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A
lterations of energy metabolism are key features
of insulin resistance, diabetes, and diabetes-
related complications. However, the role of
mitochondria—the cell’s power plants—in ab-

normal metabolism is less certain. Mitochondria are respon-
sible for oxidative phosphorylation, which couples substrate
oxidation to synthesize ATP. Essentially, the reduction of
dinucleotides enables electrons to transfer via the electron
transport system across the inner mitochondrial mem-
brane. Energy released from electron transfer is used for
proton transport into the matrix, thereby establishing an
electrochemical proton gradient (DC) (1). Mitochondrial
function involves various features, each of which can be
examined by different methods. The use of different ap-
proaches to assess mitochondrial function, coupled with
imprecise terminology regarding “mitochondrial dysfunction”
can lead to confusing data interpretation.

Several studies have reported lower mitochondrial func-
tion expressed per muscle mass in type 2 diabetes as as-
sessed by enzyme activities (2,3) or by high-resolution
respirometry (4–7). Although reduced mitochondrial con-
tent could serve as explanation for this observation (3,5,8),
some studies have also noted lower intrinsic function
(4,6,7,9)—that is, reduced respiratory capacity per mito-
chondrion. Mitochondrial production of reactive oxygen
species (ROS) also leads to the formation of lipid per-
oxides. In turn, these can induce oxidative stress thereby
causing cellular and mitochondrial damage (10,11). In this
context, it is of interest to simultaneously monitor DC,
ATP, and ROS production in a single tissue sample.

In this issue of Diabetes, Yu et al. (12) describe a method
for evaluating the physiology of isolated mitochondria.
They used 2-deoxyglucose (2DOG) clamps, which have
been used before to assess mitochondrial-bound hexoki-
nase activity (13). The 2DOG clamp is based on the pres-
ence of an excess of hexokinase and 2DOG to clamp DC at
defined levels and to quantify ATP production from the
conversion of 2DOG to 2DOG-phosphate (2DOGP). Yu
et al. report that in vitro 1H- and 1H/13C-magnetic resonance
spectroscopy (MRS) provides 30–40-fold greater sensitivity
to detect ATP production than classical in vitro 31P-MRS.
The method’s strength resides in its ability to measure
both ATP and ROS production at fixed DC. Moreover, the
conversion of 2DOG to 2DOGP is an irreversible process
occurring in the presence of exogenously added ADP,

which effectively controls DC. The addition of ADP in-
creases mitochondrial energy demand, not supply, a con-
sideration that is important for detailed evaluation of
mitochondrial oxidative capacity. Indeed, this method
measures oxidative capacity (not resting mitochondrial
function [14]) as ATP production transits from state 4
(i.e., no ATP demand) to state 3 respiration (i.e., high ATP
demand by stimulating oxidative phosphorylation coupling
to energy production). Although the use of mitochondria
deprived from their natural environment is a clear limita-
tion, it also circumvents the influence of substrate supply
due to changes in local perfusion and substrate uptake.
Studies in humans have tried to quantify intact mitochon-
drial function in vivo by 31P-MRS, by either applying the
magnetization transfer experiment to assess ATP synthase
flux with or without insulin stimulation (15,16) or using
the postexercise creatine-phosphate (PCr) recovery rate
to assess maximal oxidative capacity (4,17). Obviously,
these methods cannot evaluate intrinsic mitochondrial
features (14).

Using this novel approach, Yu et al. (12) measured DC,
ATP, and ROS production in muscle of streptozotocin-
diabetic rats without (STZ-DM) and with insulin treatment
(STZ-INS). The STZ-DM had decreased ATP production
and greater ROS production per generated ATP molecule
at a lower DC threshold. Whether these findings hold true
to for other diabetes models or human type 1 diabetes,
needs to be tested. Of note, the STZ-DM rat exhibits b-cell
failure without immunological pathogenesis. We recently
reported that muscle mitochondrial function also de-
creases during development of autoimmune diabetes in
nonobese diabetic mice (18). Rising blood glucose and
lipolysis indicate that glucolipotoxity could possibly un-
derlie abnormal mitochondrial function and insulin re-
sistance also in type 1 diabetes (Fig. 1). Interestingly, Yu
et al. showed that the abnormal mitochondrial function
improved with prolonged insulin treatment in STZ-INS
(12). In near-normoglycemic patients with type 1 dia-
betes, muscle ATP synthesis is normal during fasting
but impaired during insulin stimulation (15) or depriva-
tion (19). One might speculate that this is due to their
long-standing disease with previous extended periods of
hyperglycemia and lipolysis. As shown in Fig. 1, elevated
lipolysis could lead to oxidative and endoplasmic reticulum
stress and accumulation of lipotoxic intermediates, such as
diacylglycerol, ceramides, or acylcarnitines, thereby con-
tributing to insulin resistance in type 1 diabetes.

The effect of insulin on mitochondria and ROS is also of
interest for obesity and type 2 diabetes because oxidative
stress can activate c-Jun N-terminal kinase (JNK) via nu-
clear factor k-light-chain-enhancer of activated B cells
(NF-kB) and protein kinase C (PKC). Both of these have
been linked to insulin resistance (20,21) (Fig. 1). Indeed,
insulin can stimulate muscle mitochondrial function in lean
healthy subjects but not in type 2 diabetic patients (16,22).
However, ROS production was not measured in these
studies. Reduction of H2O2 production by lipid lowering
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likely improves insulin sensitivity by affecting mitochon-
drial oxidative capacity in type 2 diabetes (23), which
renders the relationship between oxidative stress and
insulin action uncertain.

Finally, Yu et al. (12) describe three processes for the
generation and use of DC: 1) generation via proton pump-
ing via the electron transport system complexes, 2) con-
sumption through proton leaks, and 3) ATP synthesis.
However, the DC driving force also significantly depends
on the cellular redox environment (24). Moreover, the ra-
tio of reduced glutathione to the oxidized disulfide form
of glutathione has recently been suggested to link mito-
chondrial hydrogen peroxide emission to the control of
redox-sensitive phosphatases that may target insulin sig-
naling (24,25) (Fig. 1). Mitochondria are plastic organelles,
rapidly adapting to environmental changes (14,26) with
altered cellular redox states. Whether this affects insulin
signaling or ROS production in the STZ-INS requires fur-
ther investigation.

Taken together, the new methodology for measuring
mitochondrial ATP production from titration of ADP
levels at fixed DC values is a promising tool to explore
the interaction between oxidative pathways and insulin
action in the fields of insulin resistance, type 1, and type 2
diabetes.
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dicate hypothetical pathways to be investigated. DAG, diacylglycerol;
TAG, triacylglycerol.
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