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Animal Models for Investigating Benign Essential Blepharospasm 

Craig Evinger* 

Depts. of Neurobiology & Behavior and Ophthalmology, Stony Brook University, Stony Brook, NY 11794-5230 

Abstract: The focal dystonia benign essential blepharospasm (BEB) affects as many as 40,000 individuals in the United 
States. This dystonia is characterized by trigeminal hyperexcitability, photophobia, and most disabling of the symptoms, 
involuntary spasms of lid closure that can produce functional blindness. Like many focal dystonias, BEB appears to 
develop from the interaction between a predisposing condition and an environmental trigger. The primary treatment for 
blepharospasm is to weaken the eyelid-closing orbicularis oculi muscle to reduce lid spasms. There are several animal 
models of blepharospasm that recreate the spasms of lid closure in order to investigate pharmacological treatments to 
prevent spasms of lid closure. One animal model attempts to mimic the predisposing condition and environmental trigger 
that give rise to BEB. This model indicates that abnormal interactions among trigeminal blink circuits, basal ganglia, and 
the cerebellum are the neural basis for BEB.  
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INTRODUCTION 

 To create functional models of human movement 
disorders, the model organism should generate movements 
identical to those of humans. The blink system is ideal in this 
regard, because all mammals blink in the same way [1]. For 
all mammals studied, upper eyelid movements result from 
interactions among four forces. First, contraction of the 
phasic orbicularis oculi (OO) muscle actively closes the 
eyelid. The OO receives its input from the ipsilateral facial 
nerve [2]. Second, the tonically active levator palpebrae 
superioris (LP) muscle raises the eyelid and holds it open. 
Motoneurons in the oculomotor complex innervate the LP 
through the oculomotor nerve [3-6]. Third, Müller’s muscle, 
a smooth muscle that bridges the belly of the LP and its 
tendon, raises the eyelid. This muscle receives its innervation 
from the superior cervical ganglion [7-9]. Fourth, muscle and 
ligament attachments produce passive downward forces that 
oppose eyelid elevation [10-13]. Thus, the down phase of a 
blink occurs when the LP relaxes followed by a burst of OO 
activity. Combined with the passive downward forces, OO 
contraction rapidly lowers the eyelid. The LP resumes its 
tonic activity, following termination of OO activity, slowly 
raising the eyelid as the LP works against the continuously 
increasing passive downward force. The upper eyelid 
assumes its final position when the upward force of LP 
contraction matches the passive downward force. 

 Consistent with the common anatomical organization, the 
same physiological organization of blinking is similar among 
mammals. Stimulation of the supraorbital branch of the 
trigeminal nerve evokes two bursts of OO electromyographic 
activity, a short latency R1 and a longer latency R2. In  
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humans, the longer latency R2 component produces most of 
the eyelid closure, [10] whereas the shorter latency R1 
contributes most strongly to eyelid closure in non primate 
mammals [2, 14-17]. In all mammals investigated, blinks 
evoked by corneal stimulation elicit a single burst of OO 
activity [18-20]. Basal ganglia modulation of trigeminal 
blinks is identical for primates and rodents, and presumably 
the same for other mammals. The substantia nigra pars 
reticulata inhibits neurons in the superior colliculus that 
excite neurons in the nucleus raphe magnus. A serotonergic 
input from nucleus raphe magnus increases inhibition within 
spinal trigeminal blink circuits [15, 21-29]. Thus, the 
homologies in the anatomical organization and physiological 
control of the blink system among mammals make it ideal 
for developing animal models that closely mimic the eyelid 
focal dystonia benign essential blepharospasm (BEB).  

 The characteristic signs and symptoms of BEB are 
spasms of eyelid closure, trigeminal hyperexcitability, excessive 
blinking, and photophobia. [30-34]. These characteristics are 
exaggerations of the normal blink adaptation to the corneal 
irritation created by dry eye [35]. Thus, it is not surprising 
that a significant proportion of patients report current or 
previous experiences of dry eye when first diagnosed with 
BEB [36-39]. Nevertheless, the vast majority of individuals 
with dry eye do not go on to develop BEB. The best 
explanation for this discrepancy is that BEB and other focal 
dystonias result from the confluence of a predisposing 
condition with an environmental trigger, the ‘two-hit hypo- 
thesis’ [31, 32, 40]. Dry eye or eye irritation is the strongest 
candidate to be the environmental trigger for BEB. The most 
likely predisposing factor for BEB and other dystonias is 
genetic. Although there is no clear genetic modification 
identified with BEB, there is compelling evidence that the 
gene responsible for the predisposing factor is autosomal 
dominant with low penetrance [41-47]. 
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 The most disturbing symptom for BEB patients is the 
involuntary spasms of eyelid closure that can produce 
functional blindness. Dystonic eyelid spasms are not tonic 
OO contractions, rather they are closely spaced bursts of OO 
activity, such that a new OO contraction begins before the 
eyelid has time to rise following the preceding burst of OO 
activity [31, 48, 49]. The primary treatments for these 
spasms are to reduce OO strength with botulinum toxin 
injections, [50-53] surgical removal of the OO muscle, [54] 
or killing muscle fibers with chemical agents [55]. One goal 
of animal models of blepharospasm is to create a system to 
test treatments that decrease OO contraction sufficiently to 
disrupt eyelid spasms without eliminating the blinking 
necessary to maintain the corneal tear film.  

 One of the first models of involuntary eyelid closure was 
created by electrically stimulating premotor inputs to the 
facial nucleus of cats [56]. The investigators implanted 
stimulating electrodes into the facial nucleus, parabrachial 
region, red nucleus, interstitial nucleus of Cajal, the primary 
sensory nucleus of the trigeminal nerve, and into three 
reticular nuclei, ventral reticularis pontis oralis, reticularis 
parvocellularis, and reticularis centralis ventralis. In response 
to one long duration stimulus, only stimulation in the 
parabrachial region, the red nucleus and the interstitial 
nucleus of Cajal evoked a single, ipsilateral eyelid closure. 
The result for the red nucleus stimulation was somewhat 
surprising because the red nucleus projects primarily to 
contralateral OO motoneurons. [17, 57, 58-61] Ten to fifty 
Hz stimulus trains at these three sites produced sustained 
eyelid closure. Klemm et al (1993) [56] tested whether 
systemic drug treatment with atropine, haloperidol, 
molindone, diphenylhydramine or physostigmine reduced 
sustained eyelid closure in this model. None of the drugs 
modified electrically evoked eyelid closure even though the 
cats exhibited the general behavioral changes associated with 
the drugs.  

 A possible role for 5-HT and catecholamines in 
blepharospasm was identified in reserpine treated rodents 
and rabbits. Acute reserpine treatment produces blepharospasm, 
muscle rigidity, akinesia, miosis, and ptosis [62-66]. 
Reserpine, RO4-1284, depletes 5-HT and catecholamine 
stores. Consequently, drugs that cause dopamine release, 
block monoamine oxidase, and/or activate 5-HT receptors 
tend to reverse the blepharospasm produced by reserpine 
treatment [67, 68]. The diverse pharmacological effects of 
reserpine, however, reduce its usefulness for identifying a 
pharmacological basis for eyelid spasms. Investigations 
focusing specifically on the role of 5-HT in eyelid spasms 
have been more informative.  

 LeDoux and colleagues created another model of 
involuntary eyelid closure by microinjection of serotonin (5-
HT) into the facial nucleus [69]. They reported that cats 
exhibited sustained eyelid closure ipsilateral to the 5-HT 
injection. This result was not a nonspecific effect of 
microinjection into the facial nucleus because microinjection 
of ketanserin, a 5-HT2A and 5-HT2C antagonist, or saline did 
not cause sustained eyelid closure. LeDoux et al (1998) [69] 
demonstrated that pretreatment with oral administration of 
ritanserin, a 5-HT2A and 5-HT2C antagonist, diminished 
eyelid closure induced by 5-HT microinjection into the facial 

nucleus. The investigators linked these results to 
observations of successful treatment of some BEB patients 
with cyproheptadine, a H1 and 5-HT antagonist [70].  

 The blink system is exquisitely sensitive to central 
dopamine levels [71]. For spontaneous blinks, the blinks that 
occur without an external stimulus, systemic activation of 
dopamine receptors increases the blink rate and eliminating 
dopamine or blocking dopamine receptors reduces spontaneous 
blink rates [72-79]. Blinks evoked by stimulation of the 
cornea or periorbital region, trigeminal reflex blinks, respond 
oppositely to dopamine than do spontaneous blinks. Systemic 
treatment with L-dopa, apomorphine, a D1/D2 agonist, or 
enhancing dopamine release with nicotine reduces trigeminal 
reflex blink excitability [15, 80] and the speed of eyelid 
closure [81]. Conversely, the loss of dopamine neurons with 
Parkinson’s disease or experimental lesions in animals 
significantly increases the excitability of trigeminal reflex 
blinks [24, 28, 82, 83-90]. With this increased trigeminal 
excitability, touching the cornea can be sufficient to initiate a 
spasm of eyelid closure, reflex blepharospasm [82, 91-94]. 
These spasms of eyelid closure result from rapid bursts of 
OO contraction [24] as occurs in BEB eyelid spasms. Thus, 
dopamine depletion by itself causes reflex blepharospasm, 
but does not appear to be the direct cause of BEB as 
individuals with Parkinson’s disease do not exhibit spasms 
of eyelid closure in the absence of a blink evoking stimulus 
[95]. 

 Despite the lack of convincing evidence that dopamine 
depletion alone causes BEB, abnormalities in dopamine 
transmission may be a proximate cause of the predisposing 
condition that allows the development of BEB. One genetic 
study reports polymorphisms in the DR5 gene associated 
with BEB, [46] although another investigation does not 
support this conclusion [41] and D5 knockout mice do not 
exhibit abnormal blinking [96]. Abnormalities in the D2 
receptor, however, may set the stage for BEB. BEB patients 
show a decreased D2 binding in the striatum, [40, 97] and 
animal models of generalized and hemidystonia exhibit 
altered D2 binding [98, 99]. 

 One rodent model of BEB mimicked the dystonia by 
creating a predisposing condition using minimal dopamine 
depletion and initiating an environmental trigger by  
creating a transient dry eye condition [100]. Rats received a 
unilateral, 6-OHDA lesion that caused a small loss of 
dopaminergic cells in the substantia nigra pars compacta. 
After creating this predisposing condition, a branch of the 
facial nerve providing approximately 30% of the input to the 
OO muscle was crushed near the OO. Because blinks made 
with the weakened OO inadequately reformed the tear film, 
the ensuing eye irritation served as the environmental 
trigger. This eye irritation initiated a series of trigeminal 
reflex blink modifications [35, 101, 102] that normally 
compensate for dry eye and eye irritation. In the presence  
of the predisposing condition, however, rats began to exhibit 
spasms of eyelid closure, excessive blinking, and trigeminal 
hyperexcitability. Even after OO reinnervation and 
concomitant resolution of the eye irritation, rats continued to 
exhibit these BEB-like blink abnormalities. Neither the 
predisposing condition nor the environmental trigger by 
themselves created these BEB characteristics. By itself, the 
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small 6-OHDA lesion slightly increased trigeminal reflex 
blink excitability but did not generate reflex blepharospasm 
or spasms of eyelid closure. The OO weakening alone also 
increased trigeminal reflex blink excitability and resulted  
in the development of blink oscillations similar to those seen 
in human dry eye [35]. Combining the two conditions, 
however, produced eyelid abnormalities typical of BEB. 
Similar to this model, some individuals with facial palsy 
develop blepharospasm [103-105]. Consistent with the hypo- 
thesis that the predisposing condition enables maladaptive 
blink circuit adaptation in response to the eye irritation 
caused by inadequate lid closure, gold weight implantation 
to improve eyelid closure of the paretic eyelid reduced the 
drive for blink adaptation and the patient’s blepharospasm.  

 This animal model [100] based on the two-hit hypothesis 
of focal dystonia is unlikely to have identified the 
‘predisposing condition’ that allows BEB in humans. If 
dopamine loss was the predisposing condition in human 
BEB, a reasonable prediction is that BEB patients would be 
more likely to develop Parkinson’s disease than individuals 
without BEB. Such an increased incidence of Parkinson’s 
disease, however, does not appear to occur in BEB patients 
[106]. The eye irritation environmental trigger, however, is 
consistent with the human data [36-39] and the evidence that 
changes in the basal ganglia plays a role in the predisposing 
condition is compelling [40, 97-99]. Thus, the Schicatano  
et al (1997) model [100] suggests an outline for abnormal 
neural circuit interactions that support BEB. 

 The animal model of BEB indicates that the brain regions 
necessary to support BEB are trigeminal blink circuits, the 
basal ganglia, and the cerebellum. There is abundant 
evidence that adaptive modifications of blinking originate  
in trigeminal blink circuits [102, 106, 107]. Normally, the 
basal ganglia modulates inhibitory processes of trigeminal 
blink circuits to enhance or depress these adaptations.  
In pathological conditions, such as Parkinson’s disease, 
abnormal basal ganglia activity disrupts trigeminal blink 
circuits. [22-24] In the Schicatano et al (1997) animal model, 
[100] the predisposing condition distorts trigeminal blink 
circuit activity patterns so that maladaptive modifications 
occur in response to eye irritation [35]. The cerebellum is 
also critical in blink adaptation processes [101, 108, 109]. 
Trigeminal inputs to the cerebellum through mossy and 
climbing fibers [110-117] enable the cerebellum to support 
and maintain blink adaptations through indirect modulation 
of OO motoneuron depolarization and trigeminal system 
activity [68, 108, 117]. If the cerebellum receives abnormal 
trigeminal inputs from maladaptive learning processes, then 
the cerebellum will support and maintain this abnormal 
motor learning that originated in trigeminal blink circuits. 
Like previous studies indicating that the cerebellum is 
essential for the expression of dystonic movements, [118-
120] the Schicatano et al (1997) rat model [100] predicts that 
the cerebellum is essential for maintaining spasms of eyelid 
closure created by abnormal trigeminal blink circuit motor 
learning enabled by a dysfunctional basal ganglia input This 
focus on abnormal motor learning as the proximate cause  
of BEB points to novel approaches to alleviate spasms of 
eyelid closure in BEB through modifying trigeminal motor 
learning. 

 An important goal of future animal models of BEB is to 
identify the predisposing condition and determine how it 
disrupts motor learning in trigeminal reflex blink circuits. 
The Schicatano et al (1997) model [100] uses a small 
dopamine depletion to create the predisposing condition, but 
evidence in humans [121] suggests that dopamine depletion 
is not the ‘predisposing condition’ in humans. The key to 
understanding how different predisposing factors, e.g., 
genetic, dopamine loss, lead to BEB is to determine how 
basal ganglia dysfunction enables abnormal trigeminal blink 
circuit motor learning. One possibility is that different 
predisposing conditions may induce similar modifications in 
the pattern of basal ganglia activity. Parkinson’s disease 
causes an increase in the synchronicity of basal ganglia 
neuronal discharge and shifts the predominant frequency of 
this activity down to the beta range, 12 – 20 Hz [122-127]. 
Generalized dystonia also increases synchronicity of basal 
ganglia neurons, but the predominant frequency of this 
bursting pattern is 4 – 10 Hz, [126, 128-130] lower than that 
reported in Parkinson’s disease. This divergence in the 
frequency of basal ganglia outputs in Parkinson’s disease 
and dystonia can create dramatic functional differences in 
brainstem motor learning. Parkinson’s disease disrupts long 
term potentiation-like changes in blink amplitude, [131] 
whereas BEB enhances this form of motor learning [132]. 
Using animal models, it should be possible to identify 
modifications in the interconnected cerebellar and trigeminal 
blink circuits that modify motor learning when receiving 
abnormal patterns of basal ganglia activity. 
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