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High rates of antimicrobial resistance and formation of biofilms makes treatment
of Escherichia coli catheter-associated urinary tract infections (CAUTI) particularly
challenging. CAUTI affect 1 million patients per year in the United States and are
associated with morbidity and mortality, particularly as an etiology for sepsis. Phage
have been proposed as a potential therapeutic option. Here, we report the development
of phage cocktails that lyse contemporary E. coli strains isolated from the urine of
patients with spinal cord injury (SCI) and display strong biofilm-forming properties.
We characterized E. coli phage against biofilms in two in vitro CAUTI models. Biofilm
viability was measured by an MTT assay that determines cell metabolic activity and
by quantification of colony forming units. Nine phage decreased cell viability by >80%
when added individually to biofilms of two E. coli strains in human urine. A phage cocktail
comprising six phage lyses 82% of the strains in our E. coli library and is highly effective
against young and old biofilms and against biofilms on silicon catheter materials. Using
antibiotics together with our phage cocktail prevented or decreased emergence of E. coli
resistant to phage in human urine. We created an anti-biofilm phage cocktail with broad
host range against E. coli strains isolated from urine. These phage cocktails may have
therapeutic potential against CAUTI.

Keywords: phage therapy, uropathogenic E. coli, multidrug-resistance, CAUTI, biofilms

INTRODUCTION

Urinary tract infections (UTI) are among the most common community and nosocomial bacterial
infections (Flores-Mireles et al., 2019; Medina and Castillo-Pino, 2019) affecting 150 million
people worldwide each year (Stamm, 2002), and resulting in a high economic burden on society
(Lo et al., 2014; Skelton et al., 2019). UTI cause serious complications, including pyelonephritis,

Frontiers in Microbiology | www.frontiersin.org 1 May 2022 | Volume 13 | Article 796132

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.796132
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2022.796132
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.796132&domain=pdf&date_stamp=2022-05-10
https://www.frontiersin.org/articles/10.3389/fmicb.2022.796132/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-796132 August 8, 2022 Time: 8:19 # 2

Sanchez et al. Phage Therapy for E. coli CAUTI

sepsis and frequent recurrences, resulting in repetitive
antimicrobial administration and selection of multidrug-
resistant uropathogens (Flores-Mireles et al., 2019). The presence
of a urinary catheter facilitates entrance and colonization
of pathogens to the urinary tract, increasing the risk of
infection (Jacobsen et al., 2008). Although efforts have been
made to improve prevention and management of catheter-
associated urinary tract infections (CAUTI), almost all long-term
catheterized patients develop bacteriuria, and 10–30% of
patients with catheter-associated bacteriuria develop UTI-related
symptoms (Warren, 1991; Trautner and Darouiche, 2004).
CAUTI is one of the most common infections acquired in
hospitals, accounting for 40% of all nosocomial infections and 1
million cases in the United States each year (Tambyah and Maki,
2000; Stamm and Norrby, 2001; Foxman, 2010). Persons with
spinal cord injury (SCI) suffer disproportionately from CAUTI,
given the secondary complication of neurogenic bladder and the
need for chronic urinary catheterization (Manack et al., 2011;
Skelton et al., 2015; Skelton-Dudley et al., 2019). Persons with
SCI also experience a higher proportion of multidrug-resistant
infections due to frequent healthcare exposure and courses of
antibiotics over their lifetime (Kang et al., 2015; Suda et al., 2016;
Evans et al., 2017). CAUTI is associated with increased morbidity
and mortality in persons with SCI and the management of this
condition presents unique challenges in this patient population
(Skelton-Dudley et al., 2019).

Escherichia coli is the main causative agent of UTI, causing
80% of acute UTI and 33% of CAUTI (Stamm, 2002; Stickler,
2008; Foxman, 2010). Similarly, E. coli is one of the most
commonly isolated pathogens from the urine of persons with
SCI (Kang et al., 2015). E. coli can form biofilms on urinary
catheters which complicates management of CAUTI (Stickler,
2008; Niveditha et al., 2012). Biofilms are surface-associated
multicellular bacterial communities that protect individual cells
from host defenses and environmental stresses, and mediate
bacterial persistence and recurrent infections in the urinary tract
(Trautner and Darouiche, 2004; Soto et al., 2006). Due to their
structural and metabolic properties, biofilms are recalcitrant to
antimicrobial therapy (Hall and Mah, 2017). Many antibiotics
do not easily kill cells within biofilms (Singh et al., 2016; Ciofu
et al., 2022), and E. coli biofilms have been observed on urinary
catheters recovered from patients that received antibiotic therapy
(Walker et al., 2020). Furthermore, persister cells within the
biofilm can reemerge once antibiotic therapy is discontinued
(Gollan et al., 2019). Thus, not only do antibiotics often fail
to eradicate biofilms, but repetitive therapy required to treat
recurrent UTI can select for resistant microorganisms.

The current approach for treatment of CAUTI includes
targeted antibiotic therapy and replacement of the indwelling
catheter (Hooton et al., 2010; Fekete, 2021), which may contain
biofilms of the infecting organism (Trautner and Darouiche,
2004). Because multidrug-resistant UTI represent a threat to
the health and quality of life of persons with SCI, a new
management approach is needed. To address this unmet need,
here we have characterized bacteriophage (phage or 8) with
specificity toward contemporary E. coli strains isolated from the
urine of patients with SCI. Phage are ubiquitous viruses that

infect and kill bacteria irrespective of their antibiotic sensitivity
(Chan et al., 2013). Phage have been successfully used to treat
biofilm-associated infections recalcitrant to antibiotics (Wright
et al., 2009; Chan et al., 2018; Aslam et al., 2019, 2020; Cano
et al., 2020). Additionally, phage may self-dose (Terwilliger et al.,
2020), be evolved to re-target phage-resistant strains (Salazar
et al., 2021) and have features that enhance their activity in the
complex microenvironments of the mammalian host, especially
at mucosal surfaces (Green et al., 2021). Our group previously
characterized a library of phage that lyse multidrug-resistant
extra-intestinal pathogenic E. coli strains (Gibson et al., 2019).
Some of these phage have been shown efficacious in several
murine models of infection and in a case of compassionate use
of phage to treat a recurrent UTI (Green et al., 2017; Terwilliger
et al., 2021). Here, we screened and characterized this phage
library and additional novel phage for their ability to reduce the
viability of bacterial cells in biofilms of E. coli clinical strains. Our
data reveals that it is possible to generate highly lytic cocktails
with anti-biofilm activity against most E. coli isolates from our
population of patients with SCI, and that these cocktails are
active against biofilms grown in human urine and on silicone
catheter materials.

MATERIALS AND METHODS

Collection and Storage of E. coli Clinical
Isolates
De-identified E. coli strains isolated from urine specimens of
patients with SCI and their antibiotic susceptibility data were
obtained from the Clinical Microbiology Laboratory at the
Houston Veterans Administration, with approval of the Baylor
College of Medicine Institutional Review Board (Protocol H-
29737). One isolated colony of each strain was grown overnight
in LB medium, diluted 1:10 into LB medium containing 15%
glycerol, and frozen at −80◦C, until later use.

Bacteriophage
The phage used here were either previously characterized
(Gibson et al., 2019) or newly isolated from wastewater by plaque
assay. Plate stocks of single phage were used for the anti-biofilm
phage screens. Phage were purified by cesium chloride gradient
centrifugation (Green et al., 2017) for further characterization
and preparation of phage cocktails.

Human Urine Collection and Processing
Eight healthy donors (four females and four males) collected
urine over 24–48 h. All urine samples were combined
in equivalent volumes, filtered (0.22 µm pore size) and
aliquots stored at 4◦C. Use of human urine was approved
by the Baylor College of Medicine Institutional Review Board
(Protocol H-29737).

Biofilm Viability Assay
Viability of cells within biofilms was determined by an MTT
assay (Mapes et al., 2016; Grela et al., 2018) with modifications.
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Overnight cultures of E. coli were diluted (1:100) in tryptic
soy broth (TSB) and seeded in 96-well tissue culture treated
plates (Corning Inc., Corning, NY, United States). Plates were
incubated at 37◦C for 24 h, washed with phosphate buffered
saline (PBS), and incubated with 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) at a concentration of
0.45 mg/mL for 3 h in the dark. Then, the MTT was removed,
and the resulting formazan crystals were dissolved with dimethyl
sulfoxide (DMSO) for 10 min. The metabolic output of cells
within the biofilm was determined by measuring absorbance
at 540 nm in a Biotek Synergy HT (BioTek, Winooski, VT,
United States). To grow biofilms in urine, overnight cultures of
E. coli were diluted (1:100) in LB medium and incubated for 2 h.
Cells were harvested, washed, and normalized to OD600 = 0.03
in urine supplemented with 20 mg/mL of bovine serum albumin
(BSA) (Colomer-Winter et al., 2019), seeded in 96-well plates
and incubated for 24–48 h or 7 days at 37◦C. Fresh BSA-
supplemented urine was replenished every 24 h. Biofilm viability
was determined as above.

Phage Treatment of Biofilms on 96-Well
Plates
Escherichia coli biofilms grown in TSB or human urine
supplemented with 20 mg/mL of BSA were washed once with PBS
and treated by the addition of phage diluted in the appropriate
medium. The plates were incubated for 24 h at 37◦C and biofilm
viability was determined as described above.

Phage-Mediated Killing of Planktonic
Cells
Overnight cultures were diluted 1:100 in urine and inoculated
into untreated 96-well plates (Fisher Bioreagents, Ottawa, ON,
Canada) containing phage (final titer of 107 PFU/mL). The OD600
was measured every 15 min at 37◦C for a total of 24 h with
continuous shaking in a BioTek Synergy HT (BioTek, Winooski,
VT, United States) plate reader. The results are shown as bacterial
cell density and percent of untreated control cell density [%
untreated control = (OD600 treated × 100)/OD600 untreated
control] at t = 24 h.

Determination of Host Range and
Virulence of Phage
The spot titration protocol described by Gibson et al. (2019)
was used to determine phage host range and phage virulence
by efficiency of plating (EOP). Phage titers were determined by
counting individual plaques at the terminal dilution, and EOP
was calculated by dividing the titer of the phage on the test strain
by the titer of the same phage on its isolation strain.

Identification and Comparison of
Putative Phage Depolymerase Enzymes
To identify potential depolymerase enzymes, we parsed the
RASTtk annotated genomes of phage for keywords related to
depolymerases: “lysozyme,” “lysis,” “muramidase,” “hydrolase,”
“sialidase,” “levanase,” “xylanase,” “dextranase,” “rhamnosidase,”
“lyase,” “hyaluronidase,” “pectin,” “pectate,” and “lipase”

(Aziz et al., 2008; Overbeek et al., 2014; Brettin et al., 2015; Pires
et al., 2016; Latka et al., 2017; Knecht et al., 2019). We also
annotated the domains of each genome using the United States
Department of Energy Systems Biology Knowledgebase (KBase)
“Annotate Domains in a Genome” app (v1.0.7), which annotates
domains using RPS-BLAST (v2.2.31) with COGs (v3.16), CDD
(v3.16), SMART (v6.0), and PRK (v6.0), and HMMER (v3.1b2)
with Pfam (v31.0), TIGRFAMs (v15.0), and NCBIfam (v1.1)
(Arkin et al., 2018). These results were parsed using the same
keywords described above.

Alignments were performed using Geneious Alignment in
Geneious Prime 2022.0.21 or MAFFT (v7.450) (Katoh et al.,
2002; Katoh and Standley, 2013). Literature searches were
accomplished using keywords and using translations of putative
depolymerase enzymes in PaperBLAST (Price and Arkin, 2017).

Evaluation of Phage-Antibiotic
Interactions
Synography, a method to measure phage and antibiotic
synergy using an optically based microtiter plate readout was
performed as previously described (Gu Liu et al., 2020).
A normalized bacterial suspension (OD600 = 1) in urine was
seeded into untreated microtiter plates (Fisher Bioreagents, ON,
Canada) containing a checkerboard of phage and antibiotic
concentrations. The OD600 was measured every 15 min at 37◦C
for a total of 24 h with continuous shaking. Antibiotic stocks were
prepared as follows: ciprofloxacin hydrochloride (Corning Inc.,
Christiansburg, VA, United States) was dissolved in ddH2O, and
trimethoprim and sulfamethoxazole (Sigma-Aldrich, St. Louis,
MO, United States) was dissolved in DMSO (final <1%).

Escherichia coli Biofilm Growth on
Silicon Catheter Materials and Phage
Treatment
Sterile pieces of RenaSil (0.012 inches inner diameter, 0.025
inches outer diameter, 6 mm length) silicone tubing were
suspended in 3 mL of normalized bacterial suspensions
(OD600 = 0.03) in urine supplemented with 20 mg/mL of BSA
and incubated for 48 h at 37◦C with shaking. Then the silicone
tubing pieces were washed, transferred to 1.5 mL microfuge
tubes containing phage cocktails in urine, and incubated for
4–6 h at 37◦C with shaking. Subsequently, the silicone tubing
pieces were washed, transferred to a tube with 1 mL of PBS,
vortexed, sonicated for 5 min in a water bath and vortexed
again. The supernatant was serially diluted and plated to quantify
the adherent cells.

Statistical Analysis
Statistical analysis was performed with GraphPad PRISM 8
software using one-way ANOVA or two-way ANOVA, unless
stated otherwise. Dunnett’s test was performed for multiple
comparisons. All graphs show the mean and standard deviations
of at least three biological replicates from at least two
independent experiments.

1https://www.geneious.com
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RESULTS

Assessment of Biofilms From E. coli
Clinical Isolates
We assessed biofilm formation by E. coli strains isolated
from the urine of patients with SCI at the Houston Veteran
Affairs Hospital from October 2018 to December 2019. Biofilms
established in TSB or urine were washed and treated with MTT
to determine their metabolic output. We found a high prevalence
of biofilm formation by SCI E. coli, with 98% (66/67) and
100% of isolates forming biofilms in TSB and urine, respectively
(Figures 1A,B). Median biofilm levels in TSB were higher
compared to urine (0.1065 versus 0.0789, Mann–Whitney test,
p = 0.002) (Figure 1C). The spread of the values was more
uniform for biofilm formation in urine, while outliers were
observed over a larger range of absorbances in TSB. Biofilm
formation among individual strains varied in both media with
only 4 of the top 10 biofilm formers in TSB (495, 462, 640, and
544) also forming high levels of biofilms in urine.

Identification of Phage With Lytic Activity
Against E. coli Biofilms
We hypothesize that phage that reduce in vitro biofilms will have
therapeutic potential to treat CAUTI and its associated biofilms.
Thus, we screened phage (Supplementary Table 1) for their
ability to reduce E. coli grown in biofilms in TSB and urine. E. coli
DS515 was selected for this screen due to its ability to form robust
biofilms (star, Figure 1A). Of the 28 phage tested against DS515
biofilms grown in TSB, 8 (28.6%, group 1) decreased biofilm
viability by >50%, 7 (25%, group 2) reduced biofilm viability by
25–50%, and 13 phage (46.4%, group 3) did not cause a significant
reduction in biofilm viability compared to the untreated control
(Figure 2A). Interestingly, 53% (8/15) of the phage classified in
groups 1 and 2 produced plaques with halos on DS515 lawns
(Supplementary Table 1).

Since we observed differences in biofilm formation by E. coli in
TSB and urine, we tested phage against biofilms formed in urine.
To identify phage with broad anti-biofilm activity in urine, phage
were tested against two E. coli strains, DS515 and DS552. E. coli
DS552 was an average biofilm former in urine (star, Figure 1B).
The phage demonstrated diverse levels of activity against biofilms
formed in urine (Figures 2B,C). Treatment with nine phage
(HP3, ES17, 6950, 6915, 6955, HP3.1, 6935, ES21, and ES19)
resulted in >80% reduction in biofilm viability on both strains.
Treatment with some phage (for example CI5, Figure 2B) caused
increased biofilm formation compared to the untreated control,
particularly in strain DS552 (11/28 phage treatments), suggesting
that characteristics inherent to this strain favor biofilm formation
when exposed to some phage as it has been discussed before
(Hansen et al., 2019).

Anti-biofilm Phage Kill Planktonic Cells
in Human Urine
The biofilm life cycle is dynamic and includes adherent and
planktonic stages. Thus, a subset of phage with high biofilm
killing activity (HP3, ES17, ES19, ES21, ES26, 6915, and 6950)

was evaluated against planktonic cultures in urine. Phage were
added to bacterial suspensions in urine and growth was followed
over 24 h (Figures 3A,C). Although most phage tested caused
a strong initial suppression of growth and prevented full
recovery of the bacterial population, the sensitivity of planktonic
cells to phage was strain dependent. All phage except ES26
significantly decreased DS552 levels (Figures 3C,D). In contrast,
DS515 showed substantial growth recovery against each phage
(Figure 3A). Only treatment with phage HP3 and ES26 caused
a significant decrease in DS515 levels at 24 h (Figure 3B).
Importantly, phage HP3 killed planktonic cells of both strains.
Overall, these results demonstrate that phage HP3, ES17, ES19,
ES21, ES26, 6915, and 6950 effectively reduce biofilm viability
and are virulent against planktonic E. coli in urine, though their
activity is strain dependent in the latter.

Phage and Antibiotic Susceptibility of
E. coli Clinical Isolates
We next examined the host range of promising phage against
SCI E. coli by using efficiency of plating as a quantitative
readout of lytic activity (Gibson et al., 2019; Supplementary
Table 2). Figure 4 demonstrates a summary of these results
for 54 SCI E. coli isolates, including antibiotic susceptibilities
for comparison. The analysis of susceptibility to individual
phage showed that 38–71% of SCI E. coli strains were killed at
EOP > 0.001 and were classified as sensitive, whereas 4–24%
of strains were killed at 0 < EOP < 0.001 and were classified
as having intermediate susceptibility to phage. Ten bacterial
strains (10/54) were resistant to all phage (Supplementary
Table 2). We observed that 20% of phage-resistant strains were
multidrug-resistant (Magiorakos et al., 2012), compared to 55.6%
of phage-sensitive strains (Supplementary Table 2). However, no
statistically significant association was found between resistance
to phage and resistance to multiple antibiotics (Fischer’s Exact
test, p = 0.0078).

Design of Anti-biofilm Phage Cocktails
to Treat Catheter-Associated Urinary
Tract Infections
We aimed to design phage cocktails to be highly effective at
reducing biofilms and to have broad host range against our
library of SCI E. coli. The phage used in the cocktails were
prioritized based on their ability to reduce biofilms and lyse
planktonic cells of E. coli. A cocktail composed of four phage
(8Cocktail-4: HP3, ES17, ES21, and ES26) was created, which
was capable of lysing 71% of the isolates in our E. coli library
based on efficiency of plating for each individual phage. To
increase the host range of the anti-biofilm phage cocktail,
two additional phage were added (ES12 and ES19) to create
8Cocktail-6, which targets 82% of all strains in our E. coli library.
Biofilms of DS515 and DS552 were treated with increasing
concentrations of individual phage or phage cocktails made with
equal amounts of each phage. Both phage cocktails reduced
viability of biofilms formed in TSB by 81–99.5% (Figures 5A,B),
whereas viability of biofilms in urine was reduced by more
than 94% compared to the untreated controls (Figures 5C,D).
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FIGURE 1 | Biofilm formation by E. coli isolated from the urine of patients with SCI. Biofilms were grown in TSB (A) or human urine (B) for 24 h and the levels of
viable biofilm determined with an MTT assay. (C) Tukey’s style box and whiskers plot summarizing viable biofilm levels of all E. coli strains depicted in (A,B). The stars
indicate isolates DS515 and DS552 used for phage screenings in Figure 2. ∗∗p < 0.01 determined by Mann–Whitney test.

Phage ES17 and ES19 seemed to drive most of the anti-biofilm
activity of the cocktails at high concentrations (107–109 PFU/mL)
when tested in DS515 biofilms (Figure 5A). In contrast, most
individual phage were effective at reducing viability of DS552
biofilms formed in TSB (Figure 5B) at a wider concentration
range. Phage activity was more pronounced in urine, where

most phage were effective at reducing viability of both strains
across all concentration ranges. Both cocktails maintained anti-
biofilm activity at lower concentrations compared to individual
phage, suggesting there is a synergistic effect of phage within the
cocktails. Furthermore, the anti-biofilm activity of 8Cocktail-
4 and 8Cocktail-6 was demonstrated against three additional
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FIGURE 2 | Screens of E. coli phage for anti-biofilm activity. Viability of cells in the biofilm under each condition after 24-h treatment with 107 PFU/mL of phage is
represented as a percentage of the untreated control. E. coli DS515 biofilms in TSB (A) and human urine (B), and E. coli DS552 biofilms in human urine (C) are
shown. Phage were classified into groups 1, 2, and 3, based on their high, intermediate, or low/no anti-biofilm activity. ***p < 0.001, **p < 0.01, *p < 0.05.

E. coli strains (DS457, DS517, and DS549) isolated from the urine
of patients with SCI (Supplementary Figure 1). A significant
reduction in the viability of biofilms of these strains grown in TSB
and urine was observed after 24-h treatment with 107 PFU/mL of
phage cocktails.

We observed that higher levels of biofilms of E. coli DS515
grown in TSB remained after phage treatment compared to
the other conditions tested (Figure 5A). We hypothesized that
selection of DS515 phage-resistant cells may be responsible
for this phenotype. Thus, we created 8Cocktail-R (HP3, ES17,

Frontiers in Microbiology | www.frontiersin.org 6 May 2022 | Volume 13 | Article 796132

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-796132 August 8, 2022 Time: 8:19 # 7

Sanchez et al. Phage Therapy for E. coli CAUTI

FIGURE 3 | The activity of anti-biofilm phage against E. coli planktonic cells in human urine. Bacterial growth was assessed for 24 h in the presence or absence of
phage (107 PFU/mL). Bacterial growth was determined by OD600 over time and as a percentage of the untreated control at 24 h, respectively, for E. coli DS515
(A,B) and E. coli DS552 (C,D). ***p < 0.001, *p < 0.05.

FIGURE 4 | Phage lysis phenotypes and antibiotic sensitivities of 54 strains of E. coli isolated from the urine of patients with SCI. (A) Susceptibility of SCI E. coli
strains (N = 54) based on phage virulence (EOP) against each strain. (B) Antibiotic susceptibilities of SCI E. coli strains (N = 54, except for Pip/Tazo N = 46).
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FIGURE 5 | Design of anti-biofilm phage cocktails. Results depict the percentage of viable biofilms after 24-h treatment with phage, using the untreated control
biofilm as the denominator. Biofilms of two strains of E. coli (DS515 and DS552) were treated with increasing doses of individual phage and three phage cocktails
(8Cocktail-4: HP3, ES17, ES21, and ES26; 8Cocktail-6: HP3, ES12, ES17, ES19, ES21, and ES26; 8Cocktail-R: HP3, ES17, ES19, and HP3.1). Biofilms were
grown in TSB (A,B) and human urine (C,D). Symbols denote significant difference; ∗ compared to corresponding treatment with 8Cocktail-6, # compared to
corresponding treatment with 8Cocktail-4, and ∼ compared to the untreated control. ∗/#/∼p < 0.05, ∗∗/##/∼∼p < 0.01, ∗∗∗/###/∼∼∼p < 0.001.
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ES19, and HP3.1) containing a novel phage, HP3.1, which was
evolved from phage HP3 and is capable of lysing phage-resistant
cells (Salazar et al., 2021). Even though 8Cocktail-R contained
phages ES17 and ES19, which independently showed the highest
anti-biofilm activity, treatment with 8Cocktail-R was inferior
to treatment with the other phage cocktails and individual
treatment with ES17 and ES19 (Figure 5A). Only treatment
with 107 PFU/mL of 8Cocktail-R showed significant difference
compared to the untreated control in biofilms of DS515 grown
in TSB. This suggested antagonistic interactions of phage HP3.1
with the other phage in the cocktail under these conditions. In
contrast, the activity of 8Cocktail-R against biofilms of DS515
in urine and biofilms of DS457, DS517, DS459, and DS552
(Figures 5B–D and Supplementary Figure 1) in TSB and urine
was comparable to the activity of 8Cocktail-4 and 8Cocktail-6
(Figures 5B–D and Supplementary Figure 1). Overall, these data
suggest that specific characteristics of biofilms of E. coli DS515 in
TSB may render it tolerant to phage treatment and this will be
further explored in future studies.

Identification of Putative Depolymerase
Enzymes in Anti-biofilm Phage
Most of the phage included in the cocktails produced plaques
with halos (Supplementary Table 1; Gibson et al., 2019). This
phenotype is associated with degradation of bacterial extra-
polymeric substance by phage depolymerase enzymes (Pires
et al., 2016). Parsing gene annotations for keywords related to
depolymerases uncovered two genes in the T4-like phage HP3,
HP3.1, ES12, ES19, ES21, and ES26 (Supplementary Table 3).
The first gene encodes the baseplate hub central spike (gp5 gene
in phage T4) that hydrolyzes the bacterial cell wall locally to
allow the tail tube to inject the phage DNA (Arisaka et al.,
2003). The second gene encodes the endolysin (e gene in phage
T4), which participates in peptidoglycan degradation from within
resulting in bacterial cell lysis and release of phage progeny
(Schmelcher et al., 2012). This method also uncovered a putative
endolysin in phage ES17.

Since gene annotations can easily miss a potential
depolymerase, we also annotated the domains of the genomes
and parsed the results for the depolymerase keywords
(Supplementary File 1). This method uncovered a putative
distal long-tail fiber protein (Supplementary Table 3) in phage
HP3, HP3.1, ES12, ES19, ES21, and ES26. This putative tail
fiber protein contains a “chaperone of endosialidase” and three
pyocin knob domains, two domains found in the endosialidase
enzyme of phage K1F which is involved in degradation of
the E. coli K1 polysialic acid capsule (Stummeyer et al., 2006;
Schwarzer et al., 2007; Buth et al., 2018). The T4-like phage
had three different alleles of this protein, one found in HP3
and HP3.1, one found in ES12 and ES26, and one found in
ES19 and ES21 (Supplementary Figure 2 and Supplementary
Table 3). Interestingly, this gene is not found in phage T4.
Analysis of the annotated domains also uncovered another
protein not found in phage T4 and predicted to contain a lytic
transglycosylase domain, which can have N-acetylmuramidase
activity (Fukushima et al., 2008). ES17 was also found to contain

a putative transglycosylase domain. Interestingly, the putative
endolysin and the putative transglycosylase domain identified
in phage ES17 were unlike anything found in either the T4-like
phage or the literature.

Anti-biofilm Phage Cocktail Synergizes
With Antibiotics in Human Urine
Although phage may eventually be a stand-alone treatment,
previous studies suggest that using phage and antibiotics together
may be advantageous (Khawaldeh et al., 2011; Aslam et al.,
2020; Gu Liu et al., 2020). We determined the effect of multiple
8Cocktail-6 titers in combination with increasing concentrations
of trimethoprim/sulfamethoxazole (sensitive) and ciprofloxacin
(resistant) on the growth DS515 in urine (data not shown). DS515
treated with trimethoprim/sulfamethoxazole (8/152 µg/mL)
resulted in ∼50% of the bacterial killing achieved by the
8Cocktail-6 alone (108 PFU/mL) (Figure 6A). Resistance to
the phage cocktail emerged at 12 h post-treatment in the
phage alone treatment but was not observed in the presence of
the antibiotic. Combined phage-antibiotic treatment resulted in
higher bacterial killing compared to any of the antimicrobial
treatments alone (Figure 6B). Finally, we assessed the effect
of combining 8Cocktail-6 with ciprofloxacin to which DS515
is resistant. As expected, treatment with ciprofloxacin alone
did not impair bacterial growth, whereas treatment with phage
cocktail (109 PFU/mL) resulted in ∼50% reduction in bacterial
levels (Figure 6C). Resistance to phage emerged at around 6 h
post-treatment with 109 PFU/mL of 8Cocktail-6. Interestingly,
combined phage-antibiotic treatment resulted in higher bacterial
killing at 24 h suggesting that phage treatment re-sensitized the
bacterial cells to a previously resistant antibiotic (Figures 6C,D).

Anti-biofilm Phage Cocktails Reduce
7-Day-Old Biofilms and Biofilms on
Catheter Material in Human Urine
Susceptibility of biofilms to phage activity may vary depending
on the age of the biofilm (Verma et al., 2010; Vidakovic et al.,
2018). To determine the efficacy of our phage cocktails against
biofilms in an older developmental stage, E. coli DS515 and
DS552 biofilms grown in human urine for seven consecutive
days were treated with phage for 24 h. Biofilms on microplates
were exposed to 8Cocktail-4, 8Cocktail-6 and 8Cocktail-R
(107 PFU/mL and 109 PFU/mL) and viability of the remaining
biofilm was determined using an MTT assay. One biological
replicate per condition was plated on BDTM CHROMagarTM

orientation medium to confirm that only E. coli was present
in the biofilms at the end of the experiment. Treatment with
phage cocktails resulted in reductions of 30–52.3% in biofilm
viability for both bacterial strains (Figures 7A,B). Treatment
with 109 PFU/mL of cocktail 8Cocktail-4 resulted in the highest
reduction in biofilm viability for E. coli DS515 (49.9%), whereas
treatment with 109 PFU/mL of 8Cocktail-6 resulted in the
highest reduction in biofilm viability for E. coli DS552 (52.3%).

Finally, we explored the efficacy of our novel phage cocktails
against E. coli biofilms on RenaSil silicon tubing (silicone urinary
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FIGURE 6 | Phage cocktail-antibiotic interactions in human urine. Bacterial growth was monitored for 24 h by measuring OD600 in the presence of different
antimicrobial combinations. Growth curves and interaction plots show additive effects of representative phage-antibiotic combinations: (A,B)
trimethoprim/sulfamethoxazole (TMP/SMX), 8/152 µg/mL plus 108 PFU/mL of 8Cocktail-6; (C,D) ciprofloxacin (CIPRO), 8 µg/mL plus 109 PFU/mL of 8Cocktail-6.
8Cocktail-6: HP3, ES12, ES17, ES19, ES21, and ES26. **p < 0.01.

catheters predominate in the clinical setting) in urine. Pre-
formed 48-h biofilms of E. coli DS515 and DS552 on silicon
tubing were treated with phage cocktails for 4 h. The number of
live cells within the biofilm after phage treatment (107 PFU/mL)
was quantified by determining colony forming units. Treatment
with 8Cocktail-4 and 8Cocktail-6 resulted in a decrease in
bacterial burden of ∼2 logs for both strains (Figure 7C). Treating
biofilms of E. coli DS515 for 6 h with a higher dose of phage
cocktails (109 PFU/mL) resulted in no significant decrease in
bacterial burdens (Figure 7D). This may be due to the ability
of DS515 to recover after initial phage suppression as observed
in Figure 3A. As previously observed (Figure 5A), the presence
of phage HP3.1 in 8Cocktail-R did not help to overcome the
tolerance of DS515 to the phage cocktails (Figure 7D), suggesting
that different mechanisms of resistance to those targeted by
phage HP3.1 are involved in the inability of phage to reduce
viability of DS515 biofilms observed under these conditions. In
contrast, increasing the dose of phage cocktails and incubation
time resulted in a higher reduction (∼4-log) in bacterial burdens
recovered from E. coli DS552 biofilms incubated with all cocktails
tested (Figure 7D).

DISCUSSION

Biofilm formation is a key virulence determinant that facilitates
E. coli pathogenesis in the urinary tract and is associated with

increased fitness in the bladder, and higher rates of antimicrobial
resistance and relapse after the original UTI (Soto et al., 2006;
Sanchez et al., 2013; Karigoudar et al., 2019; Shah et al., 2019).
In this study, we developed and characterized a novel strategy to
combat E. coli biofilms. We found that: (i) biofilm formation by
individual E. coli strains differs in complex medium and urine, (ii)
some phage are lytic and maintain biofilm-killing capabilities in
urine, (iii) cocktails of phage from our library target most E. coli
isolated from our patient population, (iv) phage cocktails with
broad host range are highly effective in two models of CAUTI,
and (v) phage cocktails synergize with antibiotics.

Our results shed light on the biofilm production phenotypes
of E. coli strains isolated from the urine of patients with
SCI, who frequently require chronic bladder catheterization
(Hines-Munson et al., 2021). Virtually all E. coli strains in
our library formed biofilms. Interestingly, biofilm formation by
individual strains varied depending on the growth medium,
with some strains forming more biofilm in TSB compared with
urine and vice versa. This is not surprising as the expression
of adhesins and other structural components of biofilms is
affected by environmental conditions, including the availability
of nutrients and oxygen concentration (Hufnagel et al., 2016;
Eberly et al., 2017). Additionally, differences in function of type
1 pili, which are critical for biofilm formation and colonization
of the bladder in mouse models, have been found in E. coli
isolated from urine despite the presence of intact fim operons
(Schreiber et al., 2017).
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FIGURE 7 | Activity of phage cocktails against 7-day biofilms and biofilms on catheter material in human urine. Biofilms of E. coli DS515 (A) and DS552 (B) were
grown in human urine for seven consecutive days and then treated with two doses of phage cocktails for 24 h. Results depict the percentage of viable biofilms after
treatment with phage, using the untreated control biofilm as the denominator (A,B). Silicon RenaSil tubing pieces (∼6 mm) were incubated in bacterial suspensions
in human urine for 48 h, washed and treated with 107 PFU/mL of phage cocktails for 4 h (C) or 109 PFU/mL of phage cocktails for 6 h (D). Silicon tubing was
washed, sonicated, and the resulting fluid was plated to quantify the bacterial burden. 8Cocktail-4: HP3, ES17, ES21, and ES26, 8Cocktail-6: HP3, ES12, ES17,
ES19, ES21, and ES26, and 8Cocktail-R: HP3, ES17, ES19, and HP3.1. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. CFU, colony forming units; LOD, limit of detection.

Here, we identified a group of phage that reduce biofilms of
two distinct E. coli isolates. Many phage with anti-biofilm abilities
produce plaques with halos on bacterial lawns. These include
phage ES17 which encodes a putative capsular depolymerase
(pectinesterase) within its tail fibers (Green et al., 2021).
The production of plaques with halos is associated with
the degradation of the surrounding cells and/or their matrix
material by phage-encoded depolymerase enzymes and increased

performance against biofilms (Pires et al., 2016). Some phage
with anti-biofilm activity did not produce plaques with halos (for
example, HP3 and 6950). Physical properties including phage
adsorption and amplification rates and phage diffusion within
biofilms, are predicted to impact degradation of biofilms by
phage (Gonzalez et al., 2018; Simmons et al., 2018; Hansen et al.,
2019). These may play a role in the lytic activity against biofilms
observed in phage that do not produce halos.
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Traditionally, therapeutic phage are identified by determining
phage lysis of planktonic cells or bacterial lawns (Hyman, 2019).
Here we observed that efficient lysis of bacterial lawns or
biofilms did not always translate into efficient lysis of planktonic
cells in urine, which seemed in part to be dependent on the
bacterial strain tested. Consistent with reports that phage are
lytic in human environments such as blood (Ma et al., 2018),
urine (Valerio et al., 2017) and mucosal surfaces (Green et al.,
2021), we show that anti-biofilm phage are lytic in urine, but
their activity may differ depending on the bacterial growth
conditions. This highlights the importance of testing phage
activity under host relevant conditions to unravel potential
limitations that individual phage may have to kill the target
strain. This type of sensitivity testing would increase the quality
of therapeutic phage. Indeed, the inability of therapeutic phage
to reduce biofilms has been hypothesized to have caused
therapy failure in cases of chronic biofilm-associated infections
(Aslam et al., 2020).

One of the limiting steps in developing therapeutic phage
is identifying phage that are specific for the bacterial strain
causing the infection. To overcome this, we created cocktails that
target most strains in our E. coli library. Phage in our cocktails
synergized to effectively reduce biofilms in two in vitro models
of CAUTI. Of particular significance is the effectiveness of phage
cocktails at low concentrations against biofilms formed on 96-
well plates, the ∼2 log decrease in biofilms on silicon catheter
material after only 4 h of phage treatment at a medium dose,
and the ∼4 log decrease in DS552 biofilms on catheter material
when the phage dose and incubation period is increased. The
higher effectiveness of cocktails compared to individual phage
may be due to the collective behaviors of the group, such as
exploitation of the activity of depolymerase enzymes produced
by some phage in the cocktail (for example ES17) by other phage
that do not produce these types of enzymes (Cornelissen et al.,
2011; Schmerer et al., 2014).

Our bioinformatic analysis showed that HP3/HP3.1, ES12,
ES19, ES21, and ES26 encode a distal long-tail fiber protein
with putative endosialidase activity that may target extracellular
bacterial polysaccharides. Three distinct alleles of the putative
long-tail fiber protein were identified, which may explain the
differences in host-range and plaque morphologies among these
phage as it has been reported for other coliphage (Stummeyer
et al., 2006; Guo et al., 2017). For example, while phage ES19
and ES21 produced plaques with halos, phage HP3 and HP3.1
encoding a different allele of the same protein did not produce
plaques with halos and showed lower activity against biofilms
relative to the other T4-like phage.

We also demonstrated that our phage cocktails maintain anti-
biofilm activity against older biofilms grown in human urine. The
activity of individual phage has been shown to decrease in older
biofilms (Vidakovic et al., 2018). Our findings reveal another
advantage for the potential use of phage combinations to treat
long-term biofilms associated with CAUTI. Previous studies have
reported the effectiveness of phage to reduce biofilm formation
on catheter material (Curtin and Donlan, 2006; Fu et al., 2010;
Townsend et al., 2020; Rakov et al., 2021), however, the effect
of urine on phage activity in these model systems had not been

explored. Our results are very promising in that phage cocktails
may reduce or eliminate biofilms on silicon medical devices
in vivo and this is currently being evaluated by our group.

Phage may find a therapeutic niche as adjunct therapy to be
given in addition to antibiotics. We observed additive effects
between 8Cocktail-6 and two antibiotics commonly used to
treat UTI (trimethoprim/sulfamethoxazole and ciprofloxacin)
irrespective of the sensitivity status of E. coli DS515. As
it has been shown with combination of phage HP3 and
antibiotics (Gu Liu et al., 2020), the combination of 8Cocktail-
6 and antibiotics decreased the bacterial revival observed
at late time-points in phage-alone treatments. The addition
of trimethoprim/sulfamethoxazole completely inhibited the
emergence of phage-resistant cells, whereas increased sensitivity
to ciprofloxacin was observed in cells that grew after initial
suppression. It is hypothesized that the simultaneous or
sequential exposure of bacterial cells to two selective pressures
(phage and antibiotics) decreases the chances of emergence of
resistance (Torres-Barcelo and Hochberg, 2016). Tradeoffs of
developing resistance to one agent may increase sensitivity to
the second agent (Verma et al., 2009; Burmeister et al., 2020;
Burmeister and Turner, 2020), which may be the mechanism at
play when DS515 is treated with 8Cocktail-6 and ciprofloxacin.
The present study supports the advantages of using combinatorial
treatments of phage and antibiotics that have been previously
described in vitro and in vivo (Torres-Barcelo and Hochberg,
2016; Suh et al., 2022).

Although testing antimicrobials under clinically relevant
conditions (for example human urine) may be advantageous,
there are some limitations to this approach. Bacterial growth
is limited under the nutrient restricted conditions in urine,
and there are host components that are not present in vitro,
which potentially aid bacterial growth during UTI, including
proteins such as fibrinogen that are induced during inflammation
(Flores-Mireles et al., 2019). Thus, evaluation of phage-antibiotic
interactions in additional growth media may be warranted.
A limitation of our study is that phage-antibiotic synergy against
biofilms was not explored. The addition of phage decreased
antibiotic concentrations required to eradicate E. coli biofilms
in a study by Hyman (2019). As we observed, phage killing
of biofilms and planktonic cells in urine can differ greatly,
thus results of phage-antibiotic synergy in planktonic cells may
not be completely translatable to biofilms. Our future studies
will evaluate phage-antibiotic interactions during treatment of
E. coli biofilms.

Creating a phage cocktail active against contemporary E. coli
isolates from patients with SCI at our institution circumvents
many of the barriers to initiating clinical evaluation of phage
as a therapeutic option to recalcitrant CAUTI. Since the
phage included in our phage mixtures have been extensively
characterized, and some have also been successfully used for
phage therapy in animal models of infection and in a human
case of compassionate use (Green et al., 2017; Aslam et al.,
2020; Terwilliger et al., 2021), we believe that these anti-biofilm
phage cocktails have high therapeutic potential to treat CAUTI.
Future studies will evaluate the efficacy, pharmacokinetics and
pharmacodynamics of the cocktails described here in animal
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models of CAUTI and will allow further refinement of our phage
cocktails before clinical evaluation.
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Supplementary Figure 1 | Activity of phage cocktails against E. coli isolated from
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Supplementary Figure 2 | MAFFT alignment of the amino acid sequence of the
distal tail-fiber protein with putative endosialidase activity identified in phage
included in the anti-biofilm phage cocktails. An identity histogram is shown at the
top: green represents 100% identity across samples, greeny-brown represents
between 30 and 100% identity, and red represents <30% identity. Black lines
represent amino acid differences from the majority consensus.
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