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Correcting for intra-experiment variation in
Illumina BeadChip data is necessary to
generate robust gene-expression profiles
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Abstract

Background: Microarray technology is a popular means of producing whole genome transcriptional profiles,
however high cost and scarcity of mRNA has led many studies to be conducted based on the analysis of single
samples. We exploit the design of the Illumina platform, specifically multiple arrays on each chip, to evaluate intra-
experiment technical variation using repeated hybridisations of universal human reference RNA (UHRR) and
duplicate hybridisations of primary breast tumour samples from a clinical study.

Results: A clear batch-specific bias was detected in the measured expressions of both the UHRR and clinical
samples. This bias was found to persist following standard microarray normalisation techniques. However, when
mean-centering or empirical Bayes batch-correction methods (ComBat) were applied to the data, inter-batch
variation in the UHRR and clinical samples were greatly reduced. Correlation between replicate UHRR samples
improved by two orders of magnitude following batch-correction using ComBat (ranging from 0.9833-0.9991 to
0.9997-0.9999) and increased the consistency of the gene-lists from the duplicate clinical samples, from 11.6% in
quantile normalised data to 66.4% in batch-corrected data. The use of UHRR as an inter-batch calibrator provided
a small additional benefit when used in conjunction with ComBat, further increasing the agreement between the
two gene-lists, up to 74.1%.

Conclusion: In the interests of practicalities and cost, these results suggest that single samples can generate
reliable data, but only after careful compensation for technical bias in the experiment. We recommend that
investigators appreciate the propensity for such variation in the design stages of a microarray experiment and that
the use of suitable correction methods become routine during the statistical analysis of the data.

Background
DNA microarray technology has rapidly seduced scien-
tists and clinicians with the ability to simultaneously
measure the expression of tens of thousands of tran-
scripts, enabling data-driven, holistic comparisons of
groups or populations of cells, subtyping tissues, or pre-
dicting prognosis [1,2]. However, as with any method,
sound experimental design is essential to generate
robust results from microarray experiments, particularly
given the issues of high dimensionality [3]. Sufficient

care must be taken to identify and correct for sources of
experimental bias alongside a cautious interpretation of
the importance of reported differentially expressed
genes [4].
Efforts to promote the routine formalisation and con-

trol of all stages of the experimental workflow have seen
success and are increasingly promoted by journals and
microarray data repositories [4]. More recent work sug-
gests the need for the inclusion of more detailed infor-
mation concerning the statistical treatment of data in
order for results to be independently validated post-pub-
lication [5,6]. Such standardisation is essential to
researchers wishing to re-analyse published data or
combine multiple datasets in a meta-analysis. However
the utility of these standards to the individual researcher
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gathering, analysing, and interpreting the data in the
first instance is largely overlooked.
Despite all efforts towards standardisation, it is still

not possible to account for all potential sources of varia-
tion in the experiment workflow; identical experiments
performed at different sites have produced significantly
different results [7-9]. Inconsistencies between results
generated using different microarray platforms [8,10,11]
or generations of array [12,13] have been highlighted
and multiplicative, systematic biases have been shown to
be introduced at many stages of the experimental pro-
cess, even when using a single array platform [12].
The common practice of hybridising samples with no

technical replication (i.e. one replicate of each sample
per experiment) is a result of the relatively high cost of
arrays, the perceived improvement in array manufactur-
ing quality, and the difficulties of obtaining sufficient
amounts of high quality mRNA from some clinical sam-
ples. This practice is fundamentally reliant on the
assumption that the intra-experiment variability is of a
small enough magnitude not to undermine the power of
the assay to resolve interesting biological differences
that may exist between predefined groups of samples.
There is, however, mounting evidence [8,12,14-18] to
suggest that this assumption may be flawed and that the
technical variation between replicate samples should not
be ignored.
A large amount of effort has been expended in asses-

sing the reliability, reproducibility, and compatibility of
results generated by a number of array platforms within
and between laboratory sites. The microarray quality
control (MAQC) project, a US Food and Drug Adminis-
tration initiative [8], explored that the intra- and inter-
platform consistency of microarrays using two reference
RNA samples (a universal human reference RNA
(UHRR) from Stratagene comprised of high-quality
RNA from a mixture of 10 different human cell-lines
(including breast) and a human brain reference RNA
from Ambion) and primary samples processed on six
microarray platforms at three different sites. The results
of the MAQC and other studies highlight the fact that,
despite the generally good consensus between results,
data generated from different platforms, in different
laboratories, by different investigators can be negatively
affected by dataset-wide batch variation in the reported
expression levels [8,10,19]. Several methods that can
remove these batch differences have been proposed,
tested, and evaluated. Batch effects have been shown to
be minimised with correction methods such as, singular
value decomposition [20], distance weighted discrimina-
tion [10], mean-centring [12], and ComBat [21].
It is slowly becoming accepted that batch effects are to

be expected when combining data generated across dif-
ferent labs, by different researchers, or using different

platforms [8,10-13]. There is a strong motivation to
integrate multiple studies for meta-analyses that have
increased statistical power afforded by larger sample-
sizes, which can help to overcome basic limitations such
as the inherent heterogeneity between biological sub-
jects. Combined datasets can swell to include thousands
of tumours and have been shown to lead to improved
results and consensus findings [12,22-26].
Some researchers are now aware of bias arising due to

analysis of samples at different sites or the use of differ-
ent microarray platforms. The MAQC project [8], for
example, was a multi-site and multi-platform compari-
son study, while others deal exclusively with the integra-
tion of data generated at geographically distributed
locations. This study, to the best of our knowledge, is
the first to assess the propensity for introduction of
batch-processing effects at the same site and using the
same protocol, making use of the multi-array Illumina
BeadChip platform. We go further than the MAQC
study by analysing both a commercial reference RNA
and primary clinical material. This approach enabled us
to demonstrate that it is possible to generate robust and
reliable results, without the need for technical replica-
tion of starting RNA, but only when batch-processing
effects are identified and suitably minimised. In this
study we demonstrate compelling evidence for the exis-
tence of confounding batch-processing effects within a
single experiment, using RNA prepared in the same
laboratory, arrays hybridised and scanned at a single
site, using a single protocol, and quantified on a single
platform.
We investigated intra-experiment batch-processing

variability on the Illumina BeadChip [27] platform, as
multiple arrays on each chip allow an investigation of
intra- and inter-run variation. This was achieved
through the hybridisation of a sample of UHRR to a sin-
gle array on each chip along with duplicate preparations
of cRNA from fresh frozen breast tumour samples that
formed part of a recent clinical study (Sabine VS, Sims
AH, Macaskill EJ, Renshaw L, Thomas JS, Dixon JM,
Bartlett JMS: Gene Expression Profiling of Response to
mTOR Inhibitor Everolimus in Pre-operatively Treated
Post-menopausal Women with Estrogen Receptor-Posi-
tive Breast Cancer, Submitted). Intra-experiment varia-
tion is common in other assays, such as quantitative
RT-PCR (qPCR), where technical replicates and inter-
plate calibrators are used to increase statistical
resolution.

Results
Data quality
A qualitative measure of the performance of the Bead-
Chips used in this study is provided by a measurement
of the fraction of probes that are consistently called to
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be detected or undetected over all arrays. Analysis of
detection consistency in the UHRR data in this study
was comparable with the MAQC results [8] with 60-
70% probes consistently called all-detected, and 80-90%
genes consistently called as either all-detected or all-
undetected, across all arrays in each run (data not
shown). The coefficient of variation (CV) between and
within the runs of the experiment was also consistent
with the findings of the MAQC study, with a mean CV
in quantile normalised data of around 7.5% (see Addi-
tional File 1). The Illumina arrays used throughout the
MAQC study were the Human-6 (48K v1.0) BeadChips,
which differ from the Human-8 (24K v2.0) BeadChips
used in this study in terms of the number of features
represented. The Human-6 (v1.0) chips contain twice
the number of probesets available on Human-8 (v2.0),
however a large percentage of these additional probesets
have been found to be unreliable [28] and are all con-
tained within a completely separate strip on the chip
leading to normalisation issues [15]. The high level of
agreement in the observed CV and detection calls sug-
gest any differences between the array versions at the
probe-level are small.

Inter- and intra-run variation of the replicate
UHRR samples
A clear batch-specific effect was observed in the raw
data when the correlations of identical UHRR samples
were assessed over all available pairs across the five runs
processed on different days as illustrated in Figure 1.
Generally, the level of correlation was high (>97%), how-
ever several clusters of samples were observed that cor-
responded to the batch in which the arrays were
processed. In particular the samples in run 2 appeared
to be very tightly correlated with each other but poorly
correlated with samples in run 4 (Figure 2A). Quantile
normalisation was found to have only a marginal
improvement in the overall correlation of the samples
and anomalies, such as that between runs 2 and 4, were
conserved (Figure 2B). Only on application of specialised
batch-correction methods, such as mean-centring (Fig-
ure 2C) and ComBat [21] (Figure 2D), were these run-
specific disparities shown to be substantially reduced.
The correlations (calculated using Pearson’s rank-pro-
duct) for quantile normalised data ranged from 0.9833-
0.9991, whereas following a ComBat correction this was
increased to 0.9997-0.9999.
The probe-wise standard deviations of the raw expres-

sions were found to be consistently small across the
UHRR arrays (mean = 0.28). Using the nested analysis
of variance described in methods, 60% (mean value) of
the variability was due to that between runs and less
than 40% to that within each run. The magnitude of the
variation was marginally increased by detection-filtering

(mean = 0.31), which would be expected due to the pre-
ferential filtering of probes with low signal. The applica-
tion of quantile normalisation had a positive effect,
decreasing the standard deviation to half that of the raw
data. However both after detection filtering and quantile
normalisation the relative contributions of the inter-
and intra-run components to the total standard devia-
tion remained approximately unchanged. Of a selection
of other normalisation methods, loess, and cubic-spline
performed similarly to quantile and all of these methods
out-performed simple median normalisation (Supple-
mentary File 1). In all cases a further correction step is
required after normalisation to correct for the batch
effect.
Both mean-centring and ComBat reduced inter-

run variation to such an extent that it could no longer
be accurately detected by the nested-Anova method
(Figure 3). The only observable difference between the
two methods was that the ComBat corrected data also
showed a slight reduction in the intra-run component of
variation (Figure 3). The sequence in which the data
were quantile-normalised and batch-corrected appeared
to produce only marginal differences in the resulting
variance components; as a result, all remaining correc-
tions using mean-centring and ComBat were performed
after quantile normalisation for consistency and to com-
ply with the statistical assumptions of the latter [16].
The differences in measured expression between all

combinations of pairs of UHRR samples that straddled
the five runs (128 pairs) were calculated for raw, quan-
tile-normalised, mean-centred, and ComBat corrected
data (Figure 4A). The distribution of differences in the
raw data did not resemble the expected form of a gaus-
sian centred at the origin; instead it was skewed towards
the positive (mean = 0.199). This was largely corrected
after quantile normalisation and subsequent application
of mean-centring and ComBat further narrowed the
distribution reflecting the previously observed improve-
ment in correlation. Similar improvements were
observed in the differences between samples that were
processed in the same run (25 pairs, Figure 4B). A full
illustration of the intra-run pairwise differences can be
found in Additional File 2.

Duplicate clinical breast-tumour samples
The sixty-three duplicate clinical samples provided a
means to assess inter- and intra-run variation using
samples more representative of those commonly ana-
lysed using microarray technology. The differences in
the measured expressions between each of the dupli-
cate pairs of the clinical samples that straddled the five
runs (56 pairs) were calculated for raw, quantile-nor-
malised, mean-centred, and ComBat corrected data
(Figure 4C). As with the UHRR samples, moderate
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differences were observed between the raw expressions
of duplicate hybridisations and quantile normalisation
was found to reduce, but not eliminate, the differences
between the duplicate samples. The distributions are
similar to UHRR samples, although the raw data
showed a clear positive skew that was again succes-
sively improved following quantile-normalisation,
mean-centring, and ComBat, respectively. For comple-
teness, intra-run distribution of differences between the
duplicate samples was assessed for the seven pairs of
samples in run five (Figure 4D).

Pearson rank-products were calculated to assess the
correlation between the duplicate samples. As with the
UHRR the clinical samples were generally very highly
correlated (>98%), although the samples on BeadChips
13/15 and 14/16 were found to be less similar than the
others (Figure 5); this is consistent with the effect
observed in run 4 using the UHRR. Batch correction by
either mean-centring or ComBat increased the correla-
tion for all samples except for two arrays on BeadChips
1/3 in the first run and all arrays on BeadChips 17/18 in
the final run.

Figure 1 Layout of samples on the Illumina BeadChips and flowchart of the analysis approach. A, Illustration of the positions of samples
on the 18 BeadChips, processed in five batches (also referred to as ‘runs’) corresponding to the five different days on which the samples were
hybridised and scanned. UHRR samples are labelled as C1-18. Duplicate breast tumour clinical samples are labelled a and b. The pre- and post-
treatment biopsy samples are identified by a triangle to the left and right of the sample IDs, respectively. B, Flowchart of analysis methods
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Comparing duplicate tumour samples as a repeated
dataset to assess reproducibility of gene-lists
Of the 63 duplicate, paired clinical samples obtained
from matched-biopsies before and after treatment with
the mTOR inhibitor RAD001, 42 were of sufficient qual-
ity to be used in an analysis to reveal differentially
expressed genes (Sabine VS, Sims AH, Macaskill EJ,
Renshaw L, Thomas JS, Dixon JM, Bartlett JMS: Gene

Expression Profiling of Response to mTOR Inhibitor
Everolimus in Pre-operatively Treated Post-menopausal
Women with Estrogen Receptor-Positive Breast Cancer,
Submitted). Using these samples we further assessed the
impact of the intra-experiment variation in terms of the
differences between lists of differentially expressed genes
reported by each half of the duplicate samples. The
hybridisation plan for the 21 pairs of pre- and

Figure 2 Intra and inter-run variation in UHRR samples: Pearson-correlations. Pairwise UHRR Pearson-correlation heatmaps highlight the
batch differences, particularly between run 2 and run 4. Red cells correspond to ~97% correlation and white to 100% correlation. Batches and
sample numbers are consistent with the colouring and labelling in Figure 1. All data were detection filtered, as described in methods. A = raw
data; B = normalised; C = quantile normalised, plus mean-centring; D = quantile normalised, plus ComBat.

Kitchen et al. BMC Genomics 2010, 11:134
http://www.biomedcentral.com/1471-2164/11/134

Page 5 of 14



Figure 3 Intra and inter-run variation in UHRR samples: Nested-ANOVA. The results of a nested-ANOVA, quantifying the probe-wise
components of variation corresponding to the within (blue) and between (green) batch variance. The model and calculation used are as
described in methods. Effects on these standard deviations after detection-filtering (DF), quantile-normalisation (QN), mean-centring (MC), and
ComBat (CB) are shown.
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post-treatment samples in each duplicate-group is illu-
strated in Figure 1; in the figure, triangles to the left of
the sample represent pre-treatment samples and triangles
to the right represent post-treatment samples. The first
hybridisation of each duplicate sample is represented by
a trailing ‘a’ and the second represented by a trailing ‘b’.
The ‘A’ and ‘B’ duplicate sample groups, containing

the ‘a’ and ‘b’ hybridisations of each sample, respectively,

were considered as two completely independent datasets
(as they were processed on completely separate
BeadChips) in order to assess the extent to which run-
specific processing bias can influence the identification
of differentially expressed genes. These datasets were
independently filtered by detection calls, quantile-
normalised, and, where stated, batch corrected by
mean-centering or ComBat before generating lists of

Figure 4 Distribution of the differences between replicate pairs of intra- and inter run intensity measurements. All possible
combinations of differences between replicate pairs of UHRR controls and clinical samples were compared across the five runs. Axis labels
represent the difference between duplicate samples (δ) on the x-axis, against frequency (ν) on the y-axis. Values on the left of each distribution
represent the standard deviation and values on the right represent the mean of the measured differences. The four columns illustrate the effect
of normalisation or batch correction on these differences. The four rows of plots illustrate both inter- and intra-run differences for both UHRR
and tumour samples; row ‘A’ contains inter-run differences calculated between the 128 pairs of UHRR samples; row ‘B’ corresponds to intra-run
differences between the 25 pairs of UHRR; row ‘C’ is the inter-run differences in the 56 pairs of tumour samples; and row ‘D’ contains data for
the intra-run differences in 7 pairs of tumour samples in Run 5.
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differentially expressed genes. Two BioConductor
packages, limma and siggenes, were used to perform the
statistical analyses (see methods).
Using the same stringency in the assessment of differ-

ential expression (fold-change ±1.5, adjusted p-value of
0.01) and using quantile normalised data, many more
probes were found to be differentially expressed between
pre- and post-treatment samples in sample group A
(192) than in group B (30). Following batch correction
with ComBat the number of differentially expressed

genes identified in the two groups was more consistent
(260 and 211) and the overlap, in terms of probes
reported in both groups, increased from just 11.6% to
66.4%, however the use of mean-centred data only
increased the overlap marginally to 15.2% (Table 1,
Figure 6, and Additional Files 3 and 4).
Similar results were seen with less stringent criteria

(fold-change ±1.2), which consequently led to larger
numbers of probes, but similar proportions of overlap-
ping probes were reported (data not shown). The

Figure 5 Intra and Inter-run comparisons of clinical duplicates. Mean Pearson-correlations between replicate pairs of tumour samples
(A and B) on different chips and runs. Colours denote the four different data types; raw, quantile normalised (QN), quantile normalised then
mean centred (QN+MC), and quantile normalised then ComBat corrected (QN+CB). Expressions were generally highly correlated except in the
chips straddling runs 4 and 5. ComBat is able to correct for a significant amount of this difference. Error bars represent the standard error.
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analysis was repeated using significance analysis
of microarrays (SAM) at a predicted false discovery rate
of 5% and generated very similar results to those
obtained using limma, increasing the overlap between
groups of samples from just 13.4% in quantile-normalised
data to 66.6% following ComBat batch-correction. See
Table 1 for a full summary of these results. The heatmaps
in Figure 6 (and Additional File 4) also highlight how all
the pairs of duplicate samples cluster together following
ComBat correction and the clustering is far less affected
by processing runs. The dependency between the choice
of ComBat, mean-centring, or quantile normalisation on
the number of genes identified as differentially expressed
in each replicate group was very strong in both the
limma and SAM analyses (c2(2) p-value << 0.001).
In addition to these independent analyses, the A and B

groups were combined to create a third group of sam-
ples, ‘C’. This group was analysed for differential expres-
sion in the same way and the results summarised in
terms of the number of genes reported in any one, or
any combination, of the three lists. The percentage of
genes consistently reported by limma as differentially
expressed in all three groups after ComBat correction
was 41.3% compared to 11.2% after quantile normalisa-
tion alone and 12.0% after mean-centering (Additional
File 3). The percentage of genes identified in the pooled
group C compared with those consistently reported in
all three groups increased from 44.2% after quantile nor-
malisation to 90.1% after ComBat. Again, very similar
results were observed using SAM (Additional File 3).
These analyses were repeated using the UHRR as

inter-batch calibrator, designating it as a covariate in
both the mean-centring and ComBat corrections. The
inclusion of UHRR during quantile normalisation

produced only a small difference in the number of dif-
ferentially expressed genes identified in each of the
three sample groups. However, the inclusion of the
UHRR as a covariate in the mean-centring and ComBat
corrections gave very different results. In both methods
there was a large reduction in the total number of genes
reported in each list, in terms of the consensus between
the A and B groups, the agreement dropped to 7.5% fol-
lowing mean-centring, but increased to 74.1% after cor-
rection by ComBat (Table 1 and Additional File 3). The
dependency between choice of batch correction method
and number of genes reported in either replicate group
was stronger when UHRR was included in the correc-
tion in both the limma and SAM analyses (c2(2) p-value
<<< 0.001).

Discussion
Batch-processing effects in microarray experiments are
commonly encountered when combining datasets from
different studies, different labs, or different technologies.
In this study we have demonstrated that batch effects
can arise within a single study, at a single lab, using a
single technology and that these can have a significant
impact on reported gene-lists.
The magnitude of the variation in the observed expres-

sion of replicate samples derived from the UHRR in this
study is consistent with that reported in other studies
assessing the quality of microarray data, such as the
MAQC [8]. We have also shown that the correlation of
replicate UHRR samples is similar to that between dupli-
cate pairs of samples derived from clinical breast-tissue
biopsies and that this correlation is generally high. How-
ever, when duplicate groups of clinical samples were inde-
pendently analysed to identify differentially expressed
genes the consistency of the resulting gene-lists was found
to be very poor. The predicted false discovery rate of 5%
using SAM was far lower than the observed proportion of
genes that failed to be consistently reported over the repli-
cate analyses (~87% after quantile normalisation, ~30%
after ComBat correction). Whilst these two values are not
directly equivalent, our results suggest that the predicted
FDR may imply greater consistency than would be mea-
sured if duplicate samples are available. Specialised correc-
tions for run-bias were more successful in reducing the
magnitude of variability attributed to the inter-run batch
effect in both UHRR and clinical samples. The reliability
of results generated from the duplicate clinical samples
was also greatly increased following batch-correction with
a much greater proportion of genes consistently reported
as differentially expressed in both sets of samples.

Use of single samples
There are many stages of sample-processing prior to
conducting any gene-expression experiment and each is

Table 1 Summary of comparing the duplicate tumour
samples as a repeated dataset (A and B) to assess the
reproducibility of gene-lists

A B A & B overlap consensus (%)

Limma QN 192 30 23 11.6

MC 225 222 59 15.2

CB 260 211 188 66.4

SAM QN 214 40 30 13.4

MC 240 238 65 15.7

CB 265 218 193 66.6

Limma + UHRR QN 205 31 24 11.3

MC 8 92 7 7.5

CB 144 119 112 74.2

SAM + UHRR QN 224 42 32 13.7

MC 17 100 12 11.4

CB 149 125 117 74.5

Differentially expressed genes were identified using Limma and SAM as
described in the text with quantile-normalisation (QN), mean-centring (MC),
and ComBat (CB). The UHRR was used as an inter-batch calibrator.
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Figure 6 Differentially expressed genes with duplicates treated as separate datasets. Heatmaps of genes found to be differentially
expressed in each of the A and B replicate datasets of samples and the overlap after quantile normalisation (top) and ComBat batch-correction
(bottom). The batch in which each sample was present is denoted by bar beneath the dendrogram, in which the run-colours are consistent
with those in Figure 1, and the sample-type is illustrated by the blue bar (light = post-treatment, dark = pre-treatment). The numbers of probes
differentially expressed in both A and B (’A&B’) or ‘A’ only and ‘B’ only are shown in brackets. Sample clustering (by complete linkage) in each
heatmap was determined by only those probes in the ‘A&B’ group.
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vulnerable to the introduction of systematic processing
errors [12]. Opportunities to quantify this variation,
prior to the microarray data analysis itself, are extremely
limited and generally the only available option is an
assessment of RNA quality. Other methods of quantify-
ing gene expression, that are equally susceptible to the
introduction of processing error, rely on the use of tech-
nical replicates to minimise confounding variation and
maximise statistical resolution to the biological pro-
cesses under investigation [29]. In this respect the rou-
tine practice of analysing each expression array sample
as a singleton, regardless of the amount of RNA loaded,
is an unusual scientific approach. Whilst BeadChip tech-
nology has a degree of built-in replication (approxi-
mately 30 randomly positioned beads, to which are
attached ~700,000 identical copies of a gene-specific
probe [27]), this is no substitute for biological replicates,
especially when a large degree of the observed error can
be attributed to noise at the sample level, rather than at
the probe level.
In the context of primary breast tumour samples,

which have been repeatedly shown to have highly het-
erogeneous mRNA expression profiles, there is much
greater variation between the RNA profiles from differ-
ent individuals than within tumours [30]; either when
comparing different tumour sections, biopsies and the
tumour or FFPE and frozen [31], which effectively char-
acterises the ‘intrinsic profile’ of subtype classification.
On this basis and the grounds of cost and scarcity of
primary material it could be argued that replicates are
unnecessary. However a lack of replicates limits the
investigator in terms of their ability to assess whether
the observed variation is of biological or technical origin
and the extent to which it influences the resulting gene-
lists. In this respect both biological and technical repli-
cates are desirable to allow generated data to be
screened for bias and batch-correction applied where
appropriate. This is particularly important in the clinical
setting if samples for large trials are processed in multi-
ple labs.
Using the duplicate-experiment approach we were

able to demonstrate that single samples can generate
reliable data, particularly when batch correction is per-
formed to minimise processing bias. However the genes
reported to be differentially expressed in the pooled
duplicate samples in group C were more robust in
terms of their agreement with those identified in groups
A and B, especially following batch-correction.

Use of UHRR controls
In addition to the technical replicates commonly used
in other assays, in cases where the execution of the
assay is split into several runs, it is very common for
an inter-run calibrator to be used to quantify the

variation introduced by the splitting of the experiment
and to normalise for it. Despite the UHRR samples
used in this study showing very similar variation and
correlation to that previously reported, we found that
the samples were of limited utility as predictors of the
batch variation amongst the clinical samples. However
the replicate UHRR samples were found to slightly
improve the consensus between the results of the
duplicate experiments when used in conjunction with
the ComBat correction.
Although the UHRR has been reported to be useful as

a standard for microarray experiments and suitable for
monitoring the performance of genome-wide expression
platforms [8,9,32], it has also been reported to not be a
suitable representative as a normal sample for colon
epithelial RNA [32]; similarly, the UHRR does not con-
tain breast tumour RNA (only that from a breast cancer
cell line among a pool). A more reliable control sample
with which to improve the batch-correction might be
provided by an mRNA sample more representative of
that under investigation; in this case, a pool of tumour
RNA rather than the UHRR. We found that the pre-
treatment samples were good predictors of the batch
variation amongst the post-treatment samples and so
would likely make a better control (for normalisation)
than the UHRR.

Experimental design
There is no reason to believe that the batch-processing
effects observed here are limited to the Illumina Bead-
Chip platform. Many previous investigations of other
platforms have postulated potential factors responsible
for the introduction of processing errors in microarray
experiments [12,33-35]. Other experiments at our facil-
ity using the more recent Illumina Human HT-12 and
Mouse Ref 8 BeadChips exhibit similar batch effects to
those in this study; samples are observed to cluster pre-
ferentially with others processed in the same run, rather
than by the biological differences between them, even
after quantile normalisation (data not shown). Specia-
lised batch-corrections appear to remove the bias, how-
ever without replicates such as those described in the
current study, this cannot be fully evaluated.
Regardless of the platform chosen, it is clear that com-

pensation for processing variation is beneficial and can
only be achieved by incorporating the design of the
experiment into the downstream data analyses. If all
pre-treatment samples had been processed in one batch
and all post-treatment samples in a second batch, it
would not be possible to rule out confounding differ-
ences between treatment and batch processing. ‘Real’
differences due to the common variable of interest may
have been partially or completely obscured by the batch
effect. Design oversights of this type are beginning to be
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highlighted [36] and demonstrate the need to record the
batches or processing runs in which data is generated.
Some raw files contain metadata, such as the date in
which they were generated, embedded within them.
Acknowledgement and identification of the propensity
for processing variation can be used to maximise the
efficacy of batch-correction methods through a more
informed design of the hybridisation-plan that includes,
for example, randomisation and/or blocking of samples.
Our results support the notion that analysis of gene

expression data should begin with an evaluation of batch
effects. If the possibility of batch effects has been antici-
pated and confounding factors separated, then it should
be possible to remove the bias to generate more robust
results. As with other studies, ours is limited by the sam-
ples that were used in the evaluation of processing varia-
tion. We would have liked to test the applicability of our
findings in other published datasets, however we were
unable to find comparable datasets that include technical
replicates and details of hybridisation ‘batches’ in the
existing data repositories. In terms of cost and practical-
ities it is understandable why most researchers do not
perform replicates in clinical studies, our results indeed
suggest they may not be necessary; however providing a
hybridisation plan along with the raw data, would make
the processing of data more transparent.

Conclusions
In summary, intra-experiment bias can distort the find-
ings of gene expression studies. Replicate samples were
found to be beneficial in both the identification and
reduction of processing bias and lead to increased con-
sensus in reported gene-lists, especially following spe-
cialised batch-corrections. We conclude that single
samples can generate reliable data, although an appre-
ciation for sources of intra-experiment variation during
the design of the experiment is required to maximise
the efficacy of specialised corrections in order to mini-
mise susceptibility to potentially confounding intra-
experiment batch-effects. Finally, based on the discre-
pancy between the lists of differentially expressed
genes in each group of duplicate tumour samples, the
observed rate of falsely-reported genes was consistently
and significantly larger than that predicted by SAM.
Therefore, based on the results of this study, a healthy
degree of skepticism is advised when interpreting pub-
lished results of microarray experiments that do not
include validation by technical replication or, prefer-
ably, by another technique such as qPCR. In the
absence of large numbers of biological replicates, it is
our opinion that technical replication should be
encouraged in order to provide robust, reliable, and
credible expression-profiles.

Methods
Samples
In order to compare the consistency of gene expression
profiles between and within processing runs a single
sample of Universal Human Reference RNA (UHRR;
Stratagene, Stockport, United Kingdom) was added to
eighteen Illumina HumanRef-8 v2 Expression Bead-
Chips. The remaining seven arrays on each chip were
used to analyse the response to an mTOR inhibitor,
Everolimus, in pre-operatively treated post-menopausal
women with oestrogen receptor-positive breast cancer.
From each extraction 100 ng RNA was amplified and
biotinylated using Illumina® TotalPrep RNA Amplifica-
tion Kit (Ambion) and quantified on a Bioanalyser 2100.
750 ng cRNA per sample was hybridized to Illumina
HumanRef-8 v2 Expression BeadChips (Illumina, Cam-
bridge, United Kingdom) using Whole-Genome Expres-
sion Direct Hybridisation kit (Illumina) and scanned
with a BeadStation 500GX (Illumina). Full details of the
sample biopsies taken at diagnosis and at surgery were
as previously described (Sabine VS, Sims AH, Macaskill
EJ, Renshaw L, Thomas JS, Dixon JM, Bartlett JMS:
Gene Expression Profiling of Response to mTOR Inhibi-
tor Everolimus in Pre-operatively Treated Post-meno-
pausal Women with Estrogen Receptor-Positive Breast
Cancer, Submitted). The duplication of the clinical sam-
ples was performed after labelling and labelled samples
were stored as per the manufacturer’s recommendations.
All raw gene expression files, clinical annotation and R

scripts used to perform the analysis are publicly avail-
able from the caBIG supported Edinburgh Clinical
Research Facility Data Repository https://catissuesuite.
ecmc.ed.ac.uk/caarray/.

Statistical Methods
A summary work flow of the analysis approach is given in
figure 1. Gene expression changes were compared before
and after RAD001 treatment and between responders
and non-responders using Bioconductor [37] algorithms
implemented in the statistical programming language,
R [38]. Illumina probe profile expression data were nor-
malised using quantile normalisation and corrected for
batch processing effects using mean-centring [12]
and ComBat [21]. Unless otherwise stated, the UHRR
and breast tumour samples were normalised separately
and the UHRR samples were not included as a covariate
in the mean-centring or ComBat corrections. Genes dif-
ferentially expressed between pre- and post-treatment
samples were identified using limma [39] and SAM [40].
For the analysis using the limma package, genes were
defined as being differentially expressed after satisfying a
minimum fold-change of ±1.5 and a maximum, Benja-
mini-Hochberg adjusted, p-value of 0.01. For the SAM
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analysis (using the siggenes package), the differentially
expressed genes were selected at a maximum predicted
false discovery rate of 5% and the same minimum fold-
change of ±1.5. Paired statistical tests were performed in
both the limma and the SAM analyses. Hierarchical cluster-
ing of samples and probes for the creation of all heatmaps
was performed using complete linkage and similarities
calculated according to the method described in [41].
Data were filtered, where specified, using the detection

confidence reported by Illumina’s BeadStudio software-
determined for each bead based on the expressions of
internal control probes, local background intensity, and
the uniformity of the reported intensity of the bead. The
filtering was performed prior to normalisation such that
probes with a detection confidence less than or equal to
80% in more than 25% of the samples were removed
from further analysis.
We applied a linear additive model to UHRR expression

data on the log-scale to estimate the inter- and intra-batch
variance contributions. These contributions are assumed
to be independent and randomly drawn from log-normal
distributions. As all factors meet in unique combinations a
nested, or hierarchical, variance model is individually
applied for each gene such that the model of the measured
expression, Xij, of each probe is defined as

X Aij i      ij i b  j n( , , ; , , )1 1 

where μ is the geometric-mean expression of the gene
from the UHRR population, Ai is the random effect attrib-
uted to the ith batch, and εij is the random measurement
error attributed to the jth array in the ith batch. Finally, b is
the total number of batches and n the number of replicate
samples in the corresponding batch. The variance of any
given observation, Xij, is s2

A + s2; these components
represent the inter-batch and intra-batch variance respec-
tively. The estimation of s2A and s2 is performed indepen-
dently for each gene as stated in [42].

Additional file 1: Coefficient of variation amongst replicate UHRR
samples. Two box and whiskers plots of the coefficient of variation (CV)
of the replicate UHRR samples. The first plot (A) shows the experiment-
wide CV of the UHRR samples. The left-most of the four main sections
shows the CV of the raw (detection filtered) data, to the right of this is
the CV after four popular normalisation algorithms; quantile, loess, cubic-
spline (qspline), and median. The final two segments show the CV after
batch-correcting each normalised dataset using either mean-centring or
ComBat. In the second plot (B), from the left, the first four segments
contain five box-plots illustrating the CV within each of the five runs; the
four segments containing raw (white), quantile-normalised (dark-blue),
mean-centred (lighter-blue), and ComBat-corrected (pale-blue) data
respectively. All data were detection-filtered prior to analysis. The right-
most segment shows the experiment-wide CV of the UHRR (coloured as
the previous segments) calculated with no consideration of the
individual runs.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-
134-S1.PDF ]

Additional file 2: UHRR inter-run pairwise differences. Pairwise
differences between each of the five runs calculated using UHRR samples
for raw, quantile-normalised, mean-centred, and ComBat-corrected data.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-
134-S2.JPEG ]

Additional file 3: Number of differentially expressed genes
identified in replicate analyses. Numbers of genes reported to be
differentially expressed after standard analysis (quantile normalisation)
(left), after a standard analysis with mean-centring (middle), and after a
standard analysis augmented with the ComBat batch correction (right).
A and B refer to the results from independent analyses of the duplicate
sample groups while C refers to the results from the pooled duplicate
samples. The rows of Venn diagrams illustrate the results with (i) limma,
(ii) SAM, (iii) limma using UHRR, and (iv) SAM using UHRR.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-
134-S3.PDF ]

Additional file 4: Heatmaps. Full heatmaps of quantile normalised,
quantile normalised plus mean-centred and quantile normalised plus
ComBat data, including probe and sample annotations.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-
134-S4.PDF ]
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