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Electrocardiogram (ECG) signal quality indices (SQIs) are essential for
improving diagnostic accuracy and reliability of ECG analysis systems. In
various practical applications, the ECG signals are corrupted by different
types of noise. These corrupted ECG signals often provide insufficient and
incorrect information regarding a patient’s health. To solve this problem,
signal quality measurements should be made before an ECG signal is
used for decision-making. This paper investigates the robustness of existing
popular statistical signal quality indices (SSQIs): relative power of QRS com-
plex (SQIp), skewness (SQIskew), signal-to-noise ratio (SQIsnr), higher order
statistics SQI (SQIhos) and peakedness of kurtosis (SQIkur). We analysed
the robustness of these SSQIs against different window sizes across diverse
datasets. Results showed that the performance of SSQIs considerably fluctu-
ates against varying datasets, whereas the impact of varying window sizes
was minimal. This fluctuation occurred due to the use of a static threshold
value for classifying noise-free ECG signals from the raw ECG signals.
Another drawback of these SSQIs is the bias towards noise-free ECG signals,
that limits their usefulness in clinical settings. In summary, the fixed
threshold-based SSQIs cannot be used as a robust noise detection system.
In order to solve this fixed threshold problem, other techniques can be
developed using adaptive thresholds and machine-learning mechanisms.
1. Introduction
In recent years, wearable sensors have been gaining more attention in
healthcare-related applications due to their convenience of usage in daily
living conditions, high availability and low cost. The demand for wearable
devices currently has worldwide revenue of about $22 billion and is projected
to reach approximately $45 billion ($15 billion in healthcare sector) by 2022
[1,2]. This statistic reveals the increasing demand for wearable devices,
especially in healthcare. Wearable devices are available to capture different
physiological signals such as electrocardiogram (ECG), photoplethysmogram
(PPG) and electroencephalogram (EEG), in daily living environments.

Nowadays, a significantly larger amount of physiological signals are used in
medical diagnosis [3]. The physiological signals reflect the condition of human
health. Various diseases can be detected and classified by analysing these physio-
logical signals. Although noise can interfere with different types of psychological
signals such as ECG, EEG, mechanomyogram and electrooculography, in this
paper, we focus on ECG signals.

ECGsignalsare themost frequentlystudiedphysiological signals, astheyprovide
information aboutmultiple physiological systems including cardiac, cardio-vascular
and cardio-respiratory systems [4]. Numerous wearable ECG acquiring devices are
commercially available and adopted by many researchers for clinical trials.

However, these wearable devices are very sensitive to noise due to the lower
intensity of the signal. For example, noise from sensor circuits that is known as
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Figure 1. The morphological characteristics of ECG signal with S-T segment,
QRS complex and Q-T, P-R interval. These intervals and segments are key to
the diagnosis of heart diseases.
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power line interference (PLI). Other noises such as baseline
wander (BW) and electrode motion artefact are caused by
body motion and poor electrode attachment. Some of the
noise sources are uncontrollable—there include body
motion, eyelid movement and device circuit noise. Therefore,
it is essential to quantify the signal quality with respect to
added noise before feeding the signal into a clinical
decision-making system [5]. Besides noise issues, the ECG
monitoring devices’ missing data are also a concern during
ECG signal collection. Imputation methods are used to
replace missing data points with approximate values using
an autoencoder in ECG signal proposed in [6]. The imputa-
tion method did not remove noises, and it only replaced
missing data points. Noise detection can be used after the
imputation method. As a result, our study did not consider
missing data points in ECG signals.

A noise corrupted ECG signal can cause severe conse-
quences in a healthcare environment. For example, we
assume a scenario in which a patient’s heart activities are
monitored continuously and there is an automated system
to alert the healthcare professionals when an heart abnormal-
ity is detected. However, this could be a false alert if the
signal is corrupted by noise. Therefore, signal quality assess-
ment is necessary before creating an alert. Furthermore,
nowadays, wearable devices are connected to the Internet
for remote examination by healthcare professionals. Hence,
it is important to send noise-free ECG signals to those health-
care professionals. Signal quality measurements are used to
determine whether an ECG signal is noisy or noise free.

1.1. Basic characteristics of electrocardiogram signal
The heart contracts and relaxes rhythmically to pump blood
around the body [7]. The sinoatrial (SA) node automatically
generates electrical signals that reflect the rhythmic motion
of the heart. ECG is a representation of the electrical activity
of the heart, and it is used to diagnose various heart diseases.
This electrical activity is recorded using electrodes placed in
various places of the patient’s body [8]. An ECG signal con-
tains feature points called P, Q, R, S and T, each
representing the steps of the heart cycle as shown in
figure 1. Moreover, an ECG also has five segments that are
important for diagnosing different types of cardiac diseases.

1.2. Attributes of electrocardiogram noise
There are several types of noise in an ECG signal as described
earlier. This subsection describes the noise characteristics
(such as frequency range and noise source) in detail.

1.2.1. Power line interference
One of the most common types of noise in ECG signal is
power line intererence (PLI). Electromagnetic fields, power
lines, poor grounding of an ECG recorder or a patient and
cables loops all lead to PLI noise. It depends on the frequency
(50 or 60 Hz) of the main power supply that varies from
country to country. PLI distorts the P, Q, S and T peak that
are important for pathological decision-making as shown in
figure 2a.

1.2.2. Baseline wander noise
Baseline wander (BW) noise is a low-frequency noise (0.1–0.2
Hz) and it is generated as a result of body movement,
improper electrodes attachment, electrode–skin impedance
and patient’s breathing (respiration). The shape of BW noise
is a long sinusoidal signal. Because of this and the fluctuations
in the ECG signal, BW noise disturbs threshold-based
decision-making systems, this is illustrated in figure 2b.

1.2.3. Muscle artefact noise
Muscle artefact noise comes from muscle movement and is
depicted in figure 2c. Muscle movement can be divided
into two parts: controllable movements (such as resting and
exercising) and uncontrollable movements (such as shivering,
rigours, chest compression).

1.2.4. Electrode motion
Poor attachment or electrode placement in a body generates
electrode motion noises and distorts the P, Q, R, S and T
peaks which are presented in figure 2d.

1.2.5. Sweating artefact
Sweating can also act as a contributor to ECG noise,
especially while the ECG is used as a wearable device in
daily living conditions. Sweating causes the fall of the elec-
trode and increases skin–electrode interface impedance [9],
which affect the ECG signal pattern.

1.3. Research gaps in electrocardiogram noise
measurement

Traditionally, signal quality is improved by denoizing the
signal using various filters in multiple domains such as
time-domain filters (e.g. mean-median filter). In [10,11],
the authors applied median and mean filters to remove BW
and PLI noise. Frequency-domain filters (e.g. wavelet, low-,
high-pass filter), time-frequency-domain filters (e.g. discrete
cosine transform) and data-driven filters (such as empirical
mode decomposition, single value decomposition) have
also been used for removing ECG noise [12–15]. The major
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Figure 2. (a) ECG signal with power line interference, (b) ECG signal with baseline wander (BW), (c) ECG signal with muscle artefact (MA) and (d ) ECG signal with
electrode motion (EM).
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drawback of these methods is the application of the filtering
technique on the entire signal without quantifying the status
(noisy or noiseless) of the signal [16–20]. It is well known that
filtering techniques modify phase and/or amplitude of the
signal [15,21,22] and therefore, application of filtering tech-
niques without considering the types of noise, results in
distorted signals in many applications. Applying such filters
on ECG signals may result in lowering the performance of
decision-making models that are used for the detection or
classification of different types of physiological and
pathological conditions.

To address these issues, researchers have proposed
various signal quality indices (SQIs) to detect the presence/
absence of noise in an ECG signal rather than blindly apply-
ing filtering techniques [23–28]. This type of signal quality
measurement provides necessary knowledge for the selection
of an appropriate filter and the signal segment on which
to perform the filtering operation. There have been several
studies on SQIs of ECG in the past few years, which can be
largely divided into three categories: (1) statistical SQI
(SSQIs), (2) template-based SQI (TSQI) and (3) machine-
learning-based SQI (MLSQI). Details of these are explained
in following sectons.

Although there are many SSQI methods and their per-
formances are reported in the existing literature, there has
been little discussion about their dependency on the dataset,
measurement parameter (window sizes) and rationale behind
threshold selection, which determines the quality of a signal
segment. Another issue that is responsible for decreasing
the accuracy of signal quality prediction is accurate labelling



1.4

1.2

1.0

0.8

0.6

0.4

am
pl

itu
de

 (
m

V
)

sample

0.2

0

–0.2

–0.4

–0.6
0 500 1000 1500 2000 2500 3000 3500

Figure 3. The labelling of the dataset using MATLAB GUI: red colour indi-
cating the unacceptable and blue colour line represents the acceptable
segment of the raw ECG signal.
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methods. In the majority of the studies, ground truth is done
by detecting QRS complexes [29–32]. The presence of a
QRS complex increases the accuracy of noise and noise-
free ECG signal detection. In the case of clinical usability, a
QRS complex is inadequate for diagnosis of cardiac abnorm-
alities such as first-degree atrioventricular block and left
bundle branch block. As a result, the visibility of P, Q, R,
S and T feature points are essential for detecting the
aforementioned cardiac diseases.

A few researchers have sought to determine the standard
threshold and window sizes for SSQI measurements in
diverse datasets; however, they have not found a gold stan-
dard that works for multiple datasets [32,33]. In [32], the
authors experimented with a fixed window size for signal
quality evaluation and obtained 94.27% precision. However,
in [32], different window sizes and their impact on the accu-
racy rate of detecting noise and noise-free signals were not
considered. Nichol et al. [33] attempted to estimate a new
threshold for the kurtosis parameter in 2018 and obtained
97% precision to distinguish a noise-free and noisy portion
of the signal from each other. The major drawback of this
paper is that limited datasets are used to validate their
proposed threshold.

Dataset diversity is one of the major concerns for validat-
ing existing SSQI methods and its threshold values. Most
researchers are focusing on ground truth labelling for part
of the signal, rather than considering the entire signal.
Furthermore, existing works are on limited datasets
[29,32,34–36]. As a result, the effect of dataset diversity on
SSQI is difficult to determine.

This indicates that further research is required for
analysing the suitability of SSQI methods across different
datasets.
1.4. Aim and contribution
The aim of this technical review is to explore the current
knowledge of signal quality measurement using SSQI,
analyse the robustness of existing SSQIs and highlight their
strengths and weaknesses. This study examines the impact
of dataset diversity and variation of window sizes on statisti-
cal signal quality determination. We have used existing SSQIs
with specific window sizes (1 s, 2 s, 5 s and 10 s) where
authors claimed high accuracy in [23,26,29,30,33]. For a fair
comparison, we have not introduced any different window
sizes other than the one that was already reported in
the literature.

To accomplish that, we developed a semi-automatic tool
to annotate ECG datasets based on the basic characteristics
of the ECG signal. Using the annotated datasets, we analysed
the performance of SSQIs across different datasets with
varying window sizes. In addition, we briefly discussed
other signal quality measurement techniques such as
template-based SQI and highlighted their drawbacks. The
major contributions of this paper can be summarized as

— Unlike the R-peak-based annotation used in the existing
studies, in this study, datasets are annotated by jointly
considering multiple characteristics of an ECG signal
such as presence/absence of P, Q, R, S and T peaks.
To facilitate annotation, we developed a user-friendly
software application using MATLAB.

— This study analyses the performance of existing SQIs
using six publicly available datasets. To the best of our
knowledge, no other study has used so many different
datasets for validation.

— This study analyses the impact of window size on the per-
formance of SQIs. A large window size is likely unable to
capture a small portion of noise. By contrast, a small
window size cannot capture noise such as baseline wan-
dering. No previous studies have explored this effect to
the best of our knowledge.

The remainder of the paper is organized as follows. Section 2
discusses the signal quality measurements and their draw-
backs. Section 3 presents the performance comparison of
current SSQIs. The simulation results and related discussions
are shown in §§4 and 5, respectively. Future directions are
unlined in §§6 and 7 concludes the paper.
2. Electrocardiogram signal quality measurement
Signal quality assessment is a criterion for the detection of
noise in an ECG signal. In an ECG signal, noise is unpredict-
able, and it occurs randomly. Due to this, noise can misguide
QRS complex detection or signal classification. Signal quality
measurement ensures the identification of noise-free ECG sig-
nals before they are used for pathological decision-making.

2.1. Statistical signal quality indices
SSQIs analysis is one of the pioneering and key methods to
identify noisy and noise-free ECG signals [24–26,28]. The
most commonly used SSQIs are relative power of QRS com-
plex (SQIp), skewness (SQIskew), signal-to-noise ratio (SQIsnr)
and peakedness of kurtosis (SQIkur) [29,32]. Usually, higher
values of SQIp (0.5 > SQIp < 0.8), SQIskew (−0.8 > SQIskew≤
0.8), SNR (SQIsnr > 10 dB) and SQIkur (SQIkur > 5) indicate a
noise-free ECG signal.

The aforementioned popular SSQIs are briefly discussed
as follows:

— Kurtosis (SQIkur): Selvaraj et al. observed that SQIkur is
an indicator of ECG signal quality [37]. Kurtosis is a
statistical measure describing the distribution of the
inspected data throughout the mean. It expresses a



Table 1. Summary of study on machine-learning-based noise detection.

method year model

performance

specificity
(%)

sensitivity
(%)

accuracy
(%) dataset

Tobon & Falk [50] 2015 support vector machine

(SVM) and LDA

90.00-LDA 100-LDA 95.00-LDA MITBIHA, synthetic, CINC 2011

and private

92.00-SVM 100-SVM 96.00-SVM

Li et al. [51] 2014 support vector machine

(SVM)

n.a. n.a. 80.38 MIT-BIH arrhythmia database

(MITDB), CINC 2011

Behar et al. [29] 2013 support vector machine

(SVM)

94.80 86.30 94.60 CINC 2011, MIMIC II

Clifford et al. [23] 2012 support vector machine

(SVM)

100 99.80 99.80 CINC 2011

Li & Clifford [44] 2012 relevance vector

machine (RVM)

n.a. n.a. 86.40% PICC, MIMIC II, Real

Kužílek et al. [27] 2011 support vector machine

(SVM)

n.a. n.a. 83.60 CINC 2011

Kido et al. [46] 2019 CNN n.a. 97.00 n.a. private database

Zhang et al. [47] 2019 cascaded CNN 97.50 85.60 91.80 MIT-BIH arrhythmia database,

private dataset

n.a.: not available.
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large tail and peakedness or a tiny tail and flatness of dis-
tribution corresponding to the normal distribution.
SQIkur can be calculated using

SQIkur ¼
1
N

XN

i¼1

h ðxi � �xÞ
s

i4
, ð2:1Þ

where x denotes the ECG signal with N sample points, �x
and σ represent the mean value and standard deviation of
signal x, respectively.

— Signal-to-noise ratio (SQIsnr): The SQIsnr is defined as
the ratio of signal diversity to noise diversity [38,39].
The signal diversity represents the variance of the absol-
ute value of the ECG signal, while the noise variance is
defined as the variance of the ECG signal. In [39], the
authors proposed an ECG signal with an SNR≥ 80 dB
is good quality or acceptable for further processing. The
SQIsnr is estimated as follows:

SQIsnr ¼
s2
y

s2
jyj
, ð2:2Þ

where y is the ECG signal.
— Higher-order statistics-SQI (SQIhos): Nardelli et al. [35]

proposed a novel index, SQIhos, using a combination of
SQIskew and SQIkur of an ECG signal that is defined by

SQIhos ¼ jSQIskewj �
SQIkur

5
, ð2:3Þ

where SQIskew is denoted by

SQIskew ¼ 1
N

XN

i¼1

h ðxi � �xÞ
s

i3
: ð2:4Þ
— Relative power of QRS complex (SQIp): SQIp is the ratio
between the power spectral densities of the ECG signal
spectrum and the QRS complex spectrum. ECG signals
are generated between 0.05 and 125Hz for clinical analy-
sis where the QRS complex corresponds to the frequency
range [0.05− 45] Hz. Noise-free ECG signals typically
have a distinctive QRS set [23,30]. SQIp is defined by

SQIp ¼
Ð 15Hz
5Hz PðfÞdfÐ 45Hz
0Hz PðfÞdf

, ð2:5Þ

where P( f ) is the ECG power spectrum. The majority of
the ECG’s power is concentrated in the 5–15Hz fre-
quency range.
2.2. Template-based signal quality indices
Template matching is a well-known pattern recognition mech-
anism that is applied between a predefined signal template
and a measurement signal to quantify the similarity. In [36],
the authors used an adaptive template based on the QRS com-
plex andeachQRScomplex is segmented as one template. In the
TSQI technique, there are several distancemeasurement criteria,
such as dynamic time wrapping (DTW), edit distance on real
sequence (EDR), longest common subsequence (LCSS) and
edit distancewith real penalty (ERP),which are used for finding
similarity between predefined templates (noise-free/noisy
template) andmeasurement of the ECGsignal [40–45].Different
distance measurement criteria are briefly discussed as follows:

— DTW matches each point to measure the distance
between the predefined template and measurement
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signal. As a result, DTW is more sensitive to noise and
needs a specific template.

— EDR, LCSS and ERP matches one point to many points
between the predefined template (noise-free/noisy
template) that can tolerate a small amount of noise (e.g.
noise-free ECG but tolerable fluctuation).

The major concern about TSQI methods is that they work
well for a given patient. However, a template developed for
a patient, does not work for different patients. Therefore, it
is real challenge to develop a generalized template which
can work across all patients.

2.3. Machine-learning-based signal quality indices
In recent years, several machine-learning-based algorithms
have been proposed to improve signal quality measurement
[23,29]. In general, the MLSQI process depends on two major
steps that are feature extraction (e.g. ECG signal features such
as SQIp and SNR) and selection of classifiers to predict signal
quality frommeasurement of ECG signal. Themost commonly
used MLSQI classifiers are support vector machines (SVM),
linear discriminant analysis (LDA), the multilayer perceptron
(MLP) neural network, naive Bayes (NB) and convolutional
neural networks (CNN) [23,27,46,47].

In [48], the authors compared four classifiers: LDA, naive
Bayes, an SVM and MLP (multi-layer perception) for testing
the CINC2011 dataset. In [48], firstly, 72 features (12 leads × six
features) are extracted to train different algorithms for machine
learning to label the data as acceptable (1) or inappropriate (−
1). In the evaluation of SVM and MLP models, the authors
achieved 99% accuracywhen they used the CINC-2011-training
(Set-a)dataset and 95%accuracywhen the trainedmodel is eval-
uated using the CINC-2011-testing (Set-b) dataset.

Kido et al. proposed a multi-class classification model [46]
(qua_model) based on a CNN. The qua model for 4 s length
signals will recognize the C1 class signal at a 99.00% accuracy
and a 99.00% recall in 10-fold cross-validation. In [47], the
authors consider the problem of five-classification classes (low
interference, mild motion artefacts, mild myoelectric noise,
extreme motion artefacts and extreme myoelectric noise), and
a new cascaded fully CNN was proposed. Firstly, they dis-
tinguish motion and myoelectrical, and then classify the noise
intensity level. The overall specificity, sensitivity and accuracy
are 97.50%, 85.60% and 91.80%, respectively. The approach in
[49] examines the classification of 5 s PPG segments into noise-
free or noisy segments. The existing machine-learning methods
on signal quality indices are presented in table 1.

MLSQI is a good technique for detecting noise in ECG
segments. However, machine-learning/AI models demand
more labelled datasets that are not publicly available.
3. Performance comparison of current statistical
signal quality indices

There are several approaches for signal quality assessment,
as described in §2. Previous studies indicated that SSQIs
are preferable due to low complexity. However, analysis of
these indices’ performance is essential for detecting noisy sig-
nals more accurately. In this section, performance and the
limitations of SSQIs are analysed.

Dataset labelling is one of the critical steps for validating
SQI measurements. The understanding of ECG characteristics
is essential for labelling ECG signal segments as noise-free or
noisy. In this section, we summarize the ECG signal features
and label the ground truth by considering the morphology of
the ECG signal. Finally, the SSQI parameters are described for
quantifying signal quality performance.

3.1. Dataset labelling
In order to compare the existing SSQI, ECG datasets are
labelled based on noise content and it is popularly known as
an annotation. The ECG signals were manually annotated.
We developed a graphical user interface (GUI) to visualize
the ECG signals shown in figure 3. All the ECG segments in
this study are labelled as either noise-free or noisy. The defi-
nition of noisy and noise-free ECG is defined in [52,53],
where authors mentioned noisy ECG when clean ECG con-
taminated with PLI, BW, MA noises. Once an ECG record is
selected, the GUI plots part of an ECG signal corresponding
to 10 s, to visualize the feature points mentioned in §1.1. A
binary array equal to the length of the uploaded ECG signal
is created with binary labels, ‘1’ and ‘0’. Based on the ECG
noise definition mentioned in [52,53], we assign the binary
labels ’noise-free’ (1) and ’noisy’ (0) to parts of the ECG signal.

The buttons in the GUI can assist navigation through the
ECG signal. All ECG records are labelled following similar
steps using the developed GUI. Using this GUI, all the
ECG signals in the dataset are binary labelled.

3.2. Datasets
There are several open-source ECG databases available on
the Internet. The Physionet database is one of the largest
ECG data providers in biomedical signal processing. We
have used six datasets from the Physionet data bank. The
number of subjects and total recording length of all datasets
are summarized in table 2. A brief description of these
datasets are presented as follows:

— ECG-ID dataset: the ECG-ID dataset in [55] contains 310
ECG signals, recorded from 90 patients. Each recording
contains filtered and non-filtered data with 500Hz
sampling frequency. All the patients are aged between
13 and 75. The recorded channel resolution is 12-bits.

— Tele ECG dataset: the Tele ECG dataset in [56] contains
250 ECG signals, recorded from 120 patients using the
TeleMedCare Health Monitor (TeleMedCare Pty, Ltd,
Sydney, Australia). Using dry metal Ag/AgCl plate
electrodes, this ECG is sampled at a rate of 500Hz.

— BIDMC Dataset: the raw ECG signals obtained from
clinical care at the Beth Israel Deaconess Medical Centre
(Boston, MA, USA) [57]. This database includes 53
patients of different genders and ages. The duration of
each record is 8min. The sampling frequency of these
signals is 125Hz.

— MIT/BIH arrhythmia dataset: this collection in [55] consists
of 48 patients from Boston’s Beth Israel Hospital’s Arrhyth-
mia Laboratory. The raw signal is sampled at 360Hz.

— Physionet/CINC 2011 dataset: the Physionet/CINC DB
[55] comprises 1500 recordings. Each recording consists
of 12 leads with 10 s recording length. The signals’
sampling frequency is 500 Hz and each sample is quan-
tized with 16-bits.

— Physionet/CINC 2014 dataset: the Physionet/CINC DB
2014 comprises of 100 recordings. Each recording



Table 2. Experimental datasets with a total number of subjects and each ECG signal recording length. The number of diverse datasets considered in this study
compared to existing studied datasets.

ref. database no. subject recording length (h)

ref. [54] CINC 2014 200 33.33

Telehealth ECG database 250 2.08

total 450 35.41

[32] artificial dataset 250 125.00

private dataset 3 2.50

total 253 127.50

[36] CINC 2011 1500 (12 leads) 50.00

MIT/BIH arrhythmia 48 (2 leads) 24.07

MIMIC II 4050 11.25

total 5598 85.32

[36] CINC 2011 1500 (12 leads) 50.00

JRD-ECG (private) 18 186.00

total 1518 236

proposed ECG-ID 90 0.50

Tele ECG 250 1.96

MIT/BIH arrhythmia 48 (2 leads) 24.07

BIDMC 53 60.00

CINC 2014 100 16.67

CINC 2011 1500 (12 leads) 50.00

total 1791 153.2
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consists of multi-parameter records of 10min duration
and is sampled at 250Hz.
3.3. Segmentation
In this study, we have used four different window sizes
without overlapping (1, 2, 5 and 10 s) to segment the
ECG signals to analyse the influence of measurement
window size.

Segmentation and labelling of segments are done auto-
matically using the ECG record and corresponding label
array. For any n seconds window size, the ECG record and
label array are split into n seconds long non-overlapping seg-
ments. After segmentation, a segment is labelled as noise-free
if all values of the corresponding label array segment
equal one. Otherwise, the ECG segment is labelled as noisy.
The number of noise-free and noisy segments for all
window sizes and datasets are summarized in table 3.

3.4. Performance evaluation metrics
All these traditional performance metrics depend on a con-
fusion matrix. The confusion matrix is a way of comparing
two methods of assigning a binary attribute, one of which
is usually the ground-truth-based labelling and the other
comes from the labelling done by SSQI indices. To evaluate
model accuracy, the following parameters are used that are
defined as follows:

— True positives (TP): the number of noise-free segments in
true labelling estimated as noise-free segments based on
the SSQIs values.
— False positives (FP): the number of noisy segments in true
labelling estimated as noise-free segments based on SSQIs
values.

— True negative (TN): the number of noisy segments in true
labelling estimated as noisy segments based on the SSQIs
values.

— False negatives (FN): the number of noise-free segments
in true labelling estimated as noisy segments based on
the SSQIs values.

The rate of sensitivity (Se) defines the successful separation of
noise-free segments using SSQIs and measured by (3.1).

Se ¼ TP
TPþ FN

� 100%: ð3:1Þ

The specificity (Sp) is the rate of correctly detected noisy seg-
ments using SSQIs and it can be calculated by (3.2).

Sp ¼ TN
TNþ FP

� 100%: ð3:2Þ

Accuracy (Acc) is the relationship to the true value of the
measured results and it can be calculated by (3.3).

Acc ¼ TPþ TN
TNþ TPþ FPþ FN

� 100%: ð3:3Þ

Themanual annotation of a noise-free and noisy segment of
the complete signal is distinguished based on the feature points
of the ECG signal. Any ECG segment with clear presence of all
the feature points is labelled as noise-free segment. By contrast,
the absenceof any featurepoint in a segmentdue to thepresence
of noise is labelled as a noisy segment.



Table 3. The comparable number of true noise-free and noisy epoch for four separate window lengths across the datasets.

epoch length (s) dataset no. noise-free epoch no. noisy epoch total epoch

ECG-ID 1207 (67.1%) 593 (32.9%) 1800 (100%)

Tele ECG 4357 (61.50%) 2727 (38.50%) 7084 (100%)

BIDMC 23 361 (95.43%) 1119 (4.57%) 24 480 (100%)

1 MIT/BIH arrhythmia 144 406 (94.43%) 8518 (5.57%) 152 924 (100%)

CINC 2011 10 528 (72.16%) 4062 (27.84%) 14 590 (100%)

CINC 2014 47 542 (80.81%) 11 293 (19.19%) 58 835 (100%)

ECG-ID 594 (66%) 306 (34%) 900 (100%)

Tele ECG 2063 (59.16%) 1424 (40.84%) 3487 (100%)

BIDMC 11 627 (94.99%) 613 (5.02%) 12 240 (100%)

2 MIT/BIH arrhythmia 72 088 (94.29%) 4363 (5.71%) 76 451 (100%)

CINC 2011 5175 (70.94%) 2120 (29.06%) 7295 (100%)

CINC 2014 23 623 (80.31%) 5793 (19.69%) 29 416 (100%)

ECG-ID 230 (63.89%) 130 (36.11%) 360 (100%)

Tele ECG 703 (52.07%) 647 (47.93%) 1350 (100%)

BIDMC 4594 (93.83%) 302 (6.17%) 4896 (100%)

5 MIT/BIH arrhythmia 28 680 (93.83%) 1885 (6.17%) 30 565 (100%)

CINC 2011 1987 (68.1%) 931 (31.9%) 2918 (100%)

CINC 2014 9261 (78.72%) 2504 (21.28%) 11 765 (100%)

ECG-ID 105 (58.33%) 75 (41.67%) 180 (100%)

Tele ECG 233 (38.26%) 376 (61.74%) 609 (100%)

BIDMC 2253 (92.03%) 195 (7.97%) 2448 (100%)

10 MIT/BIH arrhythmia 14 221 (93.13%) 1049 (6.87%) 15 270 (100%)

CINC 2011 925 (63.4%) 534 (36.6%) 1459 (100%)

CINC 2014 4507 (76.64%) 1374 (23.36%) 5881 (100%)

Table 4. The maximum accuracy of SQIkur, SQIp, SQIsnr and SQIhos for dataset ECG-ID, Tele ECG, BIDMC, MIT/BIH arrythmia, CINC 2011 and CINC 2014.

SQI window size/Acc.

dataset

ECG-ID Tele ECG BIDMC MIT/BIH arrhythmia CINC 2011 CINC 2014

SQIkur window size (Sec.) 1 1 10 2 2 5

Acc. (%) 77.96 57.48 83.95 89.58 72.33 81.23

SQIp window size (Sec.) 2 10 10 10 2 5

Acc. (%) 66.25 59.58 60.85 52.91 62.55 70.14

SQIsnr window size (Sec.) 1 5 5 2 1 1

Acc. (%) 66.73 73.40 84.43 97.51 57.01 80.89

SQIhos window size (Sec.) 2 1 2 2 1 10

Acc. (%) 74.81 56.81 81.00 84.64 77.2 76.38

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20220012

8

4. Results
4.1. Effect of dataset diversity on statistical signal

quality indices
The impact ofdatasetdiversityon theaccuracyof the four studied
SSQIs is demonstrated in figure 4 and summarized in table 5.

From table 4 and table 5, it can be observed that SQIsnr
achieves the maximum accuracy of 97.51% when using MIT/
BIH arrythmia datasets. In addition,we can see that SQIkur pre-
forms reasonably well across all the datasets and obtains more
than 72% accuracy. In table 5, window sizes are adjusted to
obtain maximum accuracy for each SQI and datasets.

From figure 4, we can quantify the maximum and mini-
mum best accuracy of SQIkur, SQIp, SQIsnr and SQIhos across
all datasets from these values and they are (89.58%,
72.33%), (71.35%, 52.91%), (97.51%, 57.01%) and (84.64%,
74.81%). From these ranges and variations of accuracy
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across different datasets (as shown in figure 4), it is obvious
that the SQIkur and SQIhos are more consistent than other
SQIs for accurately differentiating noisy ECG segment from
the clean ones.

The highest accuracy for individual datasets ECG-ID,
BIDMC, MIT/BIH arrythmia, Tele ECG, CINC 2011 and
CINC 2014 was obtained using SQIkurð77:96%Þ, SQIsnr
ð84:43%Þ, SQIsnrð97:51%Þ, SQIsnrð73:40%Þ, SQIhosð77:20%Þ
and SQIkurð81:23%Þ for window size 1 s, 2 s, 5 s, 5 s and 10
s, respectively.

On the other hand, the specificity (Sp), which is the key par-
ameter for measuring the misclassification rate of noisy
signals, of SSQIs across the datasets is not promising as
expected in clinical usability (shown in table 5). Themaximum
specificity (Sp) of SQIkur, SQIp, SQIsnr and SQIhos for six data-
sets are (45.54%, 28.14%, 42.03%, 30.22%, 2.92%), (26.40%,
30.39%, 60.91%, 40.28%, 14.36%), (5.18%, 6.89%, 1.29%,
8.10%, 0%) and (40.20%, 29.65%, 51.47%, 31.11%, 4.29%).
This indicates that the SSQIs-based signal quality assessment
approach is biased towards detection of noise-free signals.

4.2. Effect of window size on statistical signal quality
indices

The impact of diversewindow size on the accuracy rate for four
SSQIs is shown in figure 5 and table 6. The SQIkur achieved the
highest accuracy for 1 s and 2 s (76.16%, 75.88%), and SQIsnr
achieved the highest accuracy for 5 s and 10 s (76.36%,
75.88%)window. By contrast, SQIp showed the lowest accuracy
across all the window sizes. SQIhos showed second and third
best accuracy and their performances are consistent across all
the window sizes that can be seen from figure 5 and table 6.

The accuracy of SQIsnr, SQIkur and SQIhos are close to
each other as depicted in figure 5b. Therefore, it is difficult
to interpret the best SSQIs for different window sizes. The
IQR-mean boxplot, which is shown in figure 5a, is one of
the ways to select the best SSQI by assessing the variability
for mean, maximum and minimum accuracy in the boxplot.
Among all the SSQIs, SQIsnr is better due to the maximum
accuracy and prominent mean value compared to SQIkur
and SQIhos. Figure 5b shows that the SQIsnr holds the
highest average accuracy. In terms of individual accuracy,
SQIsnr is also higher than SQIkur. As a result, the SQIsnr is
optimum among all the SSQIs. However, SQIp shows the
lowest accuracy (61.38%) among all the SSQIs. The SQIkur
achieved the highest average accuracy, which is 75.16% for
the 1 s window. In the case of specificity (Sp), the SQIkur is
better than other SSQIs at 39.68%. However, this result is
not promising due to poor detection of TN and high FP
detection. In a clinical case, FP is to be avoided. Hence, it
requires further analysis of SSQIs to increase the specificity
(Sp), which is important for clinical analysis.
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5. Discussion
The adoption of wearable sensors in clinical settings are lim-
ited mostly due to the lack of reliability of those sensors in
capturing the signal without artefacts. Although most of the
wearable sensors continuously record the signal, they are
unable to label the noisy or noise-free section that can be
used by decision-making systems. Oneway to add this feature
in the wearable devices is building automatic methods for
detecting noise in the signal. Most of the previous studies,
investigated SSQIs for a single window size (mostly 10 s)
and validated using a limited sets of labelled segments
[48,58–60]. As a result, the applicability of these indices,
especially the use of single threshold, across a wide range of
ECG datsets is yet to be explored. Therefore, in this study,
we have comprehensively investigated the performance and
limitations of these well-defined statistical approaches for
noise detection in ECG signals. We empirically evaluated
existing SSQIs with respect to varying segment length and
diverse datasets. The major findings of this study are

(i) Most of the SSQI algorithms show very high accuracy
across varying window sizes; however, their specificity
values are very low;

(ii) The performance of SSQIs are more difficult to gener-
alize over datasets than the window size.

5.1. Effect of dataset diversity on statistical signal
quality indices

The effect of dataset diversity on SSQIs is one of the major
concerns for selecting the optimal one for any given appli-
cation. Performance analysis on large-scale experimental
datasets is the proper way to generalize the capacity of
SSQIs. Data collected through different experimental set-
ups better represents the dataset diversity, which primarily
includes one or more of the following: (a) number of chan-
nels; (b) location of electrodes; and (c) sampling frequency.
Therefore, selection of a large number of datasets is better
than using a longer recording length from a single dataset
to select the best performing SQI.

Table 2 outlines the dataset and dataset size used by
this study and popular related studies in the literature.
From table 2, it is clear that this study uses the largest
range of datasets for analysing performance of SSQIs com-
pared to previous studies. Therefore, we believe that the
outcome of this study is more reliable and dependable than
the existing studies.

In this study, we generalized the impact of dataset diver-
sity on four SSQIs: SQIkur, SQIp, SQIsnr and SQIhos. From
figure 4 see that SQIp has the lowest accuracy across all the
datasets. One of the reasons behind this lowest performance
is the dependency of SQIp measure on the frequency range
(0–15Hz). For capturing power of the very low-frequency
components (<1 Hz), a longer window size is usually
required. Therefore, in contrast to other SSQIs, SQIp is
biased towards capturing noise and as a result, the sensitivity
is low. Since the dataset is biased (skewed towards noise-free
segments), this has directly affected the accuracy of SQIp.
Based on these results, we can conclude that SQIp is mostly
unsuitable for noise detection using short-length windows.
SQIp may not perform well for pathological ECG signals,
since their frequency responses are different from normal
and may affect the power distribution in 0–15Hz.

SQIkur and SQIhos exhibit better generalization capability
across all the datasets. However, SQIkur and SQIhos give
very high index values in the presence of high-frequency
noise. As a result, ECG signals with high-frequency noise
are classified as clean signals, which decrease the specificity
of these SSQIs (table 5). The specificity needs to be improved
for clinical decision-making and therefore, further research is
necessary to overcome this issue.

The most surprising result is shown by SQIsnr, where the
performance varies significantly with varying datasets.
SQIsnr has shown the highest accuracy among all studied
SSQIs for MIT/BIH arrhythmia; however, accuracy drops to
a very low value for the Tele ECG dataset. One of the reasons
is that the measurement bias of SQIsnr towards noise-free sig-
nals. The ratio of noise-free and noisy epochs is very high for
MIT/BIH arrythmia and very low for Tele ECG as shown in
table 3. We have also observed that SQIsnr is very vulnerable
to noise. As a result, it showed relatively better performance
for ECG-ID though the ratio of noise-free and noisy epoch is
very low.

From the observed performances of SSQIs on different
datasets, we can conclude that there is no single SQI index
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that works or shows generalization capacity across varying
datasets. In addition, despite showing high accuracy, all
these indices resulted in very low specificity, which indicates
that they are not suitable for embedding in clinical decision-
making systems. The inherent limitation of these methods
can be defined as the use of static threshold value for filtering
noise-free signal from the noisy signal. Therefore, further
investigation is necessary to address the limitations such as
measurement bias and static threshold.

5.2. Effect of window size on statistical signal quality
indices

As observed in this study, the performance of SSQIs is less
dependent on the window size than the variation of dataset
as shown in figure 5a,b. SQIp is found to be more sensitive
towards the window size, however that is only visually dis-
tinguishable for one second window size. As described in
§5.1, the dependency on the frequency range may affect the
performance of SQIp for the small size window (figure 5b).
SQIkur, SQIhos and SQIsnr have a constant accuracy rate
across all window sizes as illustrated in figure 5b. However,
the specificity of all SSQIs decreases consistently with
increasing window size. One reason for this can be partial
presence of noise in the whole segment of signal rather
than a completely noisy signal. Therefore, it is better to use
a small window size rather than a larger one. The high varia-
bility of SQIsnr and SQIp represents the effect of dataset rather
than window size.

This study explains the limitation of existing threshold-
based SSQIs for diverse datasets and window sizes. The
reasons for selecting these SSQIs are low computational
cost, which makes them energy-saving indices and easy to
deploy in resource-constrained devices. However, it is essen-
tial to generalize the SSQIs threshold values so that they can
be applied to diverse datasets. Our finding suggested that an
adaptive threshold or machine-learning model should be
used to eliminate this threshold limitation. However, while
developing an alternative solution, computational cost and
deployability in the resource-constrained device should be
considered.
6. Future directions
In this section, we provide details of future directions related
to SQIs.

6.1. Improving the performance of classification
mechanisms

6.1.1. Generalized threshold
Instead of using small ECG datasets for determining a
threshold value, larger datasets should be used to find gener-
alized threshold values that should able to separate noise and
noise-free ECG segments.

6.1.2. Classical machine-learning approaches
Classical machine-learning approaches can be used for learn-
ing the nature of noise in ECG signals and automatically
recognize noisy segments from the training model.
Machine-learning models depend on the signal feature
instead of amplitude threshold value. Therefore, in the
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machine-learning model, we can eradicate the noise separ-
ation threshold in the ECG signals.
oyalsocietypublishing.org/jo
6.1.3. Deep learning model
Another possible solution for identify noise in ECG signals is
to use deep learning models where noisy and noise-free seg-
ments are learnt from raw segments instead of signal
features. Therefore, there is no need to rely on features such
as linear and nonlinear features.
urnal/rsif
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6.1.4. Developing adaptive threshold values
The performance of SSQIs is clearly dependent on the selec-
tion of thresholds values. From our simulations, we found
that one fixed threshold value is not ideally suited to all the
ECG datasets. Therefore, ECG signal feature-dependent
threshold values should be assigned dynamically.
ace
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6.2. Development of application specific
electrocardiogram signal classification models

6.2.1. Deploy model in the real-time device
Off-line and on-line model testing are important to verify
model performance for noisy and noise-free ECG segment
detection. Real-time noise detection in ECG signals is a
very challenging task.
6.2.2. Development of flexible noise detection algorithms
There is a trade-off between computational complexity and
accuracy of noise detection algorithms used. Flexible, noise
detection algorithms should be developed that depend on
the requirements of the applications, it should be possible
to achieve higher computational efficiency or accuracy.
6.3. Development of noise adaptive electrocardiogram
signal classification algorithms

6.3.1. Formally defining noisy electrocardiogram signals
As mentioned previously, ECG signals contain vital infor-
mation related to the condition of the heart. Therefore, with
the help of healthcare professionals, a formal definition of
ECG noise should be developed. This will assist in develop-
ing efficient and automated mechanisms to detect noise in
the ECG signals.
6.3.2. Finding the relationship between electrocardiogram signals
and performance of statistical signal quality indices

From our work, we found out that performance of SSQIs
varies significantly across different datasets. Future work is
necessary to find out the relationship between the ECG
signals features (such as frequency content) and SSQIs.
7. Conclusion
Automated signal quality assessment is one of the key com-
ponents for developing wearable or remote monitoring
solutions. Wearable devices are very prone to noise, and it
is important to detect the noisy signal appropriately, so that
unnecessary transmissions and further processing are
reduced. Another importance of SSQIs is to ensure the qual-
ity of the signal before use by a decision-making system, since
accuracy of such a system depends on signal quality. This
study explores the robustness of commonly used SSQIs. To
evaluate the performance of SSQIs, we annotated the dataset
using knowledge from existing studies by considering their
pathological features such as P, Q, R, S and T peak values,
which is mentioned in the dataset labelling section. We pre-
formed extensive simulations to asses the robustness of
SSQIs for varying window sizes across different datasets.
We have found that, while the performance is highly sensitive
to different datasets, the window sizes have minimal affect on
performance. We strongly believe that these suggestions will
assist current and future researchers. Although this study
highlights only the robustness of automated signal quality
assessment methods, computational cost and energy con-
sumption are also key parameters for developing an
efficient method for wearable devices. Thus, those aspects
should be considered while proposing an alternative
method for signal quality assessment in wearable devices.
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