated a strong preference for their personalized keyboard over the 

generically optimized keyboard (9.5 of 10 cm in favor of personalized).

P2 was presented with their personalized keyboard first followed by the generically 

optimized keyboard, completing blocks 1 and 2 in one day and blocks 3 and 4 in a 

second day alongside the QWERTY block. P2 showed superior performance when using 

their personalized keyboard during the final block for each day (i.e., blocks 2 and 4); this 

is demonstrated via higher WPM, throughput, and ITR on the first day and by higher 

accuracy, throughput, and ITR on the second day. Communication performance during the 

final exposure to the personalized keyboard (block 4) exceeded that of the QWERTY board 

through accuracy, throughput, and ITR. Subsequently, P2 reported that it felt slightly faster 

to use the personalized (4.8±0.2 of 10 cm) and optimized (4.8±0.2 of 10 cm) keyboards 

compared to the QWERTY keyboard (4.7 of 10 cm); however, the speed-of-use ratings 

were quantitatively similar across all three keyboards. P2 also reported that it was easiest to 

understand the layout of QWERTY (9.7 of 10 cm), followed by their personalized keyboard 

(6.2±1.0 of 10 cm), then the optimized keyboard (5.9±1.1 of 10 cm). Following this, P2 

strongly preferred their personalized keyboard over the generically optimized keyboard (10 

of 10 cm in favor of personalized).

P3 completed two blocks each for personalized (presented first) and generically optimized 

(presented second) keyboards, followed by one block with QWERTY. In their final exposure 

to the new keyboards, P3 demonstrated better performance using their personalized board 

in terms of accuracy and ITR. P3’s final communication performance when using their 

personalized keyboard exceeded that of QWERTY through accuracy and ITR. Survey results 

were only collected after the second block for personalized and optimized keyboards. 

Dissimilar from their text input performance, P3 reported that it felt slightly faster to create 

messages using the optimized keyboard (3.5 of 10 cm) compared to their personalized 

keyboard (3.2 of 10 cm), and that both new keyboards felt faster to use than QWERTY 

(2.2 of 10 cm). P3 additionally reported that it was as easy to understand the layout of 

their personalized keyboard as of QWERTY (9.0 of 10 cm). P3 found it most difficult 

to understand the optimized keyboard layout (7.7 of 10 cm) and, accordingly, exhibited a 

strong preference for their personalized keyboard (10 of 10 cm in favor of personalized).

6 SIGNIFICANCE & FUTURE DIRECTIONS

The results presented here provide insight into the communication benefits that may be 

achieved through automatic, ability-based generation of keyboards for individuals with 
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motor disabilities. By examining cursor movements during a 2D multidirectional point-

select task, this work has yielded an automated method to characterize user movement 

patterns and abilities that may be used to control a computer cursor. Unique geometric 

organization of the personalized keyboards visibly reflected the diverse movement patterns 

observed in the movement characterization, highlighting the immense heterogeneity of 

the manifestation of motor disabilities. The personalized keyboards also showed benefits 

across participants via ITR—a metric that unifies both speed and accuracy—but not 

throughput. These findings indicate clear communication benefits in some users while also 

emphasizing the importance of using multiple metrics to comprehensively examine text 

input performance. Finally, this work highlights the importance of user perception in AAC: 

even with variability in performance across keyboards, all three participants reported a 

strong preference for their personalized keyboard and, furthermore, that using their new, 

personalized keyboard felt faster than QWERTY.

Given these promising results, we intend to expand testing among a larger, diverse group of 

prospective users who require alternative communication technology due to developmental 

disabilities, acquired neurogenic disorders, and/or degenerative neurological conditions 

to further elucidate the utility of our methods. We also aim to conduct a field study 

to examine the ecological validity of our keyboard generation algorithms when used to 

create a personalized keyboard based on a user’s preferred access method (e.g., eye- or 

head-tracking device, joystick) instead of the sEMG/IMU method examined here, which 

was new to participants. Finally, it is important to note that although ITR was higher using 

the personalized keyboard over QWERTY, overall text input performance was of similar 

magnitude between the new keyboards (optimized, personalized) and QWERTY. This, 

especially emphasized through speed (WPM), is likely the result of overtrained experience 

with QWERTY and undertrained experience with the new keyboards (each used for ~1 

hour). These results are in line with prior work suggesting overtraining effects will likely 

be overcome after 4–5 hours of interaction [4], indicating potential increases in text input 

performance using the personalized keyboards. Future work should examine the longitudinal 

effects of training with the new keyboards compared to QWERTY.

7 CONCLUSION

Current AAC interfaces require tedious, manual support from a trained caregiver to 

personalize a keyboard to meet user needs. In this work, we extended the use of 

ability-based methods to individuals with heterogenous motor disabilities to determine 

the utility of automatically personalizing a keyboard to user-specific motor abilities. In 

doing so, we observed diverse movement capabilities as individuals navigated through 

different geometric organizations and shapes to create messages on virtual keyboards. 

Communication performance improved in all participants when using their personalized 

keyboard compared to QWERTY or a generically optimized keyboard. These results 

highlight the feasibility of automated, ability-based techniques as a valuable tool for 

generating individualized keyboards that accommodate the diverse population of individuals 

who must rely on alternative technologies for communication.
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CCS CONCEPTS

• Human-centered computing → Accessibility; Accessibility design and 

evaluation methods; Interaction design; Interaction design process and 

methods; User interface design; Human computer interaction (HCI); 

Interaction devices; Keyboards.
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Figure 1: 
Example path trajectories for accurate (black circle) and inaccurate (black ‘x’) clicks for A) 

P1, B) P2, and C) P3.
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Figure 2: 
Fitts’ constants a (left; sec) and b (middle; sec/bit) and resulting keyboards (right) for each 

participant (rows) relative to the generically optimized keyboard (bottom row).
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Figure 3: 
Communication performance via WPM (left), accuracy (middle), and ITR (right) across 

block for participants (rows) when using generically-optimized (dashed line), personalized 

(solid line), and QWERTY (dotted line) keyboards.
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Table 1:

Demographics of participants with motor impairments, including primary communication modalities.

ID Age/sex Diagnosis Communication Method(s) Characteristics

P1 24/F Cerebral Palsy Oral speech, eye tracking, or nose on 
touchscreen

Involuntary spasms of the lower facial musculature

P2 40/M Cerebral Palsy Oral speech, fingers on touchscreen Neck rigidity, limited ability to tilt head left

P3 65/M Parkinson’s Disease (16 
yrs post-diagnosis)

Oral speech Prominent bilateral resting and action tremor, 
difficulty coordinating head movement and eyeblinks
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Table 2:

Target-to-target Path Trajectory Results

Metric
a Participant

P1 P2 P3

Movement Velocity (pixels/sec) 42.8 ± 22.5 64.6 ±23.9 134.8 ±40.7

Movement Error (pixels) 138.0 ± 114.1 172.9 ± 131.4 149.6 ± 112.6

Path Efficiency (%) 57.8 ± 26.4 72.9 ± 21.0 39.5 ± 23.9

Target Re-entry 1.1 ± 1.9 0.3 ± 1.0 2.5 ± 3.5

Selections per Target 1.3 ± 0.6 1.6 ± 1.2 1.2 ± 0.7

a
Movement characterization data are reported as mean ± standard deviation.
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