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Abstract

We construct a model of brain circulation and energy metabolism. The model is designed to explain experimental data and
predict the response of the circulation and metabolism to a variety of stimuli, in particular, changes in arterial blood
pressure, CO2 levels, O2 levels, and functional activation. Significant model outputs are predictions about blood flow,
metabolic rate, and quantities measurable noninvasively using near-infrared spectroscopy (NIRS), including cerebral blood
volume and oxygenation and the redox state of the CuA centre in cytochrome c oxidase. These quantities are now
frequently measured in clinical settings; however the relationship between the measurements and the underlying
physiological events is in general complex. We anticipate that the model will play an important role in helping to
understand the NIRS signals, in particular, the cytochrome signal, which has been hard to interpret. A range of model
simulations are presented, and model outputs are compared to published data obtained from both in vivo and in vitro
settings. The comparisons are encouraging, showing that the model is able to reproduce observed behaviour in response to
various stimuli.
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Introduction

In recent years there has been widespread use of near infrared

spectroscopy (NIRS) to monitor brain oxygenation, haemody-

namics and metabolism [1,2]. Initially the primary chromophores

of interest were oxy- and deoxy-haemoglobin, with changes

(termed DHbO2 and DHHb, respectively) being measured using

differential spectroscopy systems [3–5]. Technical developments

made possible the measurement of absolute tissue oxygen

saturation (TOS). This quantity has been variously labelled

rSO2 (regional saturation of oxygen, Somanetics INVOS systems),

TOI (tissue oxygenation index, Hamamatsu NIRO systems) and

StO2 (tissue oxygen saturation, Hutchinson InSpectra systems).

TOS provides a percentage measure of mean oxygen saturation

across all vascular compartments in the tissue of interest. TOS has

been used extensively as a marker of tissue oxygenation in a range

of applications [6–9] but its relationship to underlying physiology

is still under investigation [10,11].

In addition to the haemoglobin chromophores, the CuA centre in

cytochrome c oxidase (CCO) is a significant NIR absorber.

Measurement of the changes in oxidation level of this centre give

rise to a signal, here referred to as the DoxCCO signal, which has

been extensively investigated as a marker of cellular oxygen

metabolism [12–15]. A number of clinical studies have been

performed to elucidate its role as a measure of cerebral well being

[16–18].

Although in the case of TOS and DoxCCO there are no

obvious ‘‘gold standard’’ measurements against which a direct

experimental validation can be performed, these NIRS signals

undoubtedly encode information of biological and, potentially,

clinical importance on tissue oxygen levels, blood flow, metabolic

rate (CMRO2), and other underlying state variables in the brain.

However the mapping between NIRS signals and the underlying

variables is not straightforward, as a number of different causes

may give rise to the same signal changes. The data on CCO redox

state is particularly difficult to interpret because of the potential

complexity of the correlations between physiological changes and

mitochondrial redox states [12,19].

Thus in order to correctly interpret and maximise the clinical

usefulness of the information that can be extracted from NIRS

data, a model of the underlying physiology is required. This is our

aim in this paper. The model we construct is based on

thermodynamic principles, and is to date the only model which

attempts to predict the state of the CuA centre in cytochrome c

oxidase in an in vivo setting. It is designed to be able to simulate

responses to physiologically and clinically important stimuli (listed

below), and is able to reproduce several experimental data sets

including both in vivo data, for example on NIRS signal changes

during functional activation [5], and in vitro data on mitochondrial

flux and redox state during hypoxia and uncoupling [20].

Moreover our simulations suggest important practical conclusions:

For example, that the DoxCCO signal contains information

independent of that contained in the other NIRS signals, and that

physiological variability between individuals has the potential to

affect its relationship with the haemoglobin signals.

The model is designed to respond to four input stimuli, which

have been chosen both because they are physiologically important,

and because there is considerable data on the response of NIRS
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signals to these inputs. The stimuli can be expected to cause

changes in the different NIRS signals via a variety of different

physiological pathways. They are

N Blood pressure changes (e.g., [8,21])

N Changes in arterial O2 levels (e.g., [22])

N Changes in arterial CO2 levels (e.g., [23])

N Functional activation (e.g., [5,24])

One key consideration has been to keep the model small enough

to allow eventual optimising of key parameters to an individual’s

data. This would be required if the signals were to be used to

interpret physiological changes in an individual, for example in the

clinical setting. For this reason rather than attempting to append a

model of mitochondrial metabolism to the large and complex

BRAINCIRC model [25], we have used this model as the basis for

a much simpler model.

In order to increase readability, model differential equations,

and tables of model variables and parameters are presented in

Text S1. The model was written and simulated in the open source

BRAINCIRC interface [26] and is available for download [27],

complete with instructions on how to reproduce each of the

simulation plots presented in this paper.

Methods

Model Structure
The model consists essentially of two components. The first is a

submodel of the cerebral circulation, which is known to respond in

complicated ways to a variety of stimuli – physical, chemical and

neuronal [28]. Though much of the physiology is still under

investigation, there are a variety of more or less simplified models

which attempt to capture some features of this control. Among

these are the models of Ursino and co-workers ([29,30] for

example), the model of Aubert and Costalat [31], and the

BRAINCIRC model [25] described in [32] and still under active

development. All of these models have contributed to the

construction of the model described in this paper.

The second component of the model presented here is a

submodel of mitochondrial metabolism. Several such models exist,

notably the models of Korzeniewski and co-workers (e.g., [33]) and

Beard and coworkers [34,35]. These models have also played a

large part in the construction of our model, and processes here are

often either caricatures or refinements of processes in these

models. The two components of the model are linked via oxygen

transport and consumption.

The basic structure of the model is illustrated in Figure 1. In

order to aid model validation, a smaller mitochondrial model

appropriate to in vitro situations will also be introduced later. In

particular this model omits all processes relating to blood flow,

with oxygen being supplied directly to the mitochondria.

Compartments
Following the normal simplification in most chemical models,

all chemical reactions are assumed to take place in solution in

compartments. A reference brain volume is assumed (although

never needed explicitly) and other volumes are calculated as

fractions of this reference volume. Thus ‘‘blood volume’’ and

‘‘mitochondrial volume’’ will refer to blood/mitochondrial volume

per unit brain volume. Processes take place at two sites: in a blood

compartment, divided into an arterial compartment with variable

volume, a capillary compartment with negligible volume, and a

venous compartment with fixed volume; and a mitochondrial

compartment with fractional volume Volmit which can be

interpreted as ml mitochondrial volume per ml tissue. The arterial

volume Volart and venous volume Volven are expressed as fractions

of normal total blood volume, so that in normal conditions,

Volart+Volven = 1. In other words they measure ml arterial/venous

blood per ml normal blood volume.

pH Buffering
Following [33], the presence of buffers in the mitochondria

serves effectively to enlarge mitochondrial volume as seen by

protons. We define an effective mitochondrial volume for protons

VolHi = RHiVolmit where

RHi~
Cbuffi

10{pHm{10 {pHm{dpHð Þð Þ=dpH
:

Cbuffi and dpH are constants.

Figure 1. Summary of the main inputs, variables and processes
in the model. Model inputs are enclosed in solid ovals, while outputs
are enclosed in dashed ovals. Pa is arterial blood pressure, SaO2 is
arterial oxygen saturation level, PaCO2 is arterial CO2 level. TOS and
DoxCCO are NIRS signals defined in the text.
doi:10.1371/journal.pcbi.1000212.g001

Author Summary

Monitoring the brain noninvasively is key to solving
various biological and clinical problems. Near-infrared
spectroscopy (NIRS) is a technique that can measure
changes in the colour of the brain. The brain has an
absolute requirement for oxygen; the spectroscopically
observed colour changes are due to the proteins that
deliver (haemoglobin) and consume (mitochondrial cyto-
chrome c oxidase) oxygen. Haemoglobin changes colour
when it binds oxygen. The changes in cytochrome c
oxidase are due to the electron occupancy (reduction) of a
particular copper metal centre in the enzyme. The way that
the state of this enzyme changes in various situations is
poorly understood. Currently there is no theoretical model
that can be used to decode simultaneously all of the
spectroscopic changes in these proteins, and thus limited
information about the underlying biochemistry and
physiology can be extracted from the NIRS signals. We
therefore constructed such a model, ensuring that it is
consistent with the scientific literature, in vivo data, and
the underlying thermodynamic principles. The model was
able to predict the physiological and spectroscopic
responses to a wide range of stimuli, including changes
in brain activity and oxygen delivery. It is likely to be of
significant value to a wide range of clinical and life science
users.

A Model of Brain Circulation and Metabolism
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Units
As discussed above, all volumes are taken as fractions of a

reference volume and are thus, strictly speaking, dimensionless.

When the reference volume is not clear the complete units will be

presented. In general, chemical concentrations are millimolar

(mM), with the reference volume being implicit (so for example

concentration of a substance Y in mitochondria has units

millimoles Y per litre of mitochondrial internal volume). The

exceptions are when a unit conversion is carried out to follow

convention or to facilitate comparison with data, as in the case of

NIRS quantities which are generally in mM and where the

reference volume is brain volume even when the quantity is

confined to some specific compartment. All blood pressures and

partial pressures of gases are in mmHg. For readability, units will

be generally omitted from the text but are presented in the

Sections B and C of Text S1.

Blood Flow Regulation
The first component of the model is a basic representation of the

mechanics of cerebral blood flow. This part of the model is a

simplification of the detailed biophysics in [29], where regulation

occurs at two sites—a proximal and a distal arterial compartment,

each responding to stimuli differently. We constructed a version of

this model with a single compartment which was able to reproduce

steady state responses to stimuli adequately, and so in our model here,

a single compartment is used. Certain processes are omitted,

including the viscous response of blood vessels, and the complexities

of the venous circulation. The conductance of the circulation, G,

determines cerebral blood flow CBF according to the ohmic equation

CBF~ Pa{Pvð ÞG:

Pa and Pv are arterial and venous blood pressure respectively, which

are parameters external to the model. Cerebral blood flow (CBF) in

the model means the volume of blood which flows through a unit

volume of tissue in unit time. G is taken to be a function of a typical

‘‘radius’’ r of the resistance vessels according to the Poiseuille law:

G~KGr4:

KG is simply a constant of proportionality. r is determined by the

balance of forces

TezTm~
PazPv

2
{Pic

� �
r, ð1Þ

where Te and Tm are, respectively, the elastic and muscular forces

developed in the vessel wall, both functions of the radius, and Pic is

extravascular pressure (assumed to be constant). (Pa+Pv)/2 is an

average intravascular pressure. Following [29] the elastic tension is

given an exponential dependence on radius:

Te~ se0 eKs r{r0ð Þ=r0 {1
� �

{scoll

� �
h: ð2Þ

Here se0, Ks, r0 and scoll are parameters, while h is the vessel wall

thickness, set by conservation of wall volume according to the

equation:

rzhð Þ2{r2~ r0zh0ð Þ2{r2
0: ð3Þ

h0 represents wall thickness when vessel radius is r0.

The muscular tension is given by

Tm~Tmaxexp {
r{rm

rt{rm

����
����
nm

� �
: ð4Þ

Tm has a bell-shaped dependence on radius, taking value Tmax at

some optimum radius rm. rt and nm are parameters determining the

shape of the curve. Maximum muscular tension Tmax is a crucial

quantity, and is affected by all stimuli which cause changes in

vascular smooth muscle tension. To this end it is useful to define a

dimensionless quantity m which represents the level of regulatory

input, giving

Tmax~Tmax0 1zkautmð Þ:

Tmax0 is a constant and kaut is a control parameter, normally set to

1, but which can be lowered to simulate loss of a vessels ability to

respond actively to stimuli. m varies between a minimum value of

mmin and a maximum value of mmax. The level of regulatory input

depends on the level of stimuli capable of producing a response in

vascular smooth muscle. These stimuli are combined into a

dimensionless quantity g which determines m via a sigmoidal

function:

m~
mminzmmaxeg

1zeg
:

A single compartment with these functional responses was found

in preliminary simulations to be able to reproduce experimentally

observed steady state responses well. Further details are presented

in the results and in Text S1.

In the model, four quantities are capable of producing direct or

indirect responses in vascular smooth muscle and hence affecting

g: arterial blood pressure, oxygen levels (taken for simplicity to be

mitochondrial oxygen levels), arterial CO2 pressure PaCO2, and

demand, which we represent as a dimensionless parameter u. In its

action within mitochondria, u may be identified with the ADP/

ATP ratio, while in its effect on blood flow it can be seen as the

level of the substrates connected with neurovascular coupling. u is

introduced in order primarily to simulate, via a single parameter,

the events occurring during functional activation. In order to

construct g, we define four quantities vPa
, vO2

, vPaCO2 and vu.

These are essentially Pa, [O2], PaCO2 and u, respectively, passed

through first order filters, in order to represent possibly different

time constants associated with each of these stimuli:

dvx

dt
~

1

tx

x{vxð Þ, x~Pa, O2, PaCO2, u: ð5Þ

The time constants tx control how long it takes for each stimulus to

have a vasoactive effect. Given that blood flow regulation in

response to a single stimulus often involves multiple processes

occurring on different time scales (for example direct and

metabolic effects of hypoxia), use of a single time constant for

each stimulus is necessarily an approximation. g is chosen to be

linear in all stimuli:

g~RP
vPa

vPa,n

{1

� �
zRO

vO2

vO2,n

{1

� �

zRC 1{
vPaCO2

vPaCO2,n

� �
zRu 1{

vu

vu,n

� �
:

A Model of Brain Circulation and Metabolism
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The parameters RP, RO, RC and Ru represent the sensitivities to

changes in the different stimuli while vx,n represents the normal

value of vx, so that at normal values of all stimuli g = 0, and hence

m = (mmin+mmax)/2.

Collapsing the complexity of the biology into a single quantity g
will necessarily have some pitfalls. However for our purposes here,

the simple form of g is sufficient.

Oxygen Transport and Consumption
Knowledge of oxygen levels in blood is necessary both in order

to interpret haemoglobin related NIRS signals, and also in order

to calculate oxygen transport to tissue. It is conceptually

simplifying to consider oxygen binding sites on haemoglobin as

the chemical of interest, with concentration four times the

concentration of haemoglobin. Thus oxyhaemoglobin concentra-

tion will refer to the concentration of filled oxygen binding sites on

haemoglobin.

Arterial oxyhaemoglobin concentration [HbO2,a] is calculated

from arterial saturation SaO2 and total haemoglobin concentra-

tion in arterial and venous blood [Hbtot] (assumed constant) via

[HbO2,a] = SaO2[Hbtot].

A quantity JO2 can be defined as the rate of oxygen flux from

blood to tissue (in micromoles O2 per ml tissue per second). A key

requirement is that total O2 supplied to the tissue is matched by

oxygen delivery. This requirement is encoded in an equation

CBF HbO2,a½ �{ HbO2,v½ �ð Þ~JO2: ð6Þ

[HbO2,a] and [HbO2,v] are the arterial and venous concentrations

of oxygenated Hb respectively. From the venous oxyhaemoglobin

level we can calculate a venous saturation SvO2 = [HbO2,v]/

[Hbtot].

The concentration of oxyhaemoglobin will clearly vary along

the capillary bed. Defining a typical capillary oxygen saturation

ScO2 = (SaO2+SvO2)/2 we can use this to calculate a typical

capillary oxygen concentration

O2,c½ �~w
ScO2

1{ScO2

� � 1
nh

: ð7Þ

w is the concentration of dissolved oxygen giving half maximal

saturation, while nh is the Hill exponent of the dissociation curve.

Clearly choosing this form for dissolved oxygen ignores possible

complications arising from the Bohr effect (see [36] for example).

By choosing a simplified form for the level of capillary oxygen,

we run the risk of miscalculating oxygen delivery. An example of a

more complete treatment using a distributed model can be found

in [37]. In order to investigate the possible errors introduced by

this simplification a distributed model was solved numerically and

the true average capillary oxygen concentration compared to that

calculated from Equation 7. The results are presented in Section D

of Text S1. The approximation causes consistent overestimation of

capillary oxygen concentration introducing an error of approxi-

mately 2.5 percent in normal circumstances. During severe

ischaemia this error can grow to 6 percent. In order to minimise

model complexity, we accept this level of error in the current

model.

The process by which oxygen is supplied to the mitochondria is

assumed to be diffusive occurring at a rate

JO2~DO2 O2,c½ �{ O2½ �ð Þ, ð8Þ

where [O2] is the mitochondrial oxygen concentration, and DO2 is

the diffusion coefficient. In order to ensure that arterial oxygen

supply can never exceed tissue oxygen delivery (and thus avoid

venous oxygenation becoming negative) we do not allow the value

of supply to exceed CBF[HbO2,a], i.e. we set JO2 = min{DO2([O2,c]

2[O2]),CBF[HbO2,a]}. More details on this crude methodology for

modelling a process which properly requires PDE modelling are

given in Appendix C of [32]. For in vivo simulations where oxygen

saturation may decrease significantly, in order to avoid non-smooth

behaviour we use the smooth approximation to the function

min x,cð Þ^c{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xzcð Þ2ze2

q
{ xzcð Þ

� ��
2, choosing e in this

case to be CBFn[HbO2,a,n]/10.

Equations 6–8 collectively serve to determine the values of

[HbO2,v], [HbO2,c], [O2,c] and JO2 and need to be solved

simultaneously.

Arterio-Venous Volumes and NIRS Measures of Blood
Oxygenation

A key variable measurable using NIRS is tissue oxygen

saturation (TOS), the average saturation level of blood in the

brain for which an absolute value can be obtained. This can be

expressed as a value between 0 and 1 or as a percentage, and in

the equations below we choose the former. In addition, changes in

tissue oxy-, deoxy-, and total haemoglobin concentration (as

distinguished from blood concentrations), termed DHbt, DHbO2

and DHHb respectively and measured in mmol(l tissue)21 can be

calculated.

In order to calculate TOS, we need only the relative volumes

Volart and Volven (and no value for the fractional volume of blood

per unit brain volume). Ignoring the capillaries, which are

assumed to have small volume, we get

TOS~
Volart HbO2,a½ �zVolven HbO2,v½ �

VolartzVolvenð Þ Hbtot½ � :

Next we assume that Volart is proportional to r2 so that

Volart~Volart,nr2
�

r2
n where Volart,n and rn are the normal values

of Volart and r. Dividing the expression for TOS through by the

normal arterial volume, Volart,n, and defining normal arterio-

venous volume ratio AVRn = Volart,n/Volven, then gives:

TOS~
r=rnð Þ2 HbO2,a½ �z HbO2,v½ �=AVRn

r=rnð Þ2z 1
AVRn

� �
Hbtot½ �

:

In order to define the other NIRS quantities we require some

estimate of absolute blood volume in the tissue. So we define a

parameter Volblood,n in (ml blood)(ml tissue)21, and get the tissue

concentrations of total, oxy- and deoxy-haemoglobin in mmol(l

tissue)21 as, respectively:

Hbt~
1000

4
VolartzVolvenð Þ Hbtot½ �Volblood,n

HbO2~
1000

4
Volart HbO2,a½ �zVolven HbO2,v½ �ð ÞVolblood,n

HHb~Hbt{HbO2:

The factor of 1000 arises from conversion from mM to mM, while

division by 4 occurs because of our definition of Hb as binding sites

on haemoglobin. Multiplication by Volblood,n is to convert to tissue

A Model of Brain Circulation and Metabolism
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concentrations. NIRS signals DHbt, DHbO2 and DHHb are then

DHbt~Hbt{Hbtn, DHbO2~HbO2{HbO2n,

DHHb~HHb{HHbn,

where Hbtn, HbO2n and HHbn are normal values of Hbt, HbO2

and HHb.

Basic Mitochondrial Submodel Structure
The second key component of the model is a basic submodel of

mitochondrial dynamics centred in particular on the oxidation

state of the CuA centre in cytochrome c oxidase. The inspiration

for this model comes from the detailed models of [33] and [34],

and the abstract model in [38]. However, in order to minimise

model size, many of the processes in [33] and/or [34] have been

omitted: in particular phosphate and ADP/ATP transport, and

the adenylate kinase and creatine kinase reactions. Further, the

behaviour of complexes I-III has been lumped into a single

process. On the other hand somewhat more detail has been

included in the treatment of complex IV (cytochrome c oxidase)

with a view to more accurate information on the redox state of the

CuA centre. It is worth mentioning that the simplifying assumption

of a single site of oxidative metabolism ignores the diverse roles of

neurons and astrocytes in brain energy metabolism.

Two redox centres in cytochrome c oxidase are identified

explicitly, CuA, and the terminal electron acceptor cytochrome a3

(henceforth termed cyta3). Each of these centres can exist in either

an oxidised or a reduced form. A reducing substrate transfers

electrons (directly or indirectly) to CuA, which in turn transfers its

electrons to cyta3. Finally cyta3 transfers its electrons to oxygen.

These three electron transfers, which we will refer to as reaction 1,

reaction 2 and reaction 3, occur at rates f1, f2 and f3. These rates

are taken to be the rates of transfer of four electrons between

substrates. They are accompanied by the pumping of protons

across the mitochondrial membrane, and hence both create and

are affected by the proton motive force Dp (also termed PMF,

discussed below). The structure of this submodel is shown in

Figure 2.

From here on, we represent the concentration of oxidised and

reduced CuA by CuAo and CuAr respectively. Similarly oxidised

and reduced cyta3 are represented by a3o and a3r respectively.

The total concentrations of CuA and cyta3 in mitochondria are

assumed constant at some value cytoxtot.

The proton motive force Dp has both a chemical and an

electrical component and has the form

Dp~DYzZ pHm{pHoð Þ:

Here DY is the mitochondrial inner membrane potential, pHo is

pH in the intermembrane space assumed to be a constant or

controllable parameter. Z = RT/F where F is the Faraday

constant, R is the ideal gas constant, and T is the absolute

temperature. The dynamics of DY are discussed below.

Protons move across the mitochondrial membrane in both

directions. A quantity p1 of protons are pumped out during the

reduction of four CuA centres, and p2 are pumped out during their

oxidation, and p3 are pumped during the final oxidation of cyta3.

ptot = p1+p2+p3 is thus the total number of protons pumped out of

the mitochondria during the reduction of one molecule of O2. The

value of p1, and hence ptot, will depend on the reducing substrate.

Proton Entry into the Mitochondrial Matrix
The protons pumped out of mitochondria during electron

transfer return into the mitochondria via leak channels at rate Llk,

and via processes associated with ATP production (i.e. through

Complex V, and during ADP/ATP and phosphate translocation)

at a rate LCV. Thus the total return of protons into the

mitochondria occurs at rate L = LCV+Llk. Following [33] the leak

rate is exponentially dependent on Dp:

Llk~kuncLlk0 exp klk2Dpð Þ{1ð Þ:

Llk0 and klk2 are parameters controlling the sensitivity of the leak

current to changes in Dp. kunc is a control parameter, normally set

to 1, used to simulate the effect of adding uncouplers to the system.

It is only altered during simulations of the simplified model of

isolated mitochondria described below.

LCV depends on both Dp and the demand u. The form

LCV~LCV ,max
1{e{h

1zrCV e{h

� �

where h~kCV Dp{DpCV0zZln uð Þð Þ

is chosen. If we identify the demand parameter u with an

(appropriately rescaled) ADP/ATP ratio, we see that this form is

similar to that for the rate of complex V in [33]. It is also

qualitatively similar to the form in [39] despite the apparent

complexity of the form in that reference. The parameter DpCV0 is

the value of Dp at which, given normal demand, LCV goes to zero.

kCV controls the sensitivity of the rate to changes in Dp. rCV controls

the relative sizes of maximal and minimal rates of LCV. If nA

protons enter the matrix for every molecule of ADP phosphor-

ylated, the actual rate of ADP phosphorylation is LCV/nA. The

current consensus value of nA is given as 4.33 in [40]. Note that

because of differences in the constructions of the two models, the

parameter nA has a somewhat different meaning to its counterpart

in [33].

Following the methodology in [35,41], the rate of change of DY
depends only on the flows of protons across the membrane and is

given by

dDY

dt
~

p1f1zp2f2zp3f3{L

Cim

:

Cim is the capacitance of the mitochondrial inner membrane.

Figure 2. Schematic representation of the mitochondrial
submodel. The CuA centre is reduced by some reducing substrate,
termed R. It in turn passes its electrons on to a terminal substrate, cyta3.
Finally cyta3 is oxidised by oxygen. All processes can in general produce
proton motive force Dp, by pumping protons out of the mitochondrial
matrix. As a result, they are also inhibited by Dp. The rates of the three
processes – initial reduction of CuA, electron transfer to cyta3 and final
oxidation of cyta3, are termed f1, f2 and f3, respectively.
doi:10.1371/journal.pcbi.1000212.g002

A Model of Brain Circulation and Metabolism
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Electron Transfer and Proton Pumping
We now return to reactions 1, 2 and 3 with rates f1, f2 and f3.

For simplicity each of these rates refers to the transfer of four

electrons. The processes associated with rates f1 and f2 are assumed

to be reversible. Assuming first order kinetics for f1 gives

f1~k1CuAo{k{1CuAr

where k1 and k21 are the forward and backward rate constants for

the reaction. Although the details of how the rate constants change

with changes in Dp are not known in advance, the equilibrium for

the reaction can be set from energetic principles: Associated with f1
we have a free energy

DG1~{4 E1zZ log10 CuAo=CuArð Þð Þzp1Dp:

The important quantity E1 is discussed further in Section C of

Text S1. Setting DG1 = 0 determines the equilibrium constant of

the reaction Keq1, giving

k1

k{1
~Keq1~10{ p1Dp=4{E1ð Þ=Z:

To allow for inhibition by changes in the proton motive force, k1 is

set as

k1~k1,0 exp {ck1 Dp{Dpnð Þð Þ,

where k1,0 is the value of k1 at normal Dp. Since demand or

experimental set-up may influence the redox state of the initial

reducing substrate k1,0 is not a constant (details in Section C of

Text S1). The exponential term reflects inhibition of the forward

rate by Dp, and the strength of this inhibition is controlled by the

parameter ck1. The backward rate constant is then determined

from the equilibrium constant:

k{1~k1=Keq1:

A very similar process can be used to set f2. Again, forward and

backward rate constants k2 and k22 are assumed, giving

f2~k2CuAra3o{k{2CuAoa3r:

This time the free energy is

DG2~{4 E2zZ log10 CuAr=CuAoð Þzlog10 a3o=a3rð Þð Þð zp2Dp,

giving the equilibrium constant Keq2

k2

k{2
~Keq2~10{ p2Dp=4{E2ð Þ=Z:

k2 is then set as

k2~k2,n exp {ck2 Dp{Dpnð Þð Þ:

ck2 controls the effect of changes in Dp on k2. The backward rate

constant is simply

k{2~k2=Keq2:

Figure 3. Summary of the main variables and processes in the
simplified model. As in Figure 1, inputs are enclosed in solid ovals,
while outputs are enclosed in dashed ovals. Components connected
with blood flow have been removed from the model. O2 levels are now
directly settable.
doi:10.1371/journal.pcbi.1000212.g003

Figure 4. The response of model steady state CBF to blood
pressure and PaCO2 changes. (A) Response to arterial blood
pressure changes with data from [44] (red squares) and [45] (green
triangles) for comparison. (B) Response to PaCO2 changes with data
from [48] (with normal resting blood flow taken as 40 ml/min/100 g) for
comparison.
doi:10.1371/journal.pcbi.1000212.g004
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Reaction 3 is assumed to be irreversible, and its rate f3 is set as

f3~k3 O2½ �a3r
e{c3 Dp{Dp30ð Þ

1ze{c3 Dp{Dp30ð Þ

� �
: ð9Þ

The quantities c3 and Dp30 are parameters controlling the

sensitivity of f3 to Dp. From the above form it is possible to

calculate an apparent second-order rate constant for the reaction

taking place at zero PMF as

k3,0~k3
ec3Dp30

1zec3Dp30

� �
: ð10Þ

Values of this parameter can be experimentally measured [42] and

the measured values are used to determine the value of k3 in the

model.

As f3 is the rate of oxygen consumption it is used to calculate the

crucial model output:

CMRO2~Volmitf3: ð11Þ

In order to simplify the model we have assumed that control of

cytochrome c oxidase is via Dp alone, ignoring the fact that

changing DpH and DY can have different effects on cytochrome c

oxidase turnover [43].

Redox State of CuA: The DoxCCO Signal
The NIRS DoxCCO signal can be identified as the change, in

mM, in the tissue concentration of oxidised CuA. In order to model

this quantity, we define

DoxCCO~1000Volmit CuAo{CuAo,nð Þ:

The factor of 1000 is to convert from mM to mM, while multiplication

by Volmit—mitochondrial volume as a fraction of tissue volume—

converts from mitochondrial to tissue concentration.

A Simplified Mitochondrial Model
Apart from the model described above, in order to set

parameters and compare model behaviour to experimental data

a simpler submodel is also constructed. This model will be referred

to as the simplified model while the model described above will be

referred to as the full model. The simplified model is designed to

simulate in vitro experiments on mitochondrial solutions, and so

Figure 5. Model responses to a step up in demand. (A) Change in CMRO2 (normalised). (B) Change in CBF (normalised). (C) Change in TOS
(percent). (D) Change in DoxCCO (mM). All parameters are held at normal values apart from u which is stepped up from 1 to 1.2 for a ten second
duration, giving rise to an approximately 3.5 percent increase in CMRO2 and an approximately 6 percent increase in blood flow. TOS increased by a
little under 1 percent, and DoxCCO also increased by about 0.05 mM corresponding to an oxidation of just under 1 percent.
doi:10.1371/journal.pcbi.1000212.g005
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omits a number of processes in the full model. A schematic of this

model is shown in Figure 3.

The key differences between the simplified mitochondrial model

and the full model are that all processes and feedback involving

blood flow are removed. Mitochondrial O2 becomes a control

parameter rather than a model output, and the reducing substrate

is not automatically assumed to be NADH, but may be chosen to

be other substrates such as succinate or TMPD. The simplified

model can also model experimental data involving uncouplers:

These are molecules, generally protonophores, that uncouple

oxygen consumption from oxidative phosphorylation, allowing

rapid electron transfer with no ATP synthesis. Data from

experiments such as that in [20] can then be used for model

parameter setting or model validation.

Results/Discussion

We intend our model to be able to reproduce standard, well-

understood experimental phenomena; however, we also wish to

use it to gain insight into areas where the physiology and

biochemistry underlying the changes in the DoxCCO signal are

poorly understood, especially quantitatively. To this end we have

explored the behaviour of the model under a range of conditions.

Autoregulation Curves and Steady State Behaviour
The steady state response of cerebral blood flow to changes in

blood pressure gives rise to ‘‘autoregulation’’ curves with blood

flow being insensitive to changes in blood pressure around the

physiological value [44–47]. This is obviously key behaviour that

our model must be able to reproduce. Steady state responses of

cerebral blood flow to other stimuli, in particular PaCO2, are also

well characterised experimentally [48]. The model steady state

blood flow responses to changes in blood pressure and CO2 levels

are plotted in Figure 4.

The pressure autoregulation curve is consistent with experi-

mental curves (e.g. the autoregulation curve in [44] constructed

from data in [46,47]) and modelled curves (e.g. using the model in

[29]). Data from these studies was used to set model parameters as

described in Section E of Text S1. The value of RC has been set so

that model steady state response to changes in PaCO2 is consistent

Figure 6. Response of haemoglobin signals to a step up in
demand. The response in mM of DHbO2 (red), DHHb (green) and DHbt
(black) to a step up in demand. The stimulus and parameter values are
as in Figure 5. In (A) tu = 0.5 s (the default value). In (B) tu = 1 s. With the
slower response time, there is more pronounced transient behaviour
including a clear initial decrease in DHbO2 before it starts to increase.
doi:10.1371/journal.pcbi.1000212.g006

Figure 7. Response of CuA redox state in the simplified model
to changes in u. (A) The time course of oxidised CuA in response to
functional activation. As in the in vivo simulations, u was changed from
1 to 1.2 for a ten second duration, resulting in an approximately 1
percent increase in CuA oxidation. (B) The steady state level of CuA

oxidation in response to varying levels of activation. u was varied from
0.2 to 100 resulting in variation in CMRO2 from 80 to 170 percent of
baseline. CuA oxidation increased steadily.
doi:10.1371/journal.pcbi.1000212.g007
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with published data [48]. Data from a hypercapnia study

described below suggests that the magnitude of this response

may vary between individuals.

Behaviour of the Model during Functional Activation
Functional activation provides a repeatable challenge giving rise

to discrete changes in metabolic demand, which can be assumed to

be primarily cerebral. Since its inception in 1993 [49–52], the

study of functional activation by NIRS (fNIRS) has rapidly

become one of the main drivers in the development of NIR

technology for monitoring the human brain. Yet there have been

few studies focusing on the DoxCCO signal, despite its potential to

inform on the critical question of neurovascular coupling. In 1999,

a paper reported on oxidation of DoxCCO during fNIRS [15].

Despite a number of attempts to dismiss this result as an optical

artefact, the basic finding has resisted such explanations [53].

However, whether the oxidation can be explained physiologically

(effect of increased oxygen delivery) or biochemically (effect of

increased ATP turnover) is not clear.

In order to shed light on such questions, functional activation

was simulated in the model, via a step up in the demand

parameter u. A ten second activation was simulated by running the

model at normal parameter values for 10 seconds, followed by a

10 second increase in u, followed by a further ten seconds at

baseline. The responses of various quantities are plotted in

Figure 5.

As expected, the increase in blood flow more than compensates for

the increase in CMRO2 so that TOS goes up. The ratio of changes in

blood flow to changes in CMRO2 is consistent with the data in [54]

where a ratio of 2:1 is typical, although higher values are reported in

[55]. Also clear from the data is that at normal parameter values an

increase in demand causes oxidation of CuA, and hence an increase in

the DoxCCO signal consistent in direction, but smaller in magnitude

(by about 50 percent) than the typical traces in [5]. Below we show

that, perhaps surprisingly, this effect is not primarily dependent on an

increase in blood flow and blood oxygenation.

The behaviour of the other NIRS signals—DHbO2, DHHb and

DHbt—during functional activation is plotted in Figure 6.

Changing the time constant associated with demand (tu) affects

the shape of the response, and the magnitude of a slight initial

increase in deoxygenated haemoglobin before it starts to drop.

Both the levels and direction of change of the haemoglobin

signals are comparable with previous experimental data [24],

although the magnitudes predicted are somewhat higher than

reported in [5].

Consistent with the analysis in [38], both the size and the

direction of DoxCCO change in response to functional activation

are sensitive to a number of model parameters including the

baseline PMF and values of the standard redox potentials. One

interesting question is whether the effect is driven solely by the

increase in cerebral blood flow associated with functional

activation. A simple way to test this is by abolishing the response

of blood flow to demand by setting Ru = 0. This reduces the

DoxCCO increase (by about 40 percent) but does not abolish it

(results not shown).

In this light it is interesting to run an analogous simulation

involving a step up in demand on the simplified mitochondrial

Figure 9. Comparison of experimentally measured and mod-
elled CCO redox states. (A) How the level of reduction of
cytochrome c varies with oxygen concentration (redrawn from
Figure 5A of [20]). (B) The equivalent data for CuA from model
simulations is presented. For the simulation, the reducing substrate is
set to be succinate, and the demand parameter u is set to be low
(u = 0.4) to represent a high phosphorylation potential.
doi:10.1371/journal.pcbi.1000212.g009

Figure 8. Relationship between CMRO2 and mitochondrial
oxygen levels during activation. The full model was run with
parameter Ru set to zero so that an increase in demand had no effect on
blood flow. Increasing u allowed increases in CMRO2 up to approx-
imately 145 percent of baseline. The three data points shown are
calculated from Figure 2 of [55] in which predictions on how tissue
oxygen levels in the ‘‘lethal corner’’ should vary with activation level
during normoxia are presented.
doi:10.1371/journal.pcbi.1000212.g008
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model. Such a change can be identified with a transient increase in

the ADP/ATP ratio in an in vitro situation. As in the in vivo case,

there was a small but significant oxidation of CuA. To see whether

this oxidation is a robust response to activation, the level of

activation was varied so that CMRO2 varied between 80 percent

and 170 percent of baseline. The results of both simulations are

plotted in Figure 7.

As is clear from Figure 7, increased demand oxidises CuA even

in the simplified model where there is no change in oxygen level.

Qualitatively similar results are obtained when an increase in

demand is replaced with uncoupling. These results suggest the

important conclusion that the change in the DoxCCO signal

during functional activation is primarily associated with changes in

proton motive force rather than being slaved to changes in oxygen

levels. The DoxCCO signal thus appears to encode information

about cerebral metabolic state independent of that contained in

the other NIRS signals.

It is also interesting to note this work supports the conclusion of

[55]: That in the physiological range, an increase in CBF is not

required for the observed increase in CMRO2 to take place. In

order to verify this, the full model was run with Ru = 0 so that

demand had no effect on blood flow. Again, significant increases in

CMRO2 – up to about 45 percent – could occur. The relationship

between oxygen levels and CMRO2 was also consistent with data

in [55] as shown in Figure 8.

Apparent Km for O2 in the Simplified Model
Understanding the response of the DoxCCO signal to changes

in oxygen concentration is central to understanding much

experimental data. Yet the details of this response are controver-

sial, even when measured during in vitro experiments in cells and

mitochondria. Partly this arises from the technical difficulty of

making measurements at low oxygen concentrations (see [56] for a

lively discussion of this from one author). In particular, debate has

centred around the Km for oxygen consumption, which is known

to be a complex function of cell metabolism [57]. Even simple

models suggest that there is no need for standard Michaelis-

Menten type behaviour of consumption rate with oxygen levels

[58]. Apart from the uncertainties in the behaviour of consump-

tion when oxygen concentration is dropped, there are also

uncertainties about how mitochondrial redox states change in

this situation. Again the quantitative response cannot be

Figure 10. The response of steady state CMRO2 to a drop in
mitochondrial O2 level. CMRO2 is in arbitrary units. (A) In coupled
mitochondria. (B) Uncoupled mitochondria. As above, for both
simulations, the reducing substrate is set to be succinate, so that input
to the system is by electron transfer to ubiquinone, and the demand
parameter u is set to be low (u = 0.4 in both simulations). For the
uncoupled mitochondria, the parameter kunc is raised from its normal
value of 1 to a value of 1000 giving an approximately four-fold increase
in maximum CMRO2.
doi:10.1371/journal.pcbi.1000212.g010

Figure 11. Model response of TOS and DoxCCO to a step down
in arterial oxygen saturation. (A) Response of TOS (percent). (B)
Response of DoxCCO (mM). A hyperaemic effect is seen in both signals.
doi:10.1371/journal.pcbi.1000212.g011
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heuristically predicted, and there is contradictory data in the

literature [59,60].

We used our simplified model to explore some of these

questions. There are very few reliable papers reporting on changes

in the CuA redox state with oxygen; therefore we focussed on a key

paper that reported on cytochrome c redox state changes [20],

which we have shown is likely to be in close redox equilibrium with

CuA during enzyme turnover [61]. Here we show that our model

is capable of reproducing quantitatively key results from [20]. In

Figure 9 the behaviour of redox state of cytochrome c and the

equivalent data for CuA in the model are presented. There is good

agreement between the experimental and modelled data. The

figure caption gives details of the simulation.

The apparent Km for oxygen of mitochondrial oxygen

consumption is quoted as 0.8 mM in [33], consistent with values

in [20]. The behaviour of CMRO2 as [O2] is lowered in the

simplified model is illustrated in Figure 10. Details of the

simulations are presented in the figure legend.

For the coupled mitochondria, half-maximal CMRO2 occurs at

a little less than 1 mM O2. For the uncoupled mitochondria half-

maximal CMRO2 occurs below 0.1 mM O2. (In order to calculate

the Vmax—and hence Km—values in the case of the coupled

mitochondria, larger values of oxygen than shown were needed.

As with the model in [58], the graph does not fit a simple

Michaelis-Menten curve well. In the uncoupled case the graph was

blown-up for very low oxygen values in order to determine the Km

value.) The model values are consistent with the results in [20]. It

should be noted that the low value of u (high phosphorylation

potential) used in these simulations was essential to get the marked

lowering of apparent Km during uncoupling. Without this choice,

the Km for coupled mitochondria is also very low, suggesting that

experimental results of this kind might be sensitive to experimental

details such as the levels of ADP supplied.

In [58] we showed that the lowering of the Km for oxygen during

uncoupling can be achieved assuming that the effect of uncoupling is

to inhibit the reverse reaction during which electrons are transferred

from cyta3 to CuA. However in the model presented in that paper the

lowering in Km was not accompanied by any increase in flux. As

shown in the graphs above our new model can simultaneously

achieve an increase in flux and a drop in the Km for oxygen.

Obtaining the qualitative behaviour shown in Figure 9, the

quantitative match in Figure 10, and the qualitative behaviour

Figure 12. Relationship between DHbO2, DoxCCO and CMRO2 during changes in arterial oxygen saturation. (A) The model was run
with normal parameter values and an approximately linear relationship between DHbO2 and DoxCCO held. (B) At these same normal parameter
values CMRO2 showed an approximately linear relationship with DoxCCO. (C) Baseline CMRO2 was lowered to about 60 percent of the normal model
baseline, by setting u = 0.1, while normal CBF was also lowered by about the same amount by setting CBFn = 0.007 ml blood per ml brain tissue per
second. A more clearly biphasic relationship between DHbO2 and DoxCCO was obtained. (D) Again, at the changed parameter values, CMRO2 had an
approximately linear relationship with DoxCCO.
doi:10.1371/journal.pcbi.1000212.g012
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during functional activation in [5] and [24] was achieved by

varying the six model parameters which control the response of

reaction rates to Dp: i.e. Dp30, c3, ck1, ck2, LCV,0, rCV and DpCV0.

This is discussed further in Section C of Text S1.

Behaviour of the Model during Hypoxia
As NIRS-derived parameters report on oxygen delivery and

consumption in the brain, there is obviously wide interest in the

effect of hypoxia on the NIRS signals. Indeed hypoxia is by far the

most common in vivo NIRS challenge, especially in animal models.

It is also amongst the most controversial, with different

mathematical algorithms leading to different conclusions about

the relationship between the haemoglobin-based NIR signals and

that of DoxCCO [22,62–64]. Even with a single algorithm [65]

different physiological explanations have been proposed for the

changes during hypoxia (large decrease in oxCCO from baseline)

and immediately post-hypoxia (small increase in oxCCO from

baseline).

Currently the debates in this area have revolved around the

physics of making the measurements (choice of wavelengths, effect

of multiple tissue layers on light transport, etc.) Moreover, the

systems studied have not always been identical (animal models

versus humans and newborn versus mature), raising the possibility

of differences in the underlying biochemistry and physiology.

Therefore an analysis of how our model behaves during hypoxia,

and how variations in the model parameters affect the relationship

between the NIR signals, is clearly important, being independent

of measurement concerns and allowing an exploration of possible

effects of physiological variation.

The dynamic and steady state responses of modelled NIRS

signals to hypoxia were explored. In the first simulation a one

minute drop in arterial oxygen saturation from 96 percent to 80

percent was carried out. The results are plotted in Figure 11.

Following hypoxia there is an increase in blood flow leading to a

partial restoration of TOS (and to a lesser extent DoxCCO) during

the hypoxia. This behaviour is connected with the rapidity of the

drop in arterial oxygen saturation and so in simulations of real

hypoxias (see next section) this adaptation is unlikely to be

observed. Both TOS and DoxCCO show an overshoot associated

with the hyperaemia following reoxygenation, consistent with

some experimental observations [65].

In [66] data on the relationship between DHbO2 and DoxCCO

during hypoxia is presented. In order to test the model behaviour

in this situation, a steady state simulation (as in the production of

steady state curves above) was carried out. The results of this

simulation are plotted in Figure 12.

In [66] a very clear biphasic relationship was reported between

DHbO2 and DoxCCO. At normal parameter values, although the

model does predict increased sensitivity of DoxCCO to oxygen

levels at lower oxygen levels, the biphasic relationship is slight

(Figure 12A). Interestingly, lowering both demand (and hence

baseline CMRO2) and normal blood flow leads to a considerably

more marked nonlinearity in the relationship (Figure 12C). This

simultaneous change in demand and normal flow leads to a

normal TOS of about 60 percent consistent with that calculated

from the absolute oxy- and deoxy-haemoglobin values in [66].

This leads to some interesting questions. In both of the

simulations above, DoxCCO has an approximately linear

relationship with CMRO2 (Figure 12B and 12D), and so any

significant drop in DoxCCO implies that arterial oxygen supply

can no longer match demand – an event we can term metabolic

failure. The simulations indicate that the threshold for metabolic

failure can be more or less sharp depending on the normal

matching of oxygen supply and demand for an individual. They

raise the possibility that the relationship between DHbO2 and

DoxCCO during hypoxia may depend on differences between

species, age, and possibly individual, with some individuals being

more vulnerable to hypoxia. This may have important implica-

tions for clinical management of patients in neurocritical care.

Comparison with In Vivo Data
In the future we intend to challenge our model to reproduce a

wide variety of in vivo data sets. Here we present preliminary results

in this direction. First we compared our model output to

experimental data from subjects undergoing the most common

challenge used to provoke responses in the oxCCO signal –

cerebral hypoxia. The data is from a study described in [67].

Modelled and measured TOS and DoxCCO signals for a subject

undergoing a hypoxic challenge are presented in Figure 13.

The stimuli were a series of drops in inspired oxygen and

consequent drops in arterial oxygen saturation. Experimentally

measured inputs to the model were SaO2, PaCO2 and mean

arterial blood pressure. All inputs were down-sampled to 1 Hz.

The baseline value of the DoxCCO signal has been brought to

zero, and in order to remove high frequency noise the data has

Figure 13. Responses of measured and modelled TOS and
DoxCCO during a hypoxia challenge. Measured (red) and modelled
(black) responses of (A) TOS (%) and (B) DoxCCO (mM) are shown.
Details are given in the text.
doi:10.1371/journal.pcbi.1000212.g013
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been filtered using a 5th order low pass Butterworth filter with a

cut-off frequency of 0.1 Hz (Matlab Mathworks Inc.)

In spite of the known inter-subject and regional variability in

TOS, both baseline TOS and changes in TOS are predicted well

for this subject by the model. The model seems to slightly

underestimate DoxCCO signal changes, although given the level

of noise in the experimental data the extent of this is not clear.

As a test of the model’s behaviour in the context of changes in

arterial CO2, NIRS data from healthy subjects monitored while

undergoing moderate hypercapnia, described in [68], was com-

pared with model predictions. In this study, the only NIRS signal

monitored was TOS. There was wide variation in baseline TOS

between subjects, corresponding to natural variability in blood flow

and CMRO2, but more importantly to the fact that the arterio-

venous ratio in the region of tissue queried can have high variability.

In all cases the modelled and measured data were qualitatively

comparable before any attempt to optimise model parameters.

However a good fit to the data could be obtained by varying two

parameters: Normal arterio-venous ratio AVRn, and RC, the

sensitivity of blood flow to PaCO2. Despite the fact that information

is often not clearly visible in the data (see Figure 14A, for example), in

all cases but one, optimisation gave positive values for RC, in other

words, the model was able to detect a positive cerebrovascular

reactivity to CO2 in the data—a fact which is potentially of clinical

importance ([69] for example). Two examples of data-sets before

and after fitting are presented in Figure 14.

Overall, preliminary comparisons between modelled and

measured in vivo data are encouraging. A future task will be to

compare further data from these studies and other in vivo studies

with model outputs.

Conclusions and Future Work
A basic model of the control of cerebral blood flow and the

behaviour of various NIRS signals has been presented. The model

is relatively simple, containing very few dynamic variables, but

nevertheless preliminary simulations show that it is capable of

reproducing basic expected behaviours, and matching experimen-

tally measured data. One important conclusion from these

simulations is that the DoxCCO signal contains information

above and beyond what is available from the other NIRS signals.

This in turn gives more hope of achieving the ultimate aim: Real

time reconstruction from NIRS data of underlying physiological

events of clinical importance.

Figure 14. Responses of measured and modelled TOS during a hypercapnia challenge. Measured (red) and modelled (black) responses of
TOS: (A) For subject 1 without optimisation. (B) For subject 1 following optimisation of AVRn and RC, which gave values of AVRn = 1.28 and RC = 1.31.
(C) For subject 2 without optimisation. (D) For subject 2 following optimisation of AVRn and RC, which gave values of AVRn = 0.286 and RC = 1.62.
doi:10.1371/journal.pcbi.1000212.g014
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So far, several model parameters have only been set

heuristically, and comparison with measured data has not been

systematic. The immediate next stage is to explore systematically

the effects of model parameters on important model behaviours,

for example on the Km for oxygen during hypoxia and the

direction of the DoxCCO signal during activation. Once key

outputs are identified it will be possible to carry out a sensitivity

analysis of the kind carried out in [34]. Parallel to identifying how

model behaviour is sensitive to parameter values, is the need to

identify which parameters are liable to show variability between

individuals, or between health and pathology. Some of our

observations in these directions are presented in Text S1. Once

these parameters have been identified, optimisation of the kind

described in Figure 14 can focus on setting these parameters from

an individual’s data.

A number of limitations of the model have been pointed out in

the text. The limitations we consider most serious are:

N The treatment the vascular tree via a single typical radius, and

of venous volume as fixed: These simplifications were based on

the ability of one-compartment models to reproduce data in

[44,45] and [48] and on the relatively small changes in venous

volume during simulations of the model in [29]. These

approximations might cause some error in predictions of

NIRS oxy- and deoxy-haemoglobin levels.

N The treatment of regulatory stimuli as additive in a simplistic

way, and each with a single time constant, hides the

complexity described in [32].

N The treatment of demand via a single parameter u. If this

parameter is related to the phosphorylation potential, then we

would expect it not to be a control parameter, but rather itself

to be affected by events such as changes in oxygenation,

introducing additional feedbacks into the model.

N The treatment of the final transfer of electrons to oxygen as a

single step: Given the complexity of events following oxygen

binding to cytochrome c oxidase [70] this might introduce

incorrect behaviour into the model.

N The setting of some model parameters in heuristic ways

because of insufficient data to ensure accurate setting.

By running sensitivity analyses and comparisons with experi-

mental data it will become clear which of these limitations affect

model behaviour appreciably, enabling us to refine the model as

necessary. The process of gathering data needed to help validate

the model is ongoing. Once the model is well validated it should be

possible to integrate its use into the normal NIRS measurement

process, greatly enriching the value of the measured data.

Supporting Information

Text S1 Supplementary material

Found at: doi:10.1371/journal.pcbi.1000212.s001 (0.21 MB PDF)
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