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Purpose: To quickly and automatically propagate organ contours from pretreatment to fraction
images in magnetic resonance (MR)-guided prostate external-beam radiotherapy.
Methods: Five prostate cancer patients underwent 20 fractions of image-guided external-beam radiotherapy
on a 1.5 TMR-Linac system. For each patient, a pretreatment T2-weighted three-dimensional (3D)MR imag-
ing (MRI) scanwas used to delineate the clinical target volume (CTV) contours. The same scanwas repeated
during each fraction, with the CTV contour being manually adapted if necessary. A convolutional neural net-
work (CNN) was trained for combined image registration and contour propagation. The network estimated
the propagated contour and a deformation field between the two input images. The training set consisted of a
syntheticallygenerated ground truth of randomly deformed images and prostate segmentations.We performed
a leave-one-out cross-validation on the five patients and propagated the prostate segmentations from the pre-
treatment to the fraction scans. Three variants of the CNN, aimed at investigating supervision based on opti-
mizing segmentation overlap, optimizing the registration, and a combination of the two were compared to
results of the open-source deformable registration software package Elastix.
Results: The neural networks trained on segmentation overlap or the combined objective achieved
significantly better Hausdorff distances between predicted and ground truth contours than Elastix, at
the much faster registration speed of 0.5 s. The CNN variant trained to optimize both the prostate
overlap and deformation field, and the variant trained to only maximize the prostate overlap, pro-
duced the best propagation results.
Conclusions: A CNN trained on maximizing prostate overlap and minimizing registration errors pro-
vides a fast and accurate method for deformable contour propagation for prostate MR-guided radiother-
apy. © 2019 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American
Association of Physicists in Medicine. [https://doi.org/10.1002/mp.13994]
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1. INTRODUCTION

External-beam radiotherapy is one of the standard treatments
for prostate cancer.1 Because of the superior soft-tissue con-
trast, magnetic resonance imaging (MRI) is increasingly used
in planning and guiding prostate radiotherapy.2,3 Extreme
hypofractionation with stereotactic body radiotherapy
(SBRT) in prostate cancer leads to low genitourinary (GU)
and gastrointestinal (GI) toxicity.4 Recently, MR-guided
radiotherapy (MRgRT) has become viable,5–7 resulting in
even lower GU and GI toxicity.8 In MRgRT, a pretreatment
MRI is used to delineate the clinical target volume (CTV),
prior to the daily fractions of radiotherapy. At the start of each
fraction, the pretreatment scan is registered to the daily frac-
tion scan. The CTV contour is propagated by deforming it
according to the registration and, if necessary, it is manually
adjusted. Registration and the manual adjustment of contours
are time-consuming and hinder the effectiveness of the treat-
ment due to potential intra-fraction motion of the prostate.

A contour propagation method that is fast and also
requires minimal manual adjustments is therefore desirable.9

Although the prostate is often considered to move rigidly,
analyses of prostate motion have shown that a variable degree
of deformation is present.10 For this application, deformable
image registration methods are achieving very good contour
propagation accuracy.11–14 Conventional registration meth-
ods, however, use iterative optimization to estimate the defor-
mation between two images, which makes these methods
relatively slow, requiring several minutes.

An alternative to contour propagation is automatic seg-
mentation of the prostate in the fraction images. In the past
years, many algorithms for automated segmentation of the
prostate in MR images based on deep learning have been pro-
posed.15–19 Overall, these methods perform well at this
auto-contouring task. However, in prostate radiotherapy, prior
contours are available that can be used as a basis for new con-
tours. In addition, the CTV is not necessarily the prostate
alone, and can include a variable margin around the prostate
(in our case a 4-mm margin around the GTV was used) or
additional tissue (e.g., the seminal vesicles). In a propagation
method, this variability in the delineations can be taken into
account using a previous delineation, whereas a segmentation
method would only be able to delineate the prostate, which
allows for little flexibility.

Contour propagation can be interpreted as a combination
of registering a moving image IM to a fixed image IF and sub-
sequently applying the obtained transformation to the moving
image’s contour CM, which results in an estimate of the fixed
image’s contour CF. In the case of MR-guided radiotherapy,
the pretreatment scan will be the moving image, as it needs to
be transformed to align with the image recorded during ther-
apy. When applying the obtained transformation T to the pre-
treatment contour CM, it should be similar to the contour of
the fraction image CF , that is, CMðTÞ should match CF . Con-
ventional image registration algorithms approach this prob-
lem as an optimization problem in which the transformation
is optimized iteratively by maximizing the similarity of the

images IMðTÞ and IF .
20 Recent studies have shown that deep

learning methods can significantly accelerate deformable
image registration. Unsupervised, weakly supervised, and
strongly supervised neural networks have been used to esti-
mate deformation vector fields directly from two images.
Unsupervised methods learn the deformation directly from
pairs of images without a ground truth deformation vector
field by maximizing a similarity metric.21–27 Strongly super-
vised methods use a ground truth deformation vector field,
usually by applying known transformations to a set of images
during training.28–34 Weakly supervised methods are a variant
of unsupervised methods, in which the similarity metric is
replaced by learning an auxiliary task, such as maximizing
the overlap of known segmentations.35 Weakly supervised
registration algorithms are particularly well-suited for contour
propagation, as they implicitly can use contour overlap to
guide the registration. In earlier work, we have shown that it
is possible to use synthetic transformations to train a neural
network for image registration in a supervised fashion in case
of limited training data.36 In this paper, we therefore explore
strongly and weakly supervised learning for contour propaga-
tion in MR-guided prostate radiotherapy. We train a CNN to
estimate deformation vector fields from two MR images and
directly apply the deformation to the associated CTV seg-
mentation. Because this can be done in one forward pass
through the network, the proposed method is significantly
faster compared to conventional iterative image registration.
The network can be trained to optimize the deformation field,
the overlap of the transformed segmentation with the true seg-
mentation, or a combination of the two. We test three variants
of the network to assess the effect of the objectives on the
accuracy of the propagated contours. The network architec-
ture that we propose is based on previous work on registration
of pulmonary computed tomography (CT) inhale-to-exhale
registration,36,37 which showed that complex deformable reg-
istration can be accomplished end-to-end with supervised
convolutional neural networks (CNNs). The performance of
this network for pulmonary CT registration was close to that
of existing conventional methods, but with substantially fas-
ter, sub-second registration times. In this paper, we adapt this
architecture to also include the transformation of the contour.
We test the proposed method on the contour propagation
from pretreatment to daily fraction scans. In addition, we
compare to an open-source registration method.

2. MATERIALS AND METHODS

2.A. Patient data collection and preparation

Data from five patients treated for prostate carcinoma on a
Unity 1.5 T MR-Linac system (Elekta AB, Stockholm, Swe-
den) at the UMC Utrecht hospital in the Netherlands was col-
lected. The patients were treated between February and July
of 2019, and provided informed consent for use of their data
as part of the ethics review board approved MOMENTUM
(Multiple Outcome Evaluation of Radiotherapy Using the
MR-Linac) study. The prescribed dose was 62 Gy, delivered
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in 20 daily fractions of 3.1 Gy. The images used in this study
include a T2-weighted three-dimensional (3D) Cartesian
turbo spin-echo sequence acquired on the Elekta Unity 1.5 T
system with acquisition parameters as specified in Table I. An
MRI was acquired in a pretreatment session in advance of the
daily fractions to perform structure delineation and enable
treatment planning. Similar MRIs were made in advance of
each daily treatment session. On this so-called pre-beam
MRI, the pretreatment contours need to be propagated such
that a new plan can be generated that fits optimally to the
patient’s anatomy of that given fraction. In total, 21 scans per
patient were collected: 1 pretreatment scan and 20 daily
fraction scans. Examples of a pretreatment scan and a daily
fraction scan are shown in Fig. 1.

Patients were positioned with the aid of a laser positioning
system using anatomy-based tattooed skin markers. These
markers are meant to be aligned with the prostate’s axial posi-
tion to enable scans with the prostate consistently centered in
the field-of-view (FOV). At the time of the pretreatment scan,
no CTV delineation has been performed, and typically an off-
set can occur between the marker position and the center of
the prostate. After CTV delineation on the pretreatment
scans, the offset is known and is accounted for in the patient
setup in the daily fraction, centering the CTV in the FOV of
the fraction scans. The pretreatment CTV delineation is per-
formed shortly after acquisition. This delineation is not time-
critical given the fact that the first fraction is at least one day
later than the pretreatment image acquisition.

In contrast to the delineation on the pretreatment scan, the
adaptive workflow to propagate the contours to the fraction
scans is time-critical. As part of the treatment workflow, dur-
ing the daily fraction, the FOV of the images was reduced in
the axial direction to speed up the workflow. Specifically, the
prostate contour was propagated from the pretreatment scan
to the daily fraction using rigid registration, after which the
image was cropped with a margin of 30 mm superior and
inferior to the prostate. The rigid registration was only used
to estimate the amount of required cropping, which results in
a translation of the prostate in the axial direction. To obtain a

similar FOV in the pretreatment images, we cropped the pre-
treatment images around the prostate CTV with a 30 mm
margin.

An expert radiation oncologist drew gross tumor volume
(GTV) contours on the pretreatment scans. The CTV was
taken as a 4-mm margin around the GTV (excluding the blad-
der and rectum), and further extended to include the prostate,
and the seminal vesicles if they touched or had overlap with
the GTV. On the daily fraction scans, CTV contours were
constructed by propagation of the CTV contours from the
pretreatment to the fraction scans using the ADMIRE
deformable registration algorithm (Elekta AB). When neces-
sary, the radiation oncologist manually adjusted or redrew the
contours using VolumeTool, an in-house software package.38

The planning target volume (PTV) was defined as the CTV
with an isotropic 5-mm margin in all directions. The manu-
ally delineated CTV contours of the pretreatment and daily
fraction scans are used and considered the ground truth in
this study. Each contour was converted to a binary segmenta-
tion, by assigning voxels of which the centers lie inside the
contour to the segmented area.

Pre-treatment scan Fraction scan

(a) (b) (c) (d)

FIG. 1. Examples of pretreatment (a) and daily fraction scans (c) with ground truth prostate contours from the same patient in yellow. Both images show the cen-
ter slice of the volume. (b) and (d) show zoomed-in versions of (a) and (c), respectively. The images are from T2-weighted three-dimensional (3D) turbo spin-
echo scans. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE I. Imaging parameters used for the acquisition of the T2-weighted
magnetic resonance images on the Elekta Unity 1.5 T system.

Parameter Value

Sequence 3D cartesian turbo spin-echo

Relaxation time 1535 ms

Echo time 277.8 ms

Flip angle 90�

Bandwidth 740 Hz/px

Acquisition matrixa 268 9 268 9 44

Field of viewa 400 9 400 9 300 mm3

Reconstructed voxel spacinga 0.83 9 0.83 9 1.0 mm3

Reconstructed image sizea 480 9 480 9 300

Acquisition duration 116.7 s

aExpressed in left-to-right, posterior-to-anterior, superior-to-inferior.

Medical Physics, 47 (3), March 2020

1240 Eppenhof et al.: Prostate contour propagation in MRgRT 1240

www.wileyonlinelibrary.com


2.B. Network architecture

A 3D CNN was designed to propagate the CTVs from the
pretreatment images to the fraction images. This network con-
sists of two parts. The first part receives the two images as two
input channels and has a deformation vector field composed of
three components ux, uy, uz as output. In the second part of the
network, the deformation vector field is used by a spatial trans-
former layer (STL) to transform the prostate segmentation in
the pretreatment image as delineated by the contour.39 The
resulting transformed segmentation is the output of the second
part of the network. The network can be jointly trained to opti-
mize the transformed segmentation and the deformation vector
field through a loss function that consists of two terms. The
first term minimizes the L2-norm of the difference between the
estimated and true deformation fields. The other term maxi-
mizes the Dice coefficient of the fraction segmentation and
transformed pretreatment segmentation (Fig. 2).

The full loss function is defined as

L ¼ koverlapLoverlap þ kdvf Ldvf (1)

where

Loverlap ¼ 1� 2
P

x2XF
CFðxÞCMðT̂ðxÞÞP

x2XF
CFðxÞ þ CMðT̂ðxÞÞ

; (2)

optimizes the overlap of the segmented volumes, and

Ldvf ¼ 1
jXFj

X

x2XF

kTðxÞ � T̂ðxÞk22 (3)

optimizes the deformation vector field (DVF). T̂ is the net-
work’s estimate of the actual transformation T, and
koverlap; kdvf 2 ½0; 1� are weighting parameters. The focus of
optimization will change based on these parameters. When
kdvf is set to zero, the network will be trained to maximize the
Dice coefficient between the segmentations. No explicit
deformation field is required in this case, and as a result, the
deformation fields estimated by the network cannot be guar-
anteed to have a real physical interpretation. When we set
koverlap to zero, the network is trained to predict deformation

fields similar to those in the training set. In this case, the seg-
mentation overlap is completely ignored. The hybrid case
(koverlap ¼ kdvf ¼ 1) combines both training objectives.

For the estimation of the deformation field, we use a stan-
dard three-dimensional U-net architecture40 and adapt it to
accept two-channel inputs and three-channel outputs. The
U-net is composed of five resolution levels in which the con-
volutional layers have outputs of specific dimensions, ranging
from 128 9 128 9 128 at the top of the architecture, to
8 9 8 9 8 at the bottom. Each level has a distinct color in
Fig. 3. In previous work we have shown that it is beneficial to
train the U-net for image registration progressively.34,37 To
this end, we add input and output layers to each of the resolu-
tion levels. Outputs are scaled to 128 9 128 9 128 dimen-
sions and a weighted sum is taken as the final output of the
network. The weights of this sum are not learned, but set dur-
ing the training process, which allows us to control which
level contributes to the result. Initially, we only let the lowest
dimension (8 9 8 9 8) contribute to the result. After a fixed
number of iterations N, we linearly decrease the weight of this
level to zero and linearly increase the weight of the level
above it to one (16 9 16 9 16) over M iterations. Then we
let the two-level U-net train for another 2N iterations followed
by another M iterations of transition to a three-level U-net,
and so on until we obtain a typical five-level U-net. The five-
level U-net is then trained further in the normal way. At test
time, the architecture does not differ from the typical U-net
architecture. The chosen schedule for this study used
N = 1000 and M = 2000.

The output of the U-net is a set of three maps for the ux,
uy, and uz components of the deformation field. We use these
maps as input to a STL that transforms the pretreatment seg-
mentation.39 The STL uses nearest neighbor interpolation to
sample the pretreatment segmentation based on the deforma-
tion vector field by the U-net. The STL is differentiable,
allowing the gradients of the overlap loss in Eq. (2) to back-
propagate through the STL. The U-net can map the input
images to a deformation field that leads to a high overlap of
the ground truth fraction segmentation and the transformed
pretreatment segmentation.

Convolutional 
neural 

network

Predicted 
deformation 
vector fieldFraction 

image

Pre-treatment 
image Predicted 

fraction 
segmentation

Pre-treatment 
segmentation

Spatial 
transformer 
layer (STL)

Ldvf LoverlapGround truth 
deformation 
vector field

Ground truth 
fraction 

segmentation

FIG. 2. General overview of the method. The method consists of two parts. In the first part, a convolutional neural network predicts a deformation field
from a pretreatment image and fraction image. In the second part, the predicted deformation field is used by a spatial transformer layer to deform the seg-
mentation as delineated on the pretreatment image. The loss functions Ldvf and Loverlap are only computed during training. [Color figure can be viewed at
wileyonlinelibrary.com]
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2.C. Training set

The training set consists of pairs of synthetically deformed
images and delineated prostate segmentations, for which the
ground truth deformation field is generated. During each iter-
ation of training, a unique combination of input images, seg-
mentations, and deformation fields is constructed by applying
random deformations. This allows for supervised training
with a known ground truth. We hypothesize that the network
should be able to generalize from these synthetic examples to
real registration problems, as we have shown in previous
work.36

The process of creating training examples is outlined in
Fig. 4, and is similar to the proposed method for training data
generation in Ref. [36,37]. Every iteration of training, an image
I and associated CTV segmentation S from the training set
are selected. A random deformable transformation T is sam-
pled and applied to both, resulting in I(T) and S(T). From the
images I and I(T), the network has to predict the transforma-
tion T that can be applied to S to obtain an estimate for the
ground truth segmentation S(T). To increase the amount of
data, we also apply free-form deformations for data augmen-
tation using an additional random transformation to the
images and segmentations. To limit interpolation artifacts,
the augmentation transformation and the learned transforma-
tions are concatenated before they are applied to the images,
and only one interpolation is required. In Fig. 4, the pair of
images is therefore shown as IðTaugmÞ and IðTaugm � TlearnedÞ,
where Tlearned is the transformation for which the network
should find the deformation field, and Taugm is used for aug-
mentation. In total, we generate 15 000 unique pairs of
images and segmentations during training, for which the net-
work is trained to estimate the deformation field.

The learned transformations consist of a sequence of ran-
dom B-spline transformations, sampled on equidistant grids
of points from a uniform distribution within a specific range.
The ranges and grid sizes for the concatenated transforma-
tions are shown in Table II. The augmentation transforma-
tions consist of a random rigid transformation with rotation
angles sampled from a uniform distribution between �0.1
and 0.1 radians, and translation vectors sampled from a uni-
form distribution between �12.8 and 12.8 voxels, followed
by a random deformable B-spline transformation similar to t1
in Table II. Both transformations are concatenated with a
scaling transformation that effectively crops the images
around the center. We scaled the images by a factor of two in-
plane, and a factor of 1.33 in the axial direction. For the
images used in this study this means that the effective FOVof
the network is 200 9 200 mm2 in the transversal directions
and between 100 and 130 mm in the axial direction. Because
the prostate appears larger in the images, the network can use
a larger part of the estimated deformation vector field for the
prostate itself. A requirement is that the prostate is positioned
in the center of the FOV, which was the case for all images
used in the study. The transformations are sampled on a
128 9 128 9 128 voxel grid using third-order B-spline
interpolation. This results in the input images, the deforma-
tion field, and the output segmentation having
128 9 128 9 128 voxels, with each voxel having between a
1.56 9 1.56 9 0.86 and 1.56 9 1.56 9 1.01 mm3 voxel
size. At training, validation, and test time, the pairs of images
that are used as input to the network are preprocessed by lin-
early scaling the image intensities between 0 and 1. The
deformation fields are expressed in voxel coordinates.

The network is optimized using stochastic gradient des-
cent with momentum. The momentum parameter was set to

FIG. 3. Architecture of the progressive network. The gray blocks indicate feature maps that are learned during training but ignored at test time. Compared to a
typical U-net architecture, we add input layers on the left side for every resolution level, each followed by an extra convolutional layer that matches the number of
feature maps in that level. A summation node sums the output of these convolutional layers and the output of the pooling layer in the level above it. Output maps
at every level are summed up weighted by a to obtain the final deformation field. This field is used to deform the input segmentation using the spatial transformer
layer. [Color figure can be viewed at wileyonlinelibrary.com]
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0.5, and the learning rate was set to 0.01. A batch size of one
was used throughout training. All convolutional layers were
trained with batch normalization, using the exponential mov-
ing average of the batch normalization parameters, as pro-
posed by Ioffe et al.41

2.D. Experiments

To maximize the number of patients in the training set, we
perform a variation of leave-one-out cross validation. We
used the fraction scans of three patients for training, the scans
of the fourth patient for validation, and the fifth patient’s
scans as a test set. We run five permutations, where each
patient is used once in the test set, and once in the validation
set. The validation set was used to monitor the model’s per-
formance on independent data during training. For each of
the five folds, hyperparameters like the learning rate were
kept the same. Each of the three networks was trained for
15 000 iterations for each of the fivefolds.

For each patient, we train three variants of the network:
one trained on segmentation overlap (koverlap ¼ 1, kdvf ¼ 0),
one trained on deformation field estimation (koverlap ¼ 0,
kdvf ¼ 1), and a hybrid of these two (koverlap ¼ 1, kdvf ¼ 1).
We do this for all instances in the cross validation. To distin-
guish the variants of the network, we will call them “overlap

loss network,” “deformation loss network,” and “hybrid loss
network” for the remainder of this paper. We compare the
presented method to a more conventional deformable image
registration method in Elastix, an open-source image registra-
tion software package.42 We use a deformable image registra-
tion algorithm implemented in Elastix published by Klein
et al.12 The original purpose of this algorithm was to perform
automatic atlas-based segmentation of the prostate in 3D MR
images. The algorithm by Klein et al. performs a rigid regis-
tration first, followed by a deformable registration based on
B-spline transformations, by optimizing the localized mutual
information.43,44

For all network variants and Elastix, we measure the
Dice coefficient of the fraction segmentation and propa-
gated pretreatment segmentation. As a measure of registra-
tion error for the prostate, we calculate the difference
between the centroid of the prostate in the propagated pre-
treatment segmentation and the fraction segmentation. As a
metric for contour distance, we calculate the 95th percentile
of the Hausdorff distance between the segmentations. We
check for folding by inspecting the determinant of the Jaco-
bian of the deformation field. As a measure of folding, we
count the percentage of voxels with a negative Jacobian
determinant, both for the full image and for the voxels
inside the prostate. To assess the robustness of the meth-
ods, we assess how they handle additional shifts of the
prostate that may occur during a fraction, by testing the
performance on a range of superior–inferior shifts. These
shifts are likely to occur in clinical practice due to the fill-
ing of the bladder, which is right above the prostate. We
apply shifts along the axial direction between �5 and
+ 5 mm with 1 mm steps to each of the pretreatment
images and test the propagation to all fractions for each
patient. The shifts are applied by changing the cropping
window that is described in Section 1.

To show the difference in speed of each of the algorithms,
we record the time necessary to complete each registration

FIG. 4. The network is trained to estimate the applied transformation Tlearned from two synthetically transformed images. To increase the number of training
images, an additional augmentation transformation is applied to the original data first. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE II. B-spline transformation parameters for the learned transformation.

Transformation Grid size Distribution

t1 2 9 2 9 2 Uð�6:4; 6:4Þ3
t2 4 9 4 9 4 Uð�3:2; 3:2Þ3
t3 8 9 8 9 8 Uð�1:6; 1:6Þ3
t4 16 9 16 9 16 Uð�0:8; 0:8Þ3

Uða; bÞn is the multivariate uniform distribution that samples vectors with n com-
ponents in the [a,b] interval in voxels. The resulting transformation is defined as
Tlearned ¼ t1 � t2 � t3 � t4.
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problem including the transformation of the segmentation for
the Elastix method and the proposed networks.

3. RESULTS

In Fig. 5, we show box plots for the Dice coefficient, 95th
percentile of the Hausdorff distance, and the registration error
for the prostate’s centroid for the propagation from the pre-
treatment scan to each of the 20 fraction scans. For each
patient, we show five boxes: red boxes represent the metrics
without propagation, gray boxes represent Elastix’ propaga-
tion results, and green, blue, and purple boxes represent the
results of the overlap, deformation and hybrid networks,
respectively. On the x-axis, boxes are grouped by patient.

In general, the results obtained by the overlap loss network
and the hybrid loss network are superior to the results
obtained with Elastix, with the deformation loss network hav-
ing a somewhat lower Dice coefficient, and larger Hausdorff
registration and centroid distances compared to the other
methods (Table IV). The Wilcoxon signed-rank test was used
to analyze whether the Dice score, Hausdorff distances, and
prostate centroid distances obtained by the CNNs were sig-
nificantly different from those obtained by Elastix. Full
results are shown in Table III. At a significance level
a = 0.01, we can conclude significant improvement of the
Hausdorff distances and Dice coefficients over Elastix for the
overlap loss and hybrid loss networks, whereas Elastix is sig-
nificantly better than the deformation loss network. In Fig. 6,

(a)

(b)

(c)

None Elastix
Overlap
loss network

Deformation 
loss network

Hybrid loss
network

FIG. 5. Box plots of the (a) Dice coefficients, (b) Hausdorff distances, and (c) prostate centroid distances for no registration, Elastix, and the three convolutional
neural network variants per patient. Each box displays the distribution of the 20 registration problems for a single fold of the network in which that patient was in
the test set. [Color figure can be viewed at wileyonlinelibrary.com]
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examples of propagated contours are shown for each of the
methods, showing that generally the contours have better
overlap for the overlap loss and hybrid loss networks than for
Elastix and the deformation loss network.

In Table IV, we show the percentage of voxels with nega-
tive Jacobian. Elastix and the deformation loss network suffer
from little to no folding, whereas the networks that were also
trained using the Dice coefficient show substantially more
folding. Fig. 7, shows the results of the axial shifting experi-
ment, in which the prostate is axially shifted between �5 and
+5 mm. For each of the shifts, we show the distribution of
the 95th percentile of the Hausdorff distance for all possible
pretreatment-to-fraction registration problems across the five
patients. The shifts induce little variation in the Hausdorff
distance for any of the methods except for the deformation
loss network. This indicates that the overlap loss and hybrid
loss networks and Elastix are insensitive to the shifts. How-
ever, the overlap loss and hybrid loss network outperform
Elastix over the whole range of applied shifts.

For each of the methods, we recorded the time required to
complete the propagation of the segmentation on a system
with an Intel Xeon E5-2640 v4 CPU, 512 GB of memory
and an Nvidia Titan XP graphics card with 12 GB of GPU
memory. For each of the network variants, the timing is the
same, amounting to 0.49 � 0.10 s (l � r) when running on
the GPU. For Elastix, executing the propagation problem
required on average 43.2 � 0.29 s, using both the CPU and
GPU for the registration.

4. DISCUSSION

In this paper, we have proposed a deep learning-based
method for fast deformable propagation of clinical target
volume contours from pretreatment to fraction scans. Three
variants of a CNN trained with different loss functions have
been tested, based on contour overlap, prediction of the defor-
mation field, and a hybrid of the two.

The results show that the propagation accuracy of the net-
works trained with the overlap loss and hybrid loss perform
significantly better (P < 0.001) at Dice coefficients and
Hausdorff distances compared to the open source registration
package Elastix. Hausdorff distances measured between the
predicted contours and the ground truth indicate that the reg-
istration error at the contours is on average 5.7 mm for the
hybrid loss network compared to 7.5 mm for Elastix. The
deformation loss network on average performs worse than the
other two network variants and Elastix. A crucial aspect for
the application is timing: the networks can propagate the

FIG. 6. Examples of propagated contours (yellow) and ground truth contours (red). From left to right contours are shown for no propagation, the propagation by
Elastix, and the propagation by the three network variants for four patients. The bottom row shows a case for which the networks fail to correctly propagate the
contour. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE III. P-values for the Wilcoxon signed-rank test between Elastix and
each of the three network variants.

Metric Overlap loss Deformation loss Hybrid loss

Dice coefficient P\ 10�5H P > 0.99† P\ 10�5H

95th perc. Hausdorff P\ 10�3H P > 0.99† P\ 10�3H

Prostate centroid P > 0.11∘ P > 0.99† P < 0.05∘

Significant improvements (P < 0.01) over Elastix are indicated with⋆, no signifi-
cant differences with ∘, and cases where Elastix is superior with †.

Medical Physics, 47 (3), March 2020

1245 Eppenhof et al.: Prostate contour propagation in MRgRT 1245

www.wileyonlinelibrary.com


prostate segmentations within 0.5 s, much faster than the
43 s it takes to perform the propagation in Elastix.

Inspection of folding in the predicted deformation fields
shows that the deformation loss network and Elastix perform
much better in this respect, with less than two percent of the
FOV showing any folding. The deformation loss network will
cause the network to mimic the transformations in the train-
ing set, which do not fold by construction. Because the over-
lap loss and hybrid loss networks maximize prostate overlap,
the learned deformation fields can contain unrealistic defor-
mations. It should be noted that for the current application
the true deformation field can show folding as well, as sliding
motion between the prostate and surrounding organs is possi-
ble.

A shift experiment shows that the overlap and hybrid loss
networks are not very sensitive to larger displacements of up
to an additional 5 mm between the prostate in the pretreat-
ment and fraction scan. The fraction scans used in this study
show that it is possible to position the patient accurately
based on the tattooed markers, and that expected displace-
ments between fraction scans falls within this range. The net-
work trained on deformation loss was shown to be more
sensitive to additional shifts, which can be attributed to limi-
tations in the distribution of deformations in the training set.

Our results show that it is possible for the networks to gen-
eralize from a set of four patients (three in the training set,
one in the validation set) to a fifth patient. This also suggests

that with additional data becoming available, it will be possi-
ble to train a single neural network that may generalize to
new patients. To cope with the currently limited number of
patients, we have adopted a leave-on-out strategy. With more
data becoming available, it will ultimately be possible to train
a single model that can be used for multiple new patients.

The proposed method introduces two hyperparameters that
need to be optimized, koverlap and kdvf , that weight high pros-
tate overlap and correct estimation of the deformation vector
field respectively. In the experiments we have tried binary set-
tings of these parameters, and there is potentially a better,
non-binary setting for the current application. With the lim-
ited data available, we have not been able to test this, but
future work could focus on the optimization of the hyperpa-
rameters.

Delineation methods using deep learning based prostate
segmentation can also be employed to delineate CTVs on
fraction scans, provided the CTV always covers the same type
of tissue, as discussed in the introduction section. Segmenta-
tion methods perform well when the CTV covers only the
whole prostate, but fail when other surrounding tissue should
be included in the CTV. A CNN trained to propagate con-
tours can account for these variations in the pretreatment
delineations, by using information from previous contours.
Although a quantitative comparison to prostate segmentation
is difficult because of these differences, the Dice coefficients
and Hausdorff distances for the two best performing networks

None Elastix
Overlap
loss network

Deformation 
loss network

Hybrid loss
network

FIG. 7. Hausdorff distance as a function of additional prostate shift, showing that the overlap loss and hybrid loss networks introduce smaller registration errors
compared to Elastix. Each point is the average of the hundred registration problems (20 for each of the 5 patients). The shaded areas show the 95% confidence
interval. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE IV. Results of the evaluated methods in terms of Dice coefficient, 95th percentile of the Hausdorff distance, prostate centroid distance, amount of folding
(Jacobian determinant < 0), and duration of each algorithm.

Metric None Elastix Overlap loss CNN Deformation loss CNN Hybrid loss CNN

Dice coefficient 0.62 � 0.14 0.78 � 0.12 0.86 � 0.05 0.75 � 0.07 0.86 � 0.05

95th perc. Hausdorff (mm) 13.15 � 6.37 7.47 � 4.72 5.82 � 3.63 8.16 � 4.11 5.66 � 3.56

Prostate centroid (mm) 11.38 � 4.78 3.29 � 1.95 2.99 � 1.57 4.10 � 2.14 2.85 � 2.04

Folding in FOV (%) – 0.00 � 0.00 33.97 � 4.20 1.78 � 0.79 7.32 � 2.19

Duration (s) – 43.2 � 0.29 0.49 � 0.10 0.49 � 0.10 0.49 � 0.10

Each figure is the mean � standard deviation over the 20 pretreatment-to-fraction propagations averaged over all patients.
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are in the same range as deep learning-based prostate seg-
mentation methods in literature.15–19 However, it should again
be noted that prostate segmentation is not the same as CTV
segmentation in this case.

Further applications of the proposed method include the
propagation of multiple contours at once. The proposed net-
works can be adapted to transform multiple segmentations
using the STL. In that case, the setup stays the same, except
for the fact that multiple masks are fed to the STL, and that
the overlap loss will need to be replaced with the multi-class
generalized overlap loss.45 The transformation of multiple
segmentations can happen in parallel on the GPU, which
means that there will be no additional computation time for
multiple contours. The proposed method may also be valu-
able in intra-fraction propagation of contours, by registering
the pretreatment or a previous fraction scan to cine-MR
images that are continuously acquired during MR-guided
treatment.46 This is particularly of interest for hypofraction-
ated schemes, in which the individual fractions may take
more time, which can potentially increase the impact of regis-
tration errors during the treatment. To measure the efficacy of
the propagated contours, future work will include a more
extensive validation investigating the time required for a spe-
cialist to adapt the contours.

It is important to note that the adaptive MRgRT workflow
is performed under continuous human supervision and that this
would also be the setting in which the current method would
potentially be used. The radiation oncologist will always check
the contours and improve them manually where necessary. A
further speed improvement can be obtained by reducing the
manual corrections required from the radiation oncologist.

5. CONCLUSIONS

We have developed a fast contour propagation method for
prostate radiotherapy, that can propagate contours from pre-
treatment to fraction scans in under half a second. The
method achieves superior propagation accuracy to an existing
and more time consuming deformable registration method.
The proposed method can aid in shortening treatment time by
reducing time spent on propagation and manual contour
adaptation.
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