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Abstract

Volume of distribution and fraction unbound are two key parameters in pharmacokinetics. The fraction unbound describes
the portion of free drug in plasma that may extravasate, while volume of distribution describes the tissue access and
binding of a drug. Reliable in silico predictions of these pharmacokinetic parameters would benefit the early stages of drug
discovery, as experimental measuring is not feasible for screening purposes. We have applied linear and nonlinear
multivariate approaches to predict these parameters: linear partial least square regression and non-linear recursive
partitioning classification. The volume of distribution and fraction of unbound drug in plasma are predicted in parallel
within the model, since the two are expected to be affected by similar physicochemical drug properties. Predictive models
for both parameters were built and the performance of the linear models compared to models included in the commercial
software Volsurf+. Our models performed better in predicting the unbound fraction (Q2 0.54 for test set compared to 0.38
with Volsurf+ model), but prediction accuracy of the volume of distribution was comparable to the Volsurf+ model (Q2 of
0.70 for test set compared to 0.71 with Volsurf+ model). The nonlinear classification models were able to identify
compounds with a high or low volume of distribution (sensitivity 0.81 and 0.71, respectively, for test set), while classification
of fraction unbound was less successful. The interrelationship between the volume of distribution and fraction unbound is
investigated and described in terms of physicochemical descriptors. Lipophilicity and solubility descriptors were found to
have a high influence on both volume of distribution and fraction unbound, but with an inverse relationship.
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Introduction

The extent of drug distribution determines the access of a drug

to its sites of action and to other tissues, which might give rise to

adverse effects. A primary parameter for drug distribution is the

volume of distribution (Vd) that is defined as.

Vd~
A

C

where A is the amount of drug in the body, and C is the drug

concentration in plasma (both free drug and protein-bound drug).

Volume of distribution is an apparent volume that increases with

elevated drug binding in the extravascular space of the body and

not an anatomically defined volume. Consequently, extensive drug

binding outside the blood vessels leads to increasing values of A/C

ratio. As tissue binding of drugs varies considerably, volume of

distribution displays a wide range of values. For example,

erythropoietin is confined to the vascular space presenting a Vd

of 4 L (approximately the anatomical volume of vascular space)

[1], while hydroxychloroquine with a Vd of 49 000 L strongly

accumulates into the cells and tissues [2]. Volume of distribution at

steady state (Vss) is measured at equilibrium, therefore, it describes

the molecular tissue binding more reliably than other volume of

distribution parameters that are dependent on the time after

measurement. Vss depends on the access of the drug to the cells

and tissues, its affinity to plasma proteins and tissue components,

and number of binding sites in plasma and tissues.

Drug concentration in plasma (C) includes both unbound (Cu) and

protein-bound drug in plasma. However, only the fraction of free

drug in plasma permeates across the cellular membranes and vascular

walls in most tissues. The free fraction of drug in plasma (fu) is

described by the ratio Cu/C. Likewise the drug in the tissues also

includes both free (CuT) or tissue bound parts. The unbound fraction

of drug in tissues is: fuT = CuT/CT, where CT is the total drug

concentration in the tissue. Drug binding to plasma proteins and

tissue components influences drug partitioning between the tissues

and plasma. Thus, Vss can be presented using the following equation:

Vss~VpzVT1

fu

fuT1

 !
zVT2

fu

fuT2

 !
::::
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where Vp is the anatomical volume of plasma and VT is the true

anatomical volume of each tissue. Vss depends on the anatomical

volumes of the tissues, and the relative extent of drug binding in the

plasma and tissues described as fu/fuT ratios.

As volume of distribution describes the extent of drug

distribution, it is important to predict its value early in drug

development before experimental measuring in humans. Vss in

humans may be extrapolated from the in vivo animal data that is

obtained during the drug discovery process, but computational

approaches are useful at early stages before animal data has been

collected. The volume of distribution used for computational

modeling should be collected from intravenous and not from oral

pharmacokinetics studies as in some cases [3], [4]. The benefit of

intravenous administration is the defined quantity of the drug that

is subject to distribution, which avoids the uncertainty associated

with incomplete bioavailability after extravascular administration.

Even though quantitative structure-property relationship

(QSPR) has been widely used for prediction of Vss [3–16], it

remains a challenging problem that has not been adequately

solved. The early attempts for predicting volume of distribution

were based on small data sets and did not specify the type of

volume of distribution that was used as the endpoint or in some

cases used several types of volume of distribution for the model

building [3-8], [11], [13], [14], [17]. In 2008, a major advance was

the publication of a clean, manually curated dataset of Vss [18]

that subsequently has been used successfully to build predictive

models for Vss [12], [16].

The main difference in the work presented here compared to

the previously published models of Vss is that we have included

another pharmacokinetic parameter, fu, to the modeled respons-

es. The fu in plasma depends on the binding affinity and capacity

of plasma proteins, which also affect the volume of distribution.

The fraction of unbound drug in plasma can be estimated

relatively easily in vitro, but computational models for predicting

fu are also available [19-21]. The VolSurf+ software includes

prediction tools for both volume of distribution and plasma

protein binding, however, there is limited information of the

methodology behind the models and their prediction capacity

have not been evaluated in an unbiased manner in the literature.

The two parameters, Vss and fu, are expected to be affected by

similar physicochemical drug properties and our hypothesis was

that modeling them in parallel would benefit their prediction. We

have applied both linear and nonlinear multivariate approaches:

linear partial least square (PLS) regression combined with

principal component analysis (PCA) and non-linear recursive

partitioning (RP) classification. RP has been shown to perform

well when dealing with complex endpoints associated with

multiple mechanisms, while PLS allows many responses (in our

case Vss and fu) to be incorporated in one regression model, but

to our knowledge, this approach has not been used previously in

pharmacokinetic QSPR modeling.

Materials and Methods

1. Data Set
The initial dataset collated by Obach and co-workers [18]

contains 670 compounds with Vss and fu values determined after

intravenous administration to healthy people. The collection steps,

the quality and the diversity of the data have been meticulously

detailed in the publication.

The 2D structures of the compounds were obtained from the

ACD/Dictionary version 11 [22] or the PubMed compound

database (http://www.ncbi.nlm.nih.gov/pccompound Accessed

2010 October). If the compounds were represented as salts in

the 2D structure, the counter ion was discarded. The 3D structures

were generated using Concord within SYBYL 8.0 [23]. A set of 648

drugs with both 2D and 3D structures were obtained. For the

remaining 22 compounds in Obach’s data set either a 2D structure

or minimized 3D structure was not obtained or it was not possible

to calculate descriptors from the structures. The Vss of artesunate

was corrected to 1.5 L/kg based on the work of White [24].

Furthermore, we excluded ibadronic, pamodronic, risedronic and

zoledronic bisphosphonates from the set, since these compounds

are sequestered to the bones, preventing their detection in the

plasma, and leading to underestimated values of Vss [25]. The

antimalarial drugs hydroxychloroquine and chloroquine have Vss

values of 700 L/kg and 140 L/kg, respectively. These values are

far beyond the range of other Vss values (0.035–60 L/kg) and they

were excluded to avoid biasing the model.

The final data set of 642 drugs (Figure 1) displays Vss values of

0.035–60 L/kg and fu values (541 drugs) of 0.0002–1.

2. Calculation of Molecular Descriptors
In this study, molecular descriptors were calculated using

ACDlabs [26], Volsurf+ [17] and MOE [27]. Input molecular

structures were two-dimensional for ACDlabs and three-dimen-

sional for Volsurf+ and MOE, for the later Gasteiger-Huckel

charges were added. Identical descriptors (i.e. molecular weight,

molecular volume) were excluded before combining descriptor sets

for modeling. The descriptors that were used for model building

are listed in Table 1 and the calculated descriptor values for the

data set are available in File S1.

3. PCA and PLS Regression Models
QSPR models were built using linear multivariate analysis tools

PCA and PLS (Simca plus Version 10.5) [28]. All descriptors were

transformed with unit variance scaling and mean centering before

PCA and PLS analysis. Moreover, the descriptors with a broad

range or unequal distribution across the range were logarithmi-

cally transformed to obtain better distributions. Three sets of

molecular descriptors were assembled for the regression modeling:

(1) ACDlabs descriptors and MOE logS descriptor; (2) VolSurf+
descriptors; (3) the combination of ACDlabs, MOE and VolSurf+
descriptors.

A workflow of the modeling process is presented in Figure 2.

Before modeling, a foreign set of 101 drugs was randomly

excluded from the final 642 compound set. The descriptor matrix

of the remaining 541 drugs was analysed with PCA to identify the

drugs that fall outside the general chemical space of the compound

set and descriptors that should be excluded from the model (model

calibration). Drugs that were outliers based on their distribution in

the PCA plot and whose descriptor values fell outside the

boundaries outlined in Table 2 were excluded. Based on the

scatter plot of the final PCA plot, an external test set (Figure 3) of

101 compounds representative of the chemical space was selected.

The external set comprises molecules within the chemical space of

the model, while the foreign set, which was selected before the

PCA and model calibration, also includes compounds outside the

chemical space used for model building. The remaining

compounds constitute the training set for the PLS model building

(365 drugs for model 1; 357 drugs for model 2; 361 drugs for

model 3). The training sets were used to build PLS models that

relate the descriptors to the two simultaneously modelled

responses, log Vss and fu. During initial stages of the analytical

process, the number of highly correlated variables observed in the

PLS weight plot was gradually reduced in order to equilibrate the

influence of the overall set of descriptors on the responses.

Subsequent models with improved statistic parameters were

Parallel Prediction of Vss and Fu for Drugs
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obtained and variables deemed least influential to the modelled

pharmacokinetic parameters were excluded. The decisions were

based on the PLS weight plot and confirmed by the variable

importance plot results. Moreover, the distribution of the drugs

was followed up by the PLS score and Dmod plots, in order to

detect outliers.

4. Recursive Partitioning Classification Models
A RP analysis was carried out using Discovery Studio version 3.5

(Accelrys Inc.) to develop decision trees that categorize the

compounds into classes that are based on the Vss values or both Vss

and fu values (Table 3 and 4). Volume of distribution is defined by

drug interactions with the main volumes in the body: extracellular

space and cellular tissue space. We used these anatomical volumes

as rough guidance to classify the volumes into three classes. Class 1

represents the volume of the extracellular fluid (0–0.3 L/Kg), class

2 represents Vss values that take into consideration distribution to

the tissues (0.3–1 L/Kg), and class 3 values of Vss represent

significant binding to the cellular components (.1 L/Kg).

However, it should be noted that Vss is an apparent volume that

does not strictly obey anatomical volumes, therefore the anatom-

ical distribution of the compounds cannot be concluded from the

Vss. Distribution of compounds into the three classes is shown in

Figure 1A. When both Vss and fu values were predicted, each class

Figure 1. Distribution of compounds in the data set. (A) The distribution of logVss values in the final dataset. Lines have been draw at 0.3 L/kg
and 1 L/kg to indicate the boundaries between the three classes used in the RP models. B) Distribution of compounds based on both log Vss and log
fu values and coloring by compound charge (basic-red, neutral-yellow, acidic-green, zwitterionic-blue).
doi:10.1371/journal.pone.0074758.g001

Table 1. The descriptors included in modeling.

ACDlabs descriptors Volsurf+ descriptors MOE descriptors

ALogD5 V WO1 CW5 POL %FU4 LgS6 logS

ALogD5.5 S WO2 CW6 MW %FU5 LgS6

ALogD7 R WO3 CW7 FLEX %FU6 LgS7

ALogD7.4 G WO4 CW8 FLEX_RB %FU7 LgS7.5

APSA W1 WO5 ID1 NCC %FU8 LgS8

HDonors W2 WO6 ID2 DIFF %FU9 LgS9

HAcceptors W3 WN1 ID3 LOGP n-Oct %FU10 LgS10

FRB W4 WN2 ID4 LOGP c-Hex DRDRDR LgS11

Rule Of 5 W5 WN3 CD1 PSA DRDRAC L0LgS

Molar Volume W6 WN4 CD2 HAS DRDRDO L1LgS

MW W7 WN5 CD3 PSAR DRACAC L2LgS

Surface Tension W8 WN6 CD4 PHSAR DRACDO L3LgS

Polarizability D1 IW1 CD5 LgD5 DRDODO L4LgS

C ratio D2 IW2 CD6 LgD6 ACACAC DD1

N ratio D3 IW3 CD7 LgD7 ACACDO DD2

NO ratio D4 IW4 CD8 LgD7.5 ACDODO DD3

Num Rings D5 CW1 HL1 LgD8 DODODO DD4

Num Ar Rings D6 CW2 HL2 LgD9 SOLY DD5

D7 CW3 A LgD10 LgS3 DD6

D8 CW4 CP AUS7.4 LgS4 DD7

LgS5 DD8

doi:10.1371/journal.pone.0074758.t001
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Table 2. Statistical parameters of the PCA models and the chemical boundaries chosen during the PCA modelling.

A R2X Q2X Criteria of model calibration

Model 1 7 0.90 0.58 MWa,940 PSAb,205 POLc,71 HBDd,10 HBAe,15 and -7.71,LogSf,0.38

Model 2 7 0.79 0.73 MW,940 WO4g,100 WO6,2 PSA,205 SOLYh,0.93 Vi,1353 POL,71 LogS9j,5.3 W4k,483

Model 3 7 0.79 0.72 MW,940 WO4,100 PSA,205 SOLY,0.93 MVl,466 Rule of 5,3

aMW: molecular weight; bPSA: polar surface area; cPOL: polarizability; dHBD: hydrogen bond donors; eHBA: hydrogen bond acceptors; fLogS: log of solubility; gWO4
and WO6: hydrogen bond donor volume at different energy levels; hSOLY: intrinsic solubility; iV: molecular volume; jLogS9: log of solubility at pH 9; kW4: hydrophilic
volume; lMV: molar volume.
doi:10.1371/journal.pone.0074758.t002

Figure 2. Flowchart of the work process to obtain regression and classification models for Vss and fu. MFE = mean fold error, SI
= Sensitivity, SPEC = specificity.
doi:10.1371/journal.pone.0074758.g002
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was further divided into compounds with low to intermediate

(,0.7) or high (.0.7) fu. Compounds with missing fu values were

addressed by assigning them the mean value of all fu values and

distributing them equally in the training and external test set,

which is a standard approach to handle missing values in RP

analysis. In our study, balanced forest of RP was used, since it is

the appropriate method for imbalanced data [29]. This type of RP

contains a relatively small number of trees (in average 10) using a

separate bootstrap sample of the original data for each tree. For

each tree, the number of members in all classes is equal to the

number of members in the smallest class. The number of

descriptors that was used as split criterion within each tree was

set to the square root of total descriptors. The weighing method

was set to ‘‘uniform’’ and the equalize class sizes to true. All others

parameters were set to default.

A training set was used to build the decision trees and an

external test set was utilized to evaluate the predictive power of the

models. To generate the training and external test set for RP

analyses, all compounds were first clustered by similarity based on

root mean square deviation and each cluster was divided into

training and test sets to ensure that both sets included compounds

from each cluster. The data set used to train the model consisted of

382 compounds, while 260 compounds were used as an external

test set (Figure 2).

5. Model validation
The prediction accuracy of the PLS models was determined by

internal and external validation. The internal validation is based

on the cross-validation value Q2Y (Q2) that is calculated by leaving

out 1/7 of the data, and predicting these compounds based on a

model trained by the remaining data. The external validation is

conducted with the external test set. The model was used to

predict the log Vss and fu of the external test set. The predicted

responses were plotted against the observed responses (i.e.

experimental Vss and fu). The R2 value of the regression line for

the plot was considered as the Qe
2 (goodness of prediction of the

external test set).

We estimated the predictive ability of the RP classification

models using out-of-bag statistics. The external test set was used to

estimate the fitting ability of the model on a new dataset that was

not used in the model construction. The performance of the RP

models is based on three metrics: true positive rate (recall or

sensitivity), specificity, and the area under the curve (AUC) of the

receiver operating characteristics (ROC) plot [30]. AUC repre-

sents the probability that a classifier will be estimated correctly,

with values .0.5 indicating better than random prediction and 1

signifying perfect prediction. In the case of more than two classes

(multiclassification), a confusion matrix is a square of NxN, where

N is the number of classes. AUC is computed as defined by Hand

and Till (2001) as an average over components generated from

several ROC plots for a Y property and cannot be plotted [30].

For instance, when N (A, B, C) is 3, the classifier’s performance is

computed per class as follows for class A:

Figure 3. PCA score plot. The final PCA score plot obtained after model 3 calibration where the two principal components explain 27% and 20%,
respectively, of the variance in the data set. The open squares represent the drugs in the external test set and the filled triangles the drugs in the
training set. The ellipse depicts the 95% confidence region of the model (Hotelling T2).
doi:10.1371/journal.pone.0074758.g003

Table 3. Division of training and test set compounds into
three classes according to observed Vss.

Class 1 Class 2 Class 3 Total

Vss = 0–0.3
L/kg

Vss = 0.3–1
L/kg Vss .1 L/kg

Training 105 96 181 382

Test 62 71 127 260

Total 167 167 308 642

doi:10.1371/journal.pone.0074758.t003
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Actual=predicted ClassA ClassB ClassC

ClassA TA FB1 FC1

ClassB FA2 TB FC2

ClassC FA3 FB3 TC

Sensitvity~
TA

TAzFB1zFC1

Specificity~
TBzTC

TBzFA2zTCzFA3

6. Y-randomization test
In addition to the internal and external validation, the Y-

randomization test (response permutation test) was performed,

which estimates the robustness of models [31]. The X data are left

intact, whereas the Y data are permuted to appear in a different

order (random shuffling). A model is then fitted to the permuted Y-

data and the model statistics are computed for the derived model.

It is expected that the models from randomized activities would

have significantly lower accuracy values.

7. The applicability domain of models
An applicability domain (AD) of the model is needed to avoid

making predictions for compounds, which differ substantially from

the training set molecules. The AD is used to estimate which

compounds are suitable for model predictions and avoid

unjustified extrapolation of predictions. We used a method

introduced by Zhang et al. (2006) for defining the AD based on

the distribution of similarities between each compound and its

nearest neighbours in the training sets [32]. The AD was

calculated as follows:

AD~vdwzZs

The average of Euclidean distances between all points of the

training set were calculated from Similarity and Clustering Canvas

of Schrödinger modeling package [33], with 32 bit linear Daylight

fingerprint. Data for estimation of the Euclidean distance and

application of the AD on new compounds are available in

Files S2-S5. Then, using the distances lower than the average, a

new average distance ,d. and standard deviation s between

these distances were calculated. Z is an arbitrary parameter to

control the significance level and considerably affects the number

of compounds within the applicability domain. Increasing Z will

include compounds that are more dissimilar in the AD. We set the

value of Z to 0.7 to calculate the compounds within the AD of the

models in the foreign test set.

Results

1. PLS Regression Models
The linear regression model of log Vss and fu was attempted

with three descriptor sets: (1) 19 descriptors from ACDlabs and

MOE, (2) 121 descriptors from VolSurf+ and (3) 140 descriptors

from the combination of the two previous sets. The three sets were

first analyzed with PCA. In Table 2, the final PCA model statistics

for the three strategies are presented as well as the criteria of

selection chosen in each case. In Figure 3, the score plot of the

final PCA model of data set 3 is shown as an example. Similar

plots were obtained for the other data sets.

The statistical values of the final models are present in Figure 2.

Model 1 resulted in a non-predictive model, yielding a Q2Y

smaller than 0.50, and therefore the analysis of this set was not

taken any further. The final models were based on 332 compounds

and 9 descriptors from Volsurf+ (model 2) and 353 compounds and

11 descriptors combined from Volsurf+, ACDlabs and MOE (model

3). The PLS weight plot of model 3 is presented in Figure 4,

showing the relationships between the X-descriptors and Y-

responses, Vss and fu, at the same time. A detailed description of

PLS weight interpretation is presented in the legend. The final

equations for model 2 and model 3 are:

Model 2.

log Vss~0:1521{0:1173L1LgSz0:2858L3LgS

{0:0123SOLYz0:0122LOGPn{Octz0:0463LgD9

{0:0083WN5{0:0002W1z0:2811ID3z0:0026A

fu~0:8134{0:0348L1LgSz0:1096L3LgSz0:0733SOLY

{0:0523LOGPn{Oct{0:0227LgD9z0:0005WN5

{0:0001W1z0:5579ID3{0:0272A

Model 3.

log Vss~0:2464z0:0909LgS3{0:0269LgS10{0:0099 log S

z0:3894L3LgSz0:0465LgD10z0:0514ALogD5:5

z0:0010%FU10z0:0004MV{0:0005W1z0:0023D4

z0:0174HD

Table 4. Division of training and test set compounds into six classes according to observed Vss and fu.

Class 1a Class 1b Class 2a Class 2b Class 3a Class 3b Tota

Vss = 0–0.3 L/kg Vss = 0–0.3 L/kg Vss = 0.3–1 L/kg Vss = 0.3–1 L/kg Vss . = 1 L/kg Vss . = 1 L/kg l

& fu .0.7 & fu ,0.7 & fu .0.7 & fu ,0.7 & fu .0.7 & fu ,0.7

Training 18 87 22 68 38 149 382

Test 11 51 17 51 21 109 260

Total 29 138 39 119 59 258 642

doi:10.1371/journal.pone.0074758.t004

Parallel Prediction of Vss and Fu for Drugs
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fu~0:7052z0:0091LgS3{0:0024LgS10z0:0600 log S

z0:0277L3LgS{0:0153LgD10{0:0583ALogD5:5

z0:0009%FU10{0:0007MVz0:0001W1{0:0025D4

z0:0026HD

Where L1LgS and L3LgS are solubility profiling coefficients, logS

is the logarithm of solubility, LgS3 and LgS10 are the logarithms

of solubility at pH 3 and pH 10, respectively, SOLY is intrinsic

solubility, LOGP n-Oct is the partitioning coefficient in octanol/

water, LgD9, LgD10 and ALogD5.5 are distribution coefficients at

pH 9, pH 10 and pH 5.5, respectively, WN5 is hydrogen bond

acceptor volume, W1 is hydrophilic volume, ID3 is hydrophobic

integy moment, A is amphiphilic moment, %FU10 is % of fraction

unionized at pH 10 (not to be confused with fu), MV is molar

volume, D4 is hydrophobic volume and HD is hydrogen bond

donor.

Model 2 and model 3 were internally validated by cross-

validation, gaining Q2 values of 0.58 and 0.55, respectively. In

external validation of the models we determined their accuracy in

predicting log Vss and fu with the external test sets. In log Vss

prediction by model 2, two outliers were excluded (ribavirin and

bilobalide), while in fu prediction by model 2, four outliers

(acetylcysteine, amiodarone, aripiprazole, repaglinide) were ex-

cluded and in fu prediction by model 3, five outliers were excluded

(ethambutol, atovaquone, beclomethasone dipropionate, drota-

verine, irbesartan). The statistical results of the predictions are

presented in Figure 2. The Y-randomization test after 50

permutations provided R2Y- and Q2Y-intercepts smaller than

the recommended limits of 0.3 and 0.05 for both log Vss and fu,

respectively (data not shown).

The AD was estimated from the compounds belonging to the

training set as:

A~24:22zZ2:03

With Z = 0.7, AD is 25.641 that represent the maximum

distance between compounds in the training set and new

compound to be predicted. The compounds in the foreign test

set that fell inside this AD were selected, yielding a set of 35 drugs

for model 2, and 30 drugs for model 3. The statistical parameters

of log Vss and fu predictions for the foreign set are presented in

Table 5 and plots of the observed and predicted responses of

Figure 4. PLS weight plot of model 3. The plot illustrates the relationships between the eleven descriptors (in black) and Vss and fu (in red). The
dashed red line crosses the origo and the Vss response, and the continuous red line (perpendicular to the dashed line) represents the borderline
between negative and positive influences of the descriptors. The respective lines for fu are blue. Impact of descriptors is interpreted in the following
manner: the Vss descriptors that show orthogonal projection on the same side as Vss (on the right from red borderline) have positive impact on Vss,
and the descriptors on the left side of the borderline show negative impact on Vss. The farther away from the origo the projection of the descriptors
lies, the stronger is the impact on the corresponding response. As an example of the variables influence on Vss, two arrows have been drawn that
represent the orthogonal projections of variable LgS10 (negatively correlated to Vss) and %FU10 (positively correlated to Vss). Likewise, the
descriptors on the left side of blue borderline show positive impact on fu, and the descriptors on the right side of the borderline have negative
influence on fu.
doi:10.1371/journal.pone.0074758.g004
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model 3 and VolSurf+ ADME models are presented in Figure 5. A

comparison of the predicted and the observed values is found

Table S1. Increasing Z increases the number of compounds in the

foreign test set that are considered to be within the applicability

domain but decreases the accuracy of prediction due to inclusion

of dissimilar nearest neighbors (Figure 6).

2. RP Classification Models
The AUC for the in-bag training data for all trees in the forest

model is 0.96 and 0.92, and the out-of-bag AUC is 0.81 and 0.79

for the Vss and Vss & fu models, respectively. The in-bag results use

predictions for the records used to train the tree, while the out-of-

bag results use predictions for the left-out records. The statistics for

the training set data presented in Figure 2 are derived from the in-

bag results. The external test set including 260 compounds

(described in Methods section) was used to evaluate the predictive

ability of the two models. All compounds were classified according

to their Vss or Vss & fu values without applying AD. The overall

prediction accuracy, calculated as ROC curve, was 0.78 and 0.82,

respectively, and the sensitivity and specificity values are presented

Figure 5. Log Vss and fu prediction plots of model 3 versus VolSurf+ ADME models (Vd and protein binding). Dot lines represent 2-fold
error, dashed lines represent 3 –fold error and long dash lines represent 5-fold error. MFE: mean fold error.
doi:10.1371/journal.pone.0074758.g005

Table 5. Statistical parameters for log Vss and fu predictions
of the foreign set compounds inside the applicability domain
of the models, calculated with Z = 0.7.

Log Vss prediction of
foreign set fu prediction of foreign set

Qf
2 MFE % ,2-fold Qf

2 MFE %,2-fold

Model 2 0.62 2.85 60 0.59 5.58 54

Model 3 0.70 2.41 67 0.54 7.04 52

doi:10.1371/journal.pone.0074758.t005
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in Figure 2. The confusion matrices are presented in Tables S2-

S7.

In general, the sensitivity of the models is high for compounds

with a very low or high volume of distribution, while compounds

belonging to class 2, with Vss values between 0.3 and 1 L/kg are

more difficult to classify correctly. The Vss model performed well

on the training set, with sensitivity 0.79 in class 2, but less than half

of the class 2 compounds in the training set (42 of 93 compounds,

leading to a sensitivity of 0.45) were predicted to the correct class

in the out-of bag results (Table S3). Similarly, the model was able

to identify class 1 and class 3 compounds form the external test set

(sensitivity 0.71 and 0.81, respectively), while recognition of class 2

test set compounds was not as successful (sensitivity 0.32, Figure 2,

Table S6). Interestingly, in the Vss & fu model, compounds with

high fu were predicted more accurately, with 10 of 17 compounds

of the test set compounds correctly classified (sensitivity 0.59), but

only 7 of 51 compounds with low fu (sensitivity 0.14) (Figure 2,

Table S7). The Y-randomization test was performed four times,

and the AUC values for the model using the data set with

experimental Vss and Vss & fu values were significantly higher than

those obtained from the dataset with randomized values (data not

shown), indicating that our models are statistically robust. The AD

was applied to the test set and its effect analyzed on the Vss & fu
model (Figure 6). The prediction accuracy was highest with low Z

cutoff, as expected, and slowly decreasing as the cutoff was

increased to 1. However, increasing the cutoff from 1 to 20 did not

markedly affect the prediction accuracy, while increasing the

coverage of the test set from 39% to 100%. The small decrease in

prediction accuracy is probably due to the cluster-based approach

used to select the training and test set (described in Methods) that

make the chemical space covered by two set similar.

One aid for interpretation of forest models is a set of descriptor

importance measures, which indicate the relative importance of

the descriptors in distinguishing among the different classes in the

data. The percent selection frequency empirically appears to best

distinguish truly important descriptors from others. It represents

the percent of the time that the descriptor was selected for a split

when a split was possible. A summary of descriptors ranked as top

10 based on their frequency of occurrences in the models are given

in Table 6. It should be noted that size, polarity and lipophilicity

are predominant in all models. The simple importance measures

reported here are known to have bias in some cases [34].

However, if all descriptors have the same character as in our cases

(e.g. they are all continuous numerical properties), then bias is

generally not an issue.

Discussion

We have predicted Vss and fu with linear PLS models and

nonlinear RP classification models, aiming for models that rely on

in silico descriptors only and therefore are suitable for screening.

Vss is affected by the fu in plasma, and we wanted to explore if

predicting both parameters in parallel would help to find relevant

physicochemical descriptors affecting these parameters. PLS can

easily be used to correlate descriptors with several related

responses, but to our knowledge, this approach has not been used

in pharmacokinetic QSPR modeling.

The RP classification model was reasonably successful in

classifying compounds with high ($1 L/kg) or low (0–0.3 L/kg)

Vss, while it had difficulties to identify the compounds with

moderate (0.3–1 L/kg) Vss. Interestingly, the level of binding to

plasma proteins had an influence on the prediction accuracy,

which was seen most clearly in the moderate Vss class, where

compounds with high fu were correctly predicted in 59% of the test

set, but only 14% of those with low fu (Figure 2, Table S7). The

attempt to create a PLS model for Vss and fu (model 1) starting

with only 19 descriptors from ACDlabs and MOE was not

successful, but using a wider range of descriptors from Volsurf+
resulted in a predictive model (model 2) (Table 1 and Figure 2).

The combination of all descriptors to model 3 did not significantly

improve the prediction of the external set (Vss Qe
2 = 0.50, fu Qe

2

= 0.54) compared to model 2 (Vss Qe
2 = 0.52, fu Qe

2 = 0.51)

(Figure 2). However, model 3 had better success in predicting the

Vss of the compounds in the foreign set (model 3 Qf
2 = 0.70,

model 2 Qf
2 = 0.62) (Table 5). Notably, the prediction of the

compounds in the foreign set within the AD was better than for the

Figure 6. The effect of the AD on the prediction accuracy and chemical space coverage. Dashed black line: Q2 of the Vss foreign set
predicted with PLS model 3. Dashed purple line: percentage of compounds from the Vss foreign set predicted with PLS model 3. Black line: Q2 of the
fu foreign set predicted with PLS model 3. Purple line: percentage of compounds from the fu foreign set predicted with PLS model 3. Dotted black
line: AUC of the test set predicted with RP classification. Dotted purple line: percentage of compounds from the test set predicted with RP
classification.
doi:10.1371/journal.pone.0074758.g006
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external set for both model 2 and 3. The AD was not used to filter

compounds for prediction in the external set, which might be one

reason for the improved performance on the foreign set. The use

of an AD prevents extrapolation beyond the limits of chemical

space that was used to build the model and can be used to identify

the compounds for which predictions are reliable.

The impact of the descriptors on the responses can be observed

graphically in the PLS weight plot (model 3 in Figure 4, model 2 in

Figure S1). In model 3, the descriptors L3LgS, %FU10 and

LgD10 have the highest positively correlated impact to Vss

(L3LgS, LogP n-oct and LgD9 in model 2, Figure S1), while LgS3,

D4, Molar Volume and ALogD5.5 have a more moderate positive

influence on Vss (A in model 2). LgS10 has the largest negative

correlation to Vss (L1LgS in model 2), while W1, HDonors and

LogS have smaller negative correlation in model 3 (Wn5, SOLY,

W1 and ID3 in model2). On the other hand, LogS, LgS3 and

LgS10 have the highest positive correlation with fu (SOLY in

model 2), while LogD10 and AlogD5.5 have the highest negative

correlation (LogD9 and LOGP n-Oct in model 2). All in all, this

suggests that charge and lipophilicity of the drug affect drug

distribution, albeit with an inverse relationship. Thus, the

lipophilicity descriptors have high correlation with the two

responses, positive with Vss and negative with fu, while reversely,

the charge and solubility descriptors have negative correlation with

Vss and positive with fu. There is a complex relationship between fu
and Vss and increasing the fu of a compound does not inevitably

lead to a higher volume of drug distribution, as is stated in many

pharmacokinetic textbooks [35], [36]. This is easy to understand,

since structural changes influencing the drugs ability to bind to

plasma proteins may also affect the tissue binding of the drug.

Similar descriptors were found to be important in both the RP

classification models (Table 6) and the PLS models. These include

solubility descriptors, LogD at pH 9 or 5, as well as hydrophilic

and hydrophobic area and volume descriptors. Due to the

complexity of Vss and fu, many descriptors were always required

to yield good prediction capability. Previously, trends have been

observed between Vss and LogP, polar surface area and hydrogen

bond descriptors for the data set we have used [18]. Using the

same data set, Berellini et al. (2009) found hydrogen bonding,

LogD at pH 5–10, flexibility of the molecule and the Volsurf+
descriptors DRDRDO, DRDRAC to be important in their Vss

model [12]. DRDRDO and DRDRAC are pharmacophoric

descriptors of the maximum area of the triangles derived from Dry

(DR), H-bond acceptor (AC) and H-bond donor (DO) points in a

molecule. DRDRDO and flexibility were among the ten most

influential descriptors in the RP models, but in the PLS models

they did not have equally high importance. However, when

comparing our descriptor selection to previous models of Vss it

must be kept in mind that we have modeled both Vss and fu
parameters. Therefore a comparison is not directly applicable as

descriptors having high influence on one parameter, but no

correlation with the other parameter, are likely to be removed in

our models.

Outliers are usually interesting, and the analysis of outliers can

sometimes give a deeper understanding of the mechanisms under

investigation. However, it is difficult to analyse the outliers in this

study, because we do not know the reason for their exceptional

behavior. Deviations in Vss may be due to the active transport

(influx or efflux) or compound specific binding to the tissues. As an

example, let’s consider the outliers in the prediction of Vss by the

PLS models (ribavirin, bilobalide, tamsulosin, decitabine). Riba-

virin and decitabine are substrates of widely expressed nucleoside

transporters, and extensive active transport might lead to outlier

profiles of ribavirin and decitabine [37]. Tamsulosin is a substrate

of alpha1 adrenergic receptors and bilobalide binds to GABA,

glycine, and 5-HT3 receptors [38]. We cannot be sure, however, if

these transport and binding phenomena take place substantially

enough to cause exceptional Vss values. Clearly, Vss and fu are

complex phenomena that are affected by numerous factors.

Therefore, explanations for the outlier behavior are not on firm

ground and the reasons can be identified only by extensive

experimental work.

We compared the performance of our model 3 with the volume

of distribution and plasma protein binding models available in the

Volsurf+ package (Figure 5). As no AD is reported for the Volsurf+
models, we have applied our AD with the Z cutoff value of 0.7 to

select the compounds from the foreign test set for both models. For

the practical use of AD in Vss and fu prediction, see File S2. It

should be noted that we are not aware of which compounds have

been used to train the Volsurf+ model, and it is possible that some,

or all, of the compounds used in our test set have been used to for

that purpose. The same considerations apply for the Volsurf+
plasma protein binding model. Our model achieved higher

accuracy than the Volsurf+ model in predicting fu (Qf
2 = 0.54 and

Table 6. Most influential descriptors in the classification models.

Vss Vss and fu

Descriptor Type
Number of
Chances

Percent
Selection
Frequency Descriptor Type

Number of
Chances

Percent Selection
Frequency

Rule Of 5 Drug like 12 8.3 PSAR Polar area 4 25

CD3 Hydrophobic area 31 6.4 Num Rings Topology 5 20

FLEX_RB Size/Shape 69 5.8 W8 Hydrophilic area 5 20

L1LgS Solubility 53 5.7 R Size/Shape 10 10

CD6 Hydrophobic area 37 5.4 DRDRDO Pharmacoforic 12 8.3

CW8 Hydrophilic area 20 5 D8 Hydrophobic area 26 7.7

LgS11 Solubility 66 4.5 LgD9 LogD 32 6.3

C ratio Topology 45 4.4 ALogD5 LogD 34 5.9

NO ratio Topology 48 4.2 CP Shape 17 5.9

LgS5 Solubility 72 4.2 AUS7.4 Charge 35 5.7

doi:10.1371/journal.pone.0074758.t006
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Qf
2 = 0.38, respectively) (Figure 5), while the prediction of Vss was

comparable to the Volsurf+ model (Vss Qf
2 = 0.70 and Qf

2 = 0.71

for model 3 and Volsurf+ models, respectively). The best

predictions with our model were obtained at fu values above

0.05. Predictions of the compounds with fu values above 0.05 in

the foreign set had a MFE of only 2.2 for model 3, compared to

7.04 for the whole foreign set (Figure 5, table 5). The predictions at

fu values below 0.05 give high FE values (.5-fold), whereas %

error in this region is low. However, FE is pharmacologically a

more relevant parameter, because the free drug concentration in

plasma, Cu, is defined as fu x C. Therefore, 3-fold change in fu is

expected to result in 3 fold change in Cu Unfortunately, we do not

have an explanation for the poor results for the compounds that

have very low fu values, however, the compounds that were badly

predicted by our models were also badly predicted by the Volsurf+
model (Table S1), suggesting that the exceptional behavior is drug

dependent and not due to the model.

The physical complexity of the Vss and fu parameters makes

their prediction very challenging, and we were not able to reach

models with optimal predictability. One way to improve predic-

tion accuracy is to build the model using a narrower range of more

similar compounds. We divided the data set of 642 compounds

based on structural features or chemical properties and used these

data sets to build several sub-models. However, the models were

not able to achieve much higher accuracy than the more global

models presented here (data not shown), but presented a much

narrower AD and therefore more limited use.

Conclusions

The PLS models of Vss showed similar performance to the

commercial Volsurf+ model, while the fu prediction accuracy was

slightly better. The RP classification models were able to

distinguish between compounds with high or low Vss values, but

accurate classification of moderate Vss or of low fu values were not

as successful. Due to the complex nature of Vss and fu parameters,

a fairly large number of descriptors were needed for meaningful

models. The advantages of the models compared to previous

models is that they are based on a large set of structurally

unrelated compounds, they are open, and they have a defined AD,

which aids in identifying compounds for which reliable predictions

can be made.

Supporting Information

Figure S1 PLS model 2 weight plot.
(TIF)

Table S1 Table of predicted vs. observed values for
foreign set with PLS models.
(XLSX)

Table S2 Confusion matrix in-bag training results for
the Vss classification model.

(DOCX)

Table S3 Confusion matrix out-of-bag training results
for the Vss classification model.

(DOCX)

Table S4 Confusion matrix in-bag training results
results for the Vss & fu classification model.

(DOCX)

Table S5 Confusion matrix out-of-bag training results
results for the Vss & fu classification model.

(DOCX)

Table S6 Confusion matrix external test results for the
Vss classification model.

(DOCX)

Table S7 Confusion matrix external test results for the
Vss and fu classification model.

(DOCX)

File S1 Final data set used for models.

(SDF)

File S2 Instructions for use of applicability domain.

(DOCX)

File S3 Training set for RP models.

(SDF)

File S4 Training set for PLS model 2.

(SDF)

File S5 Training set for PLS model 3.

(SDF)

Acknowledgments

The authors would like to thank Dr. Ossi Korhonen and Dr. Jari Pajander

(School of Pharmacy, University of Eastern Finland) for their valuable help

in the initial stages of the project, Dr. Veli-Pekka Ranta for his readiness to

discuss pharmacokinetic questions (School of Pharmacy, University of

Eastern Finland) and Dr. Mikko Kolehmainen (Dpt of Enviromental

Science, University of Eastern Finland) for his experience in the use of

multivariate analyses tools.

Author Contributions

Conceived and designed the experiments: EMA LG HX MY AU HK.

Performed the experiments: EMA LG. Analyzed the data: EMA LG HX

MY AU HK. Contributed reagents/materials/analysis tools: HX MY AU.

Wrote the paper: EMA LG HX MY AU HK.

References

1. Lim VS (1991) Recombinant human erythropoietin in predialysis patients.

Am J Kidney Dis 18: 34–37.

2. Tett SE, Cutler DJ, Day RO, Brown KF (1988) A dose-ranging study of the

pharmacokinetics of hydroxy-chloroquine following intravenous administration

to healthy volunteers. Br J Clin Pharmacol 26: 303–313.

3. Paul Y, Dhake AS, Parle M, Singh B (2010) In Silico Quantitative Structure

Pharmacokinetic Relationship Modeling for Quinolone Drugs: Biological Half-

Life. 22: 4880–4890.

4. Gleeson MP, Waters NJ, Paine SW, Davis AM (2006) In silico human and rat

Vss quantitative structure-activity relationship models. J Med Chem 49: 1953–

1963.

5. Hirono S, Nakagome I, Hirano H, Yoshii F, Moriguchi I (1994) Non-congeneric

structure-pharmacokinetic property correlation studies using fuzzy adaptive

least-squares: volume of distribution. Biol Pharm Bull 17: 686–690.

6. Karalis V, Tsantili-Kakoulidou A, Macheras P (2002) Multivariate statistics of

disposition pharmacokinetic parameters for structurally unrelated drugs used in

therapeutics. Pharm Res 19: 1827–1834.

7. Karalis V, Tsantili-Kakoulidou A, Macheras P (2003) Quantitative structure-

pharmacokinetic relationships for disposition parameters of cephalosporins. 20:

115–123.

8. Lombardo F, Obach RS, Dicapua FM, Bakken GA, Lu J, et al. (2006) A hybrid

mixture discriminant analysis-random forest computational model for the

prediction of volume of distribution of drugs in human. J Med Chem 49: 2262–

2267.

9. Ng C, Xiao Y, Putnam W, Lum B, Tropsha A (2004) Quantitative structure-

pharmacokinetic parameters relationships (QSPKR) analysis of antimicrobial

agents in humans using simulated annealing k-nearest-neighbor and partial least-

square analysis methods. J Pharm Sci 93: 2535–2544.

Parallel Prediction of Vss and Fu for Drugs

PLOS ONE | www.plosone.org 11 October 2013 | Volume 8 | Issue 10 | e74758



10. Turner JV, Maddalena DJ, Cutler DJ (2004) Pharmacokinetic parameter

prediction from drug structure using artificial neural networks. Int J Pharm 270:
209–219.

11. Balakin KV, Ivanenkov YA, Savchuk NP, Ivashchenko AA, Ekins S (2005)

Comprehensive computational assessment of ADME properties using mapping
techniques. Curr Drug Discov Technol 2: 99–113.

12. Berellini G, Springer C, Waters NJ, Lombardo F (2009) In silico prediction of
volume of distribution in human using linear and nonlinear models on a 669

compound data set. J Med Chem 52: 4488–4495.

13. Fatemi MH, Ghorbannezhad Z (2011) Estimation of the volume of distribution
of some pharmacologically important compounds from their structural

descriptors. 76: 1003–1014.
14. Demir-Kavuk O, Bentzien J, Muegge I, Knapp E (2011) DemQSAR: predicting

human volume of distribution and clearance of drugs. J Comput Aided Mol Des
25: 1121–1133.

15. Zhivkova Z, Doytchinova I (2012) Prediction of steady-state volume of

distribution of acidic drugs by quantitative structure-pharmacokinetics relation-
ships. J Pharm Sci 101: 1253–1266.

16. Gombar VK, Hall SD (2013) Quantitative Structure-Activity Relationship
Models of Clinical Pharmacokinetics: Clearance and Volume of Distribution.

J Chem Inf Model.

17. Cruciani G, Crivori P, Carrupt P, Testa B (2000) Molecular fields in quantitative
structure–permeation relationships: the VolSurf approach. 503: 17–30.

18. Obach RS, Lombardo F, Waters NJ (2008) Trend Analysis of a Database of
Intravenous Pharmacokinetic Parameters in Humans for 670 Drug Compounds.

Drug Metab Dispos 36: 1385–1405.
19. Gleeson MP (2007) Plasma protein binding affinity and its relationship to

molecular structure: an in-silico analysis. J Med Chem 50: 101–112.

20. Moda TL, Montanari CA, Andricopulo AD (2007) Hologram QSAR model for
the prediction of human oral bioavailability. Bioorg Med Chem 15: 7738–7745.

21. Ma CY, Yang SY, Zhang H, Xiang ML, Huang Q, et al. (2008) Prediction
models of human plasma protein binding rate and oral bioavailability derived by

using GA-CG-SVM method. J Pharm Biomed Anal 47: 677–682.

22. ACD/Dictionary, Advanced Chemistry Development, Inc., Toronto, On, Canada.
Available: www.acdlabs.com.

23. SYBYL 8.0, Tripos International, St. Louis, Missouri, USA.

24. White NJ (1994) Clinical pharmacokinetics and pharmacodynamics of

artemisinin and derivatives. Trans R Soc Trop Med Hyg 88 Suppl 1: S41–3.

25. Watts NB, Diab DL (2010) Long-term use of bisphosphonates in osteoporosis.

J Clin Endocrinol Metab 95: 1555–1565.

26. ACDlabs software, Advanced Chemistry Development, Inc., Toronto, On,

Canada. Available: www.acdlabs.com.

27. MOE, Molecular Operating Environment, Chemical Computing Group:

Montreal, Canada, 2008.

28. SIMCAplus software, Umetrics AB, Box 7960, SE-90719 Umeå, Sweden.
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