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Abstract
Objective: Hepatocellular carcinoma (HCC) has become the second most common 
tumor type that contributes to cancer-related death worldwide. The study aimed to 
establish a robust immune-related gene pair (IRGP) signature for predicting the prog-
nosis of HCC patients.
Methods: Two RNA-seq datasets (The Cancer Genome Atlas Program and 
International Cancer Genome Consortium) and one microarray dataset (GSE14520) 
were included in this study. We used a series of immune-related genes from the 
ImmPort database to construct gene pairs. Lasso penalized Cox proportional hazards 
regression was employed to develop the best prognostic signature. We assigned pa-
tients into two groups with low immune risk and high immune risk. Then, the prog-
nostic ability of the signature was evaluated by a log-rank test and a Cox proportional 
hazards regression model.
Results: After 1000 iterations, the 33-immune gene pair model obtained the highest 
frequency. As a result, we chose the 33 immune gene pairs to establish the immune-
related prognostic signature. As we expected, the immune-related signature accu-
rately predicted the prognosis of HCC patients, and high-risk groups showed poor 
prognosis in the training datasets and testing datasets as well as in the validation 
datasets. Furthermore, the immune-related gene pair (IRGP) signature also showed 
higher predictive accuracy than three existing prognostic signatures.
Conclusion: Our prognostic signature, which reflects the link between the immune 
microenvironment and HCC patient outcome, is promising for prognosis prediction 
in HCC.

K E Y W O R D S
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1  |   INTRODUCTION

Hepatocellular carcinoma has been recognized as the fifth 
most common primary malignant tumor and the second 

leading cause of cancer-related deaths globally.1 The main 
risk factor for tumorigenesis is chronic viral hepatitis, alco-
holic liver disease, diabetes and nonalcoholic steatohepatitis 
(NASH).2 The outcome of HCC is poor: according to the 
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Surveillance, Epidemiology, and End Results (SEER) da-
tabase, the 5-year survival rate of local hepatocellular car-
cinoma patients is 30.5%, and the rate is less than 5% for 
patients with distant metastasis.3 Although partial hepa-
tectomy and liver transplantation are the main treatment 
methods for early-stage patients, few patients are eligible 
for these treatments, and approximately 70% of patients will 
relapse within five years after surgery.4 Moreover, it is gen-
erally observed that HCC is not very sensitive to radiation 
and chemotherapy. To date, sorafenib and lenvatinib have 
been approved as targeted therapies for hepatocellular car-
cinoma by the United States Food and Drug Administration 
(FDA) to treat unresectable HCC; however, they have limited 
effectiveness.

It had been shown that several components of the im-
mune system were key factors during tumor development 
and progression. Recent studies also indicated that dys-
regulation of the immune system including alteration in 
the number or function of immune cells, the release of 

chemokine and cytokine, and expression of inhibitory re-
ceptors or their ligands can lead to the progression of he-
patocellular carcinoma.5,6 Moreover, immune checkpoint 
inhibitors that specifically target PD1/PD-L1 had indicated 
a manageable safety and lasting response in advanced he-
patocellular carcinoma.7 So far, there is no research which 
has constructed a prognosis signature by using immune-re-
lated gene.

In this study, based on immune-related genes from the 
ImmPort database, we used two RNA-seq datasets from The 
Cancer Genome Atlas (TCGA) and the International Cancer 
Genome Consortium (ICGC) and one microarray dataset 
(GSE14520) to establish and validate a 33-immune-related 
gene pair signature for hepatocellular carcinoma patients. 
Then, we investigated the relationship between clinicalpatho-
logical factors and the prognostic signature. Finally, we com-
pared this signature with other existing prognostic signatures 
to prove the predictive effectiveness and accuracy of this 
signature.

F I G U R E  1   The workflow describes the construction and validation of our 33 IRGPs. The TCGA data were assigned into a training dataset 
(206) and a testing dataset (136), and the training dataset was used to construct immune-related gene pair signatures. The testing, GSE14520 and 
ICGC datasets were used to validate the 33-immune-related gene pair signature
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2  |   METHODS

2.1  |  Data source

The level-three RNA-seq expression data and clinical data of 
377 HCC patient samples were downloaded from the TCGA 
data portal (https​://portal.gdc.cancer.gov); patients with an 
overall survival time less than one month were excluded, and 
the dataset was randomly split into a training dataset (n = 206) 
and a testing dataset (n  =  106). Another RNA-seq dataset 
(n = 207) was downloaded from ICGC, and a microarray data-
set (GSE14520) downloaded from the GEO database (http://
www.ncbi.nlm.nih.gov/geo) was used as a dataset for validation 

of the signature. We downloaded 1534 immune-related genes 
from the ImmPort database (https​://immpo​rt.niaid.nih.gov). 
The immune-related genes included cytokines, cytokine recep-
tors, and genes correlated with the T-cell receptor and B-cell 
antigen receptor signaling pathways, natural killer cell cytotox-
icity, and the antigen processing and presentation pathways.

2.2  |  Data preprocessing

When multiple probes matched the same target gene, the av-
erage expression value of the probes was used to represent the 
single gene expression level. When a patient had more than 
one sample, the average expression value of each gene was 
used to represent the level of gene expression in the patient.

2.3  |  Establishment of the prognostic 
signature based on immune-related genes

A pairwise comparison was performed between the immune-
related gene expression value in each sample to obtain a score 
for each IRGP. If the expression level of the first IRG was 
higher than that of the second IRG in a specific IRGP, the 
score of this IRGP was 1; otherwise, the score was 0. If the 
score of an IRGP was 0 or 1 in more than 90% of the samples 
of the TCGA training dataset or the TCGA testing dataset, then 
we discarded the IRGP. The log-rank test was applied to select 
the prognostic IRGPs (FDR < 0.01) in the training dataset, 
and then Lasso penalized Cox regression (iteration = 1000) 
was applied to generate a more stable prognostic gene model 
by using an R package (glmnet, version: 2.0-16). The tuning 
parameter was estimated in the training dataset by performing 
10-fold cross-validation. The most stable gene pair model was 
used to construct the prognostic signature, and then patients 
were assigned into high immune risk and low immune risk 
groups according to an immune risk cutoff score; the median 
value of the risk score was set as the cutoff value.

2.4  |  Validation and assessment of the 
IRGP signature

To validate the IRGP signature, the risk score was calculated 
according to the prognostic signature in every testing dataset; 
then, we assigned patients into low immune risk and high im-
mune risk groups according to the median value of the risk 
score. The overall survival difference between the low immune 
risk and high immune risk groups was evaluated by the log-rank 
test and Cox regression analysis. In addition, we compared the 
prognostic signature with three existing gene prognostic sig-
natures by the receiver operating characteristic curve (ROC) 
curve and c-index analyses in the full TCGA dataset.

T A B L E  1   Clinical and pathologic factors of the datasets used in 
this study

  TCGA (n, %) ICGC (n, %)
GSE14520 
(n, %)

Age

<60 66 (19.3%) 39 (19.3%) 178 (80.5%)

≥60 276 (80.7%) 163 (80.7%) 43 (19.5%)

Gender

Female 109 (31.9%) 50(24.8%) 30(13.6%)

Male 233 (68.1%) 152 (75.2%) 191 (86.4%)

Virus infection

Yes 142(41.5%) 173 (85.7%) 212 (96%)

No 200(58.5%) 29 (14.3%) 6 (2.7%)

NA     3 (1.3%)

Cirrhosis

Yes 127 (37%) 193(95.5%) 18(8.1%)

No 72 (21%) 9(4.5%) 203(91.9%)

NA 143 (42%)    

Recurrence

Yes 173 (50.6%)   121 (54.8%)

No 125 (36.5%)   100 (45.2%)

NA 44 (12.9%)    

TNM stage

Stage I 103   93 (42.1%)

Stage II 39   77 (34.8%)

Stage III 47   49 (22.2%)

Stage IV 2   2 (0.9%)

NA     0

Survival status

Alive 219 (64.0%) 167 (82.7%) 136 (61.5%)

Dead 123 (36%) 35 (17.3%) 85 (38.5%)

Median 
follow-up 
time(mo)

20.745 
(1.02-120.7)

27 (1-72) 52.3 (2-67.4)

Abbreviations: ICGC, ICGC LIHC dataset; NA represents information not 
available; TCGA, TCGA LIHC dataset.

https://portal.gdc.cancer.gov
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14520
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
https://immport.niaid.nih.gov
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14520
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2.5  |  Gene set enrichment analysis

To understand the underlying biological mechanisms of this 
immune-related prognostic signature, we performed gene set en-
richment analysis by using the MSigDB hallmark gene set (http://
softw​are.broad​insti​tute.org/gsea/downl​oads.jsp). An FDR value 
below 0.25 was considered statistically significant.

2.6  |  Statistical analysis

All statistical analyses were performed using GraphPad Prism 
6 and R software (version 3.5.1, https​://www.r-proje​ct.org/). 
The log-rank test was used to evaluate the relationship be-
tween IRGPs and overall survival. The survival curves were 
generated by the R package “survminer”. The gene model 

was conducted with the “glmnet” package. The ROC curves 
were conducted by an R package called “survivalROC”. The 
c-index was calculated by the R package “survcomp”.

3  |   RESULTS

3.1  |  Construction and definition of the 
IRGP signature

To make our investigation procedure clearer, the entire work-
flow is illustrated in Figure 1. As shown in Table 1, a total 
of 765 HCC patients were included in our study. The TCGA 
dataset was randomly split into a training dataset (n = 206) 
and a testing dataset (n = 136). A total of 822 immune-re-
lated genes were common among all datasets, and 337 431 
IRGPs were constructed. Ultimately, we kept 99 615 IRGPs 

F I G U R E  2   Construction and definition of IRGP signature. A, After 1000 iterations, the 33-IRGP model achieved the highest frequency 
compared with the other nine IRGP models. The 33-IRGP model was selected to construct the IRGP signature. B, The heatmap shows the score 
of the 33 IRGPs according to patient risk score. The patients were divided into high immune risk and low immune risk groups according to the 
median risk score. The red and black points represent the risk scores of high-risk group patients and low-risk group patients, respectively. The gray 
and green points represent patients who were alive or dead, respectively. C, The survival curve shows that high-risk group patients had a poorer 
outcome than low-risk group patients in the training dataset (P < .05). D, Generation of receiver operating characteristic (ROC) curves illustrated 
the predictive ability of the 33-immune-related gene pair model. The areas under the curves for 1-, 3-, and 5-year survival were 0.912, 0.918, and 
0.814, respectively, in the training dataset

http://software.broadinstitute.org/gsea/downloads.jsp
http://software.broadinstitute.org/gsea/downloads.jsp
https://www.r-project.org/
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T A B L E  2   Information on the 33 IRGPs

Gene pair1 Full name Gene pair2 Full name Coefficient

ADM2 Adrenomedullin 2 GHR Growth hormone receptor 0.094222

AMHR2 Anti-Mullerian hormone receptor, type II OGN Osteoglycin 0.000652

ARTN Artemin IFI30 Interferon, gamma-inducible 
protein 30

0.89792

CALCR Calcitonin receptor KLRK1 Killer cell lectin-like receptor 
subfamily K, member 1

0.472908

CALCR Calcitonin receptor NTF3 Neurotrophin 3 0.110016

CCR3 Chemokine (C-C motif) receptor 3 IGF1 Insulin-like growth factor 1 
(somatomedin C)

0.025693

CCR3 Chemokine (C-C motif) receptor 3 NCR1 Natural cytotoxicity triggering 
receptor 1

0.070971

CD1A CD1a molecule FASLG CD1a molecule 0.231429

CD1C CD1c molecule SEMA3C CD1c molecule −0.32233

CDK4 Cyclin-dependent kinase 4 PIK3R1 Cyclin-dependent kinase 4 0.489564

CHGA Chromogranin A (parathyroid secretory 
protein 1)

PDCD1 Chromogranin A (parathyroid 
secretory protein 1)

0.483017

CTSE Cathepsin E MPL Cathepsin E 0.152814

CXCL1 Chemokine (C-X-C motif) ligand 1 
(melanoma growth stimulating activity, 
alpha)

RELB Chemokine (C-X-C motif) 
ligand 1 (melanoma growth 
stimulating activity, alpha)

0.082072

CXCL5 Chemokine (C-X-C motif) ligand 5 PDCD1 Programmed cell death 1 0.031422

EDN1 Endothelin 1 SOS2 Son of sevenless homolog 2 
(Drosophila)

0.164111

EDN1 Endothelin 1 TNFRSF10D Tumor necrosis factor 
receptor superfamily, 
member 10d, decoy with 
truncated death domain

0.299299

EPOR Erythropoietin receptor PLXNA1 Plexin A1 −0.11661

FYN FYN oncogene related to SRC, FGR, 
YES

STC1 Stanniocalcin 1 −0.37861

GHR Growth hormone receptor PLXNA2 Plexin A2 −0.03843

GIP Gastric inhibitory polypeptide OGN Osteoglycin 0.227285

GMFB Glia maturation factor, beta PIK3R1 Phosphoinositide-3-kinase, 
regulatory subunit 1 (alpha)

0.003817

GPR17 G protein-coupled receptor 17 IL5 Interleukin 5 (colony-
stimulating factor, 
eosinophil)

−0.14056

HLA-A Major histocompatibility complex, class 
I, A

SPP1 Secreted phosphoprotein 1 −0.04005

HLA-DRB1 major histocompatibility complex, class 
II, DR beta 1

SPP1 Secreted phosphoprotein 1 −0.14776

IL15RA Interleukin 15 receptor, alpha SHC2 SHC (Src homology 2 domain 
containing) transforming 
protein 2

0.455341

IL18RAP Interleukin 18 receptor accessory protein SEMA3A Sema domain, 
immunoglobulin domain 
(Ig), short basic domain, 
secreted, (semaphorin) 3A

−0.35545

(Continues)
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after removing IRGPs with a score of 0 or 1 in more than 
90% of the samples in the TCGA training or testing datasets. 
Using the log-rank test, we selected 188 prognostic IRGPs 
that were significantly associated with patient overall sur-
vival (FDR < 0.01). Next, the prognostic IRGPs were used to 
construct prognostic gene models by using Lasso penalized 
Cox regression on the TCGA training dataset. After 1000 it-
erations, the 33-gene model, which had the highest frequency 
of (424) compared with the other nine gene models (Table 
S1), was used to construct the prognostic signature (Figure 
2A). The 33-IRGP prognostic signature information is shown 
in Table 2. The 33 IRGPs could accurately predict patient 
prognosis in the training dataset (Figure S1). The area under 

the receiver operating characteristic curve (AUC) values of 
the 1-, 3-, and 5-year survival rates were 0.912, 0.918, and 
0.816, respectively, in the training dataset (Figure 2D), which 
demonstrated that the predictive ability of our IRGP prog-
nostic signature was promising. In the training dataset, the 
risk score of each patient was calculated with the immune 
prognostic signature, and then patients were assigned into 
low immune risk and high immune risk groups according to 
the median risk score. As shown in Figure 2C, the high im-
mune risk group had a poorer prognosis than the low immune 
risk group (HR: 10.89, 95%CI: 8.09-21.07, P < .0001) in the 
training dataset. We also found consistent results in the sub-
group analysis (Table 3, Figure 2).

Gene pair1 Full name Gene pair2 Full name Coefficient

IL1RL1 Interleukin 1 receptor-like 1 MTNR1A Melatonin receptor 1A −0.56454

IL5 Interleukin 5 (colony-stimulating factor, 
eosinophil)

OGN Osteoglycin 0.361037

KIR2DS4-   PRKCG Protein kinase C, gamma −0.49709

KITLG KIT ligand SH3BP2 SH3-domain binding protein 2 0.035557

KITLG KIT ligand TGFBR3 Transforming growth factor, 
beta receptor III

0.107891

LECT2 Leukocyte cell-derived chemotaxin 2 NR6A1 Leukocyte cell-derived 
chemotaxin 2

−0.24611

LTB4R2 Leukotriene B4 receptor 2 SEMA3A Leukotriene B4 receptor 2 −0.1266

T A B L E  2   (Continued)

Variable

No. of patients

HR(95%CI) Log-rank P-valueLow risk High risk

All 103 104 10.89 (8.09-21.07) <.0001

Age

Age < 60 25 13 29.17 (10.05 −186.3) <.0001

Age ≥ 60 78 90 8.99 (8.090 −21.07) <.0001

Gender

Female 35 35 6.03 (4.243 −19.85) <.0001

Male 68 68 19.95 (8.572 −28.92) <.0001

TNM

StageI/Ⅱ 87 63 13.88 (12.29 −48.39) <.0001

StageⅢ/Ⅳ 15 40 5.32 (1.947 −7.748) .0002

Grade

G1/G2 73 59 9.05 (8.245 −28.29) <.0001

G3/G4 29 43 10.35 (4.637 −23.11) <.0001

Viral infection

No 52 70 8.44 (5.296 - 15.38) <.0001

Yes 51 33 14.40 (7.895 −59.81) <.0001

Recurrence 46 62 7.19 (4.375 −13.85) <.0001

Abbreviations: All, TCGA LIHC dataset; CI, confidence interval; HR, hazard ratio.

T A B L E  3   Clinical subgroup analysis 
of prognosis based on our IRGP signature
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3.2  |  Validation of the IRGP signature

In the TCGA, ICGC, and GSE14520 datasets, the risk score 
of each patient was calculated with the same 33-IRGP prog-
nostic signature, and patients were assigned into low immune 
risk and high immune risk groups according to the median 
risk score. The high immune risk group had poorer OS in all 
datasets than the low immune risk group (Figure 3A-C). The 
c-index values for the training, testing, ICGC and GSE14520 
datasets were 0.78, 0.62, 0.61, and 0.59, respectively (Figure 
3D). The multivariate Cox regression analysis showed that the 
IRGP risk score was an independent prognostic factor after 

adjustment for by age, sex, and TNM stage in the training 
(HR: 20.59, 95%CI: 8.73-48.54, P = .000), testing (HR: 2.07, 
95%CI: 1.07-4.015, P = .031), GSE14520 (HR: 1.77, 95%CI: 
1.09-2.87) and ICGC datasets (HR: 2.40, 95%CI: 1.19-4.82).

3.3  |  COMPARISON WITH OTHER 
PUBLISHED PROGNOSTIC SIGNATURES

We also compared our IRGP prognostic signature with 
three published gene prognostic signatures8-10 by con-
structing an ROC curve for 5-year OS and determining the 

F I G U R E  3   Validation of the IRGP signature. As shown, patients with a high risk score have a worse overall survival rate than those in the 
low risk score group according to Kaplan–Meier survival analysis in the TCGA test dataset (A), GSE14529 dataset (B), and ICGC dataset (C). 
These results show that the 33-IRGP model has a robust predictive ability (P < .05). D: The c-index values for the training dataset, testing dataset, 
GSE14520 dataset, and ICGC dataset were 0.78, 0.62, 0.59, and 0.61, respectively

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14520
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14520
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14520
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14529
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14520


      |  2875SUN et al.

c-index, and all data came from TCGA. As shown in Figure 
4A-B and Table 4, the AUC was 0.772 and the c-index 
was 0.717 for our prognostic signature, and the IRGP prog-
nostic signature possessed a higher predictive efficacy and 
accuracy than the existing three-gene prognostic signature 
(AUC  =  0.691, c-index  =  0.641), the 4-gene prognostic 
signature (AUC  =  0.702, c-index  =  0.674) and the au-
tophagy-related signature (AUC = 0.408, c-index = 0.600) 
(Table 5).

3.4  |  Biological processes correlated with the 
IRGP signature

We assigned patients into low immune risk groups and 
high immune risk groups, and gene set enrichment analysis 
(GSEA) was performed on the training dataset. The result 
illustrated that a total of nine cancer hallmark gene sets 
were identified in the high-risk group (Figure 5) includ-
ing “MYC_TARGETS,” “GLYCOLYSIS,” and “DNA_
REPAIR,” which indicated that these hallmark gene sets 
played a critical role in HCC progression.

4  |   DISCUSSION

It is well-known that the liver participates in self-tolerance and 
contains the richest immune effectors in the body.11 Several 
components of the immune system, including immune cells, 
chemokines, cytokines, and inhibitory receptors and ligands, 

F I G U R E  4   Determination of the receiver operating characteristic (ROC) curve (A) and c-index (B) for different prognostic signatures. The 
AUC values for the IRGP model, three-gene model, four prognostic lncRNA model, and autophagy-related signature were 0.772, 0.691, 0.702, and 
0.408, respectively. The c-index values for the IRGP model, three-gene model, four prognostic lncRNA model, and autophagy-related signature 
were 0.772, 0.691, 0.702, and 0.408, respectively. These results indicate that our signature possesses a higher predictive efficacy and accuracy than 
the other models

T A B L E  4   Multivariate Cox analysis of clinicopathological 
factors and risk signatures

Variable HR 95%CI P-value

Training dataset

Risk_score (low risk vs 
high risk)

20.59 8.73-48.54 .000

Age (<60 vs ≥60) 1.17 0.58-2.36 .662

Stage (I and II vs III 
and IV)

1.77 1.06-2.97 .029

Gender (male vs female) 1.16 0.70-1.91 .574

Testing dataset

Risk_score 2.07 1.07-4.015 .031

Age(<60 vs ≥60) 0.68 0.34-1.38 .289

Stage (I and II vs III 
and IV)

2.27 1.21-4.23 .010

Gender (male vs female) 1.61 0.859-3.02 .138

ICGC dataset

Risk_score 2.40 1.19-4.82 .014

Age (<60 vs ≥60) 0.955 0.413-2.21 .913

Gender (male vs female) 0.481 0.24-0.98 .045

GSE14520 dataset

Risk_score 1.77 1.09-2.87 .022

Age (<60 vs ≥60) 1.05 0.58-1.90 .868

Stage (I and II vs III 
and IV)

2.78 1.71-4.50 .00

Gender (male vs female) 1.37 0.65-2.87 .408

Abbreviations: CI, confidence interval; HR, hazard ratio.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14520
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have been shown to be key factors during tumor development 
and progression.5,6 The complex immune environment of the 
liver makes immunotherapy a promising yet complicated 
strategy for treatment. There has also been a rapid rise in the 
amount of immunotherapy clinical trials in HCC in the past 
15 years.12-14 Among these trials, immune checkpoint (PD1/
PDL1 and CTLA-4) blockade therapy has received great ac-
claim. Nivolumab (anti-PD1) was the first FDA-approved 
immune checkpoint inhibitor for HCC. In phase I and phase 
II clinical trials, 20% of HCC patients treated with nivolumab 
had a lasting response. In addition, several clinical trials of 
immune checkpoint inhibitors have also shown exciting 
results. HCC, like many other tumors, has an immunosup-
pressive microenvironment that can inhibit the activation of 
immune effectors, making adoptive immunotherapy a prom-
ising method. Recently, adoptive immunotherapies, including 

CIK cells, NK cells, NKT cells and CAR T cells, accounted 
for approximately half of the immunotherapy clinical trials 
in HCC (12 trials), and several studies have reported that 
adoptive immunotherapy can delay recurrence and prolong 
survival time.15-17 Cancer vaccines are another immunother-
apy that can help the immune system recognize and attack 
cancer cells. Unfortunately, current vaccine monotherapies 
do not generate significant clinical outcomes in patients with 
HCC.18 In summary, immunotherapy is a promising treat-
ment approach in HCC, and the immunology of hepatocellu-
lar carcinoma needs to be further explored. So, it is necessary 
to construct a prognostic signal using immune-related genes.

Traditional prognostic signatures require the preprocessing 
of gene expression profiles, and this is a major factor that in-
fluences other widely used models. In this study, because our 
IRGPs were generated by pairwise comparison and the score 
was calculated entirely based on gene expression in the same 
patient, our prognostic signature can not only overcome the 
batch effects of the different platforms but also does not re-
quire the scaling and normalization of data. This approach has 
been reported to be robust in several studies, including can-
cer-related studies, and it is a major advantage in our study.19,20

In this study, by using Lasso penalized Cox regression, 
we constructed a 33-IRGP prognostic signature and validated 
this signature in several different datasets. The results showed 
that our signature could stratify patients into high immune 

T A B L E  5   c-index and AUC values between different signatures

Signature AUC c-index

IRGPs 0.772 0.717

3 gene signature 0.691 0.641

4 prognostic signature 0.702 0.674

Autophagy-related signature 0.408 0.600

Abbreviations: AUC, area under the receiver operating characteristic (ROC) 
curve; c-index, concordance index.

F I G U R E  5   Gene set enrichment analysis (GSEA) between high and low immune risk groups. The results show that nine cancer hallmark 
gene sets are enriched in the high immune risk group in patients with HCC (P < .05, FDR < 0.25)



      |  2877SUN et al.

risk and low immune risk groups. Univariate and multivari-
ate Cox proportional hazard regression analyses showed that 
the score was an independent prognostic factor. In our study, 
unlike in traditional studies, the signature was constructed 
by using Lasso penalized regression, which can identify the 
most suitable of many variables. Moreover, our signature was 
validated by several datasets, including RNA-seq and mi-
croarray datasets. Finally, compared with the other three ex-
isting prognostic signatures, our signature possesses a higher 
predictive efficacy and accuracy.8-10

Our 33-IRGP signature consists of 54 immune-related 
genes, and these genes are mainly involved in the functions 
of immune cells and antigen identification and presentation 
and they play an important role in the composition of the im-
mune microenvironment. CXCL5 and CXCL1 can promote 
intratumoral neutrophil infiltration, and their overexpression 
has been correlated with poor prognosis in HCC.21-23 CDK4 
is a promising anticancer target in several cancers, including 
hepatocellular carcinoma. Shom Goel et al recently found that 
CDK4/6 inhibitors could promote tumor immunogenicity and 
may have synergistic effects with immunotherapy.24,25 It was 
reported that the downregulation of LECT2 fostered the ac-
cumulation of inflammatory monocytes, which harbor immu-
nosuppressive properties, and promoted the progression of 
hepatocellular carcinoma.26 PD1 is mainly expressed on effec-
tor T cells in tumor tissues in HCC. Compared with cirrhotic 
tissue, tumor tissue has a higher number of PD-1+CD8+ T 
cells. Moreover, patients with higher levels of tumor-infil-
trating and circulating PD-1+CD8+ T cells tend to progress 
early after posthepatic resection.27 It has been reported that 
macrophages can be recruited into HCC tissue by SEMA3A, 
and overexpression of SEMA3A indicates poor prognosis in 
hepatocellular carcinoma.28 Artemin was shown to be related 
to early relapse, shortened overall survival and large tumor 
size.29 The involvement of all the above mentioned genes indi-
cates that immune processes contribute to tumor development 
and prognosis. Other immune-related genes in our signature 
can also predict the prognosis of HCC patients. In addition, 
expression imbalances in certain gene pairs may play a more 
important role than individual differentially expressed genes. 
GSEA indicated that “MYC_TARGETS,” “DNA_REPAIR,” 
and “GLYCOLYSIS” were enriched in the high-risk group, 
and these results were consistent with previous reports.30-32

Nevertheless, we should acknowledge the limitations of 
this study. First, our research was a retrospective analysis, and 
a prospective cohort is needed to validate the results. Second, 
because the signature was constructed by using immune-re-
lated genes, our signature does not represent diverse biologi-
cal processes. Finally, the signature was constructed by using 
RNA-seq and microarray expression data. Further clinical 
applications should be evaluated by using RT-PCR or IHC.

In conclusion, we developed a new IRGP prognostic 
model in HCC.
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