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Abstract: The effects of pressure and shear rate on the miscibility of binary blends comprising
bisphenol-A polycarbonate (PC) and low molecular weight poly(methyl methacrylate) (PMMA) were
investigated using a capillary rheometer. Both pressure and shear rate affected the miscibility. The
examination of an extruded strand of the blend provided information about the cause of the phase
change. Under high pressure, pressure-induced demixing occurred at temperatures below the lower
critical solution temperature (LCST) of the blend. Consequently, the extruded strand became opaque
throughout. During shear-induced mixing/demixing, a part of the strand became opaque because of
the distribution of the shear rate in the strand. For example, during shear-induced demixing, only the
exterior of the strand, i.e., the high shear rate region, became opaque. Above the LCST, shear-induced
mixing occurred, and only the center region of the strand became opaque.

Keywords: polymer blends; pressure; shear; miscibility; polycarbonate; poly(methyl methacrylate)

1. Introduction

There has been extensive research into blends of bisphenol-A polycarbonate (PC) and
poly(methyl methacrylate) (PMMA) because they are both important transparent plastics.
They are immiscible at processing temperatures. Consequently, blends of PC and PMMA
have phase-separated structures that cause intense light scattering. The blends have a
phase diagram with a lower critical solution temperature (LCST) [1–4] and a small positive
value of the Flory–Huggins parameter, e.g., 0.039 ± 0.004 at 250 ◦C [1]. Therefore, when
one of the polymers has a low molecular weight, the system becomes miscible [5,6]. The
addition of PMMA to PC without loss of transparency is desirable because it improves
the surface hardness and scratch resistance of the blend [5,7,8]. However, the effects
of shear flow and pressure on the miscibility of such blends have not been completely
elucidated, even though conventional processing operations are performed in flow fields
under pressure. For example, injection molding is sometimes performed at very high
pressures, e.g., 200 MPa [9,10], and high shear rates, owing to advances in the design
of processing machines. In particular, plastics with high glass transition temperatures,
such as PC, are processed at a high pressure and high shear stress. In general, viscosity
enhancement by the application of pressure becomes obvious beyond 10 MPa owing
to the decrease in the free volume fraction [11]. At 100 MPa, the viscosity increases by
7.4 times [11]. The decrease in the free volume fraction is also responsible for the increase
in the glass transition temperature Tg [12].
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As discussed previously, the Flory–Huggins parameter is composed of two contribu-
tions, i.e., an interaction contribution and a free volume contribution [13]. A decrease in
the free volume indicates that the interaction contribution has become important. There-
fore, the pressure applied during injection molding has a considerable potential to affect
the miscibility of a blend. In fact, there have been reports on pressure-induced mix-
ing/demixing [14–16].

Theoretically, exposure to shear flow also has the potential to affect miscibility, as
discussed by several researchers [17–22]. In the present study, the effects of pressure and
shear rate on the miscibility of blends of PC and PMMA were studied using a pressure-
driven capillary rheometer. Because the shear rate is a function of the distance from the
center of the extruded strand during pressure-driven shear flow, the miscibility, and thus
the morphology, must vary according to the position once the shear-induced phase change
occurs. Furthermore, the impact of pressure can be evaluated in the flow field.

2. Materials and Methods
2.1. Materials

A commercially available PC (Iupilon S2000; Mitsubishi Engineering Plastics, Tokyo,
Japan) and a low molecular weight PMMA were used. The number- and weight-average
molecular weights of the PC, evaluated by size exclusion chromatography (HLC-8020;
Tosoh, Tokyo, Japan) with polystyrene as the standard, were Mn = 2.8 × 104 and
Mw = 5.7 × 104. The Mw of the PMMA was 1.3 × 104 with poly(methyl methacrylate)
as the standard. The Mw value is almost the same with the entanglement molecular weight
of PMMA, i.e., ca. 1.0 × 104 [23]. Furthermore, the details of the rheological properties for
the PC sample were described elsewhere [24].

2.2. Sample Preparation

After vacuum drying at 80 ◦C for 4 h, melt-blending was performed using an internal
mixer (Labo Plastmill 10M100; Toyo Seiki Seisakusho, Tokyo, Japan). The blade rotation
speed was 30 rpm, which provided a shear rate of 29 s−1 between the blades and the
inner wall. The temperature was 250 ◦C following previous researches on PC/PMMA
blends [5,6]. Mixing was carried out for 5 min. The PMMA contents were 20 and 30 wt%.
Films (500 µm thick) were prepared using a compression molding machine at various
temperatures before cooling to 25 ◦C. The sample preparation methods were the same as
those used in previous researches [5,6,24].

2.3. Measurements

The transparencies of the compression-molded films with 500 µm thickness were
evaluated at 25 ◦C using a UV-vis spectrophotometer (Lambda 25; PerkinElmer, Waltham,
MA, USA), which is often used to evaluate the transparency of glassy plastics [5,6,25]. Light
transmittance in the visible wavelength was measured as a function of the wavelength
from 200 to 800 nm.

Light transmittance was also evaluated using an optical microscope (DMLP; Leica Mi-
crosystems, Wetzlar, Germany) equipped with a hot stage (FP90; Mettler-Toledo, Greifensee,
Switzerland) to evaluate the LCST. One eyepiece was replaced with a photo-detector (PM16-
121; Thorlabs, Newton, MA, USA) to determine the light intensity after passing through a
color filter (633 nm) [26]. The sample sandwiched by cover glasses was heated at 10 ◦C/min
from 200 ◦C.

The dependence on the temperature of the oscillatory tensile moduli in the solid state
was investigated at 10 Hz using a dynamic mechanical analyzer (E-4000; UBM, Muko,
Japan). The heating rate was 2 ◦C/min. The rectangular samples with a length of 15 mm
and a width of 5 mm, cut out from the compression molded film, were employed for the
measurement. The dependence on the angular frequency of the oscillatory shear moduli in
the molten state was investigated at various temperatures using a cone-and-plate rheometer
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(AR2000ex; TA Instruments, New Castle, DE, USA). The diameter of the cone was 25 mm
ϕ, and the cone angle was 4◦.

Capillary extrusion [27] was carried out using a twin capillary rheometer (Rosand
RH7; Netzsch, Selb, Germany) at various temperatures. A circular die (length: 16 mm;
diameter: 1 mm) was used. The entrance angle of the die was 2π. The ambient temperature
was maintained at 25 ◦C. The extruded strands were collected and cut perpendicular to
the flow direction into circular sections (approximately 1 mm thick) by a razor blade. The
circular sections and extruded strands were then examined using a stereomicroscope (S6E;
Leica Microsystems) to determine their transparency.

3. Results and Discussion
3.1. Miscibility of the Blends

Figure 1 shows the light transmittance as a function of wavelength for PC/PMMA
(70/30) films obtained by compression molding at various temperatures. Photographic
images of two films processed at 230 and 250 ◦C are also shown. After taking surface
reflection into consideration, which is typically 12% [25], the films processed at/below
230 ◦C were transparent. The pure PC film exhibited the same values (not shown here). In
contrast, the blend film processed at 250 ◦C was opaque and had low light transmittance
values, especially in the low wavelength region. This can be attributed to light scattering,
which was obvious at long wavelengths. Owing to the huge difference between the
refractive indices of PC and PMMA, there was intense light scattering when the sizes of the
separated phases were within the visible wavelength. These results indicate that the LCST
of PC/PMMA (70/30) is between 230 and 250 ◦C.
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Figure 1. Light transmittance as a function of wavelength for compression-molded PC/PMMA
(70/30) films prepared at various temperatures, with pictures of films processed at 230 and 250 ◦C.
The films were approximately 0.5 mm thick.

The LCST of PC/PMMA (80/20) was above 250 ◦C. Therefore, the compression-
molded film prepared at 250 ◦C was transparent and had a similar light transmittance to
the pure PC film (not presented here). Figure 2 shows the light intensity under an optical
microscope as a function of temperature. As shown in the figure, the light transmittance
decreased rapidly at approximately 270 ◦C, indicating the LCST of the sample.
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Figure 2. Light transmittance of PC/PMMA (80/20) during heating at 10 ◦C/min.

Figure 3 shows the temperature dependencies of the tensile storage modulus (E′) and
the loss modulus (E′′) at 10 Hz for three sample films prepared by compression molding
at 250 ◦C. However, the PC/PMMA (70/30) film was processed at 230 ◦C, i.e., below
the LCST. The samples all demonstrated the typical viscoelastic properties of amorphous
polymers. They all exhibited a sharp decrease in E′ and a single peak in the E′′ curve, both
of which can be attributed to a glass-to-rubber transition. The addition of PMMA shifted
the peaks in the E′′ curves to lower temperatures, demonstrating that both blend samples
were miscible. The peak temperatures, i.e., Tg values, were as follows: 160.9 ◦C for PC,
146.3 ◦C for PC/PMMA (80/20), and 140.0 ◦C for PC/PMMA (70/30). According to the
Fox formula (Equation (1) [28]), the Tg of the PMMA was estimated to be 97.5 ◦C:

1
Tg(blend)

=
w1

Tg1
+

w2

Tg2
(1)

where wi is the weight fraction and Tgi is the Tg of the i-th component.
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Figure 3. Temperature dependencies of the tensile storage modulus (E′) and the loss modulus (E′′) at
10 Hz for PC, PC/PMMA (80/20), and PC/PMMA (70/30) films. The sample films were prepared by
compression molding at 230 ◦C.

This Tg value was 10 ◦C lower than that of a conventional PMMA [29]. This was
as expected because the PMMA sample used in the present study had a low molecular
weight. The E′′ values for the blends in the low temperature region were higher than those
of pure PC, which became obvious for the PC/PMMA (70/30) film. This is ascribed to
the β-dispersion of PMMA [30]. The E’ value in the glassy region was also enhanced by
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the PMMA addition, suggesting that PMMA acted as an antiplasticizer that could reduce
thermal expansion and gas permeability [31].

Figure 4 shows the angular frequency dependencies of the shear storage modulus G′

and loss modulus G′′ in the molten state. The reference temperature (Tr) was 250 ◦C. The
slopes of the G′ curves were 2 for both PC and PC/PMMA (80/20), and the slopes of the
G′′ curves were 1 for both PC and PC/PMMA (80/20), suggesting that PC/PMMA (80/20)
was in the miscible state. This result corresponded with Figures 2 and 3. The modulus
decrease was obvious for PC/PMMA (70/30). This is reasonable because the content of
the low modulus component increased. In the case of PC/PMMA (70/30), the G′ values in
the low frequency region seemed to be slightly higher at 250 ◦C, although the data were
scattered. Considering that the LCST of the blend was between 230 and 250 ◦C, this may be
attributed to a long-time relaxation. When phase separation occurs, in which the continuous
phase comprises a high-viscosity component, a relaxation attributed to interfacial tension
is known to appear, which was predicted by the emulsion model [32,33]. For pure PC and
PC/PMMA (80/20), the time–temperature superposition principle was applicable.
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Figure 4. Master curves of shear storage modulus (G′) and loss modulus (G′′) for PC, PC/PMMA
(80/20), and PC/PMMA (70/30). The reference temperature Tr was 250 ◦C. Circles represent data
measured at 210 ◦C, triangles represent those at 230 ◦C, and diamonds represent those at 250 ◦C.

3.2. Capillary Extrusion

Capillary extrusion was performed using a circular die. The length L was 16 mm, and
the diameter D was 1 mm. The shear stress σ and shear rate

.
γ on the wall were calculated

from the pressure drop ∆P and volume flow rate Q as follows [27]:

σ =
D ∆P

4L
(2)

.
γ =

32Q
πD3 (3)

Strictly speaking, the Bagley correction is required to evaluate the pressure drop in
the die, i.e., ∆P/L [27]. However, ∆P/L must not be homogeneous in the die land due
to the anomalous pressure increase near the die entry, especially at low temperatures.
Furthermore, the Rabinowitsch correction, which is required for non-Newtonian fluids [27],
was not performed, because the flow curve was quite different from those of conventional
polymer melts, as shown later.

Figure 5 shows the flow curves, i.e., shear stress plotted against shear rate, of the
PC/PMMA (70/30) film at various temperatures. It was impossible to measure the shear
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stress at high shear rates and at 200 ◦C because the pressure exceeded the limitations of the
machine. It was found that the stress increase at a high shear rate was obvious at least at
200 ◦C, which is not seen in most polymer melts.
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Figure 5. Flow curves of PC/PMMA (70/30) at various temperatures.

In general, the time–temperature superposition principle is applicable to the shear
rate–shear stress curves of a simple polymer liquid. Therefore, the master curve was
obtained for this blend by simple horizontal shifts. The results are shown in Figure 6, with
dashed lines denoting the applied pressure. The reference temperature Tr was 250 ◦C. The
shift factor was the same as shift factors obtained by oscillatory measurements. Although
most data were superposed onto each other, especially at low shear stresses, an upper
deviation was detected in the high shear stress region at 200 ◦C and 210 ◦C. This deviation
was obvious beyond 50 MPa as a pressure. Except for the upper deviated data, others
were superposed onto each other including the data at 250 ◦C, i.e., beyond LCST. This
result suggested that the phase separation did not greatly affect the shear stress for the
blend system.
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As mentioned in the introduction, the shear stress/viscosity becomes sensitive to
applied pressure when the pressure P is beyond 10 MPa in general. This can be expressed
by the following equation [9]:

η(P) = η(0) exp(αP) (4)

where η is the shear viscosity and α is the coefficient. The stress/viscosity increase is
attributed to the reduction of free volume. In many polymers, including polycarbonates, α
is approximately 2.0 × 10−8 (Pa−1) [10]. According to Equation (4), the viscosity increases
20% at 10 MPa and 640% at 100 MPa. The results shown in Figures 5 and 6 indicate that the
stress increase was lower than that predicted by Equation (4). In fact, the time–temperature
superposition principle was still applicable when the pressure was approximately 10 MPa.
This must be attributed to the measurement method. During capillary extrusion, the
pressure decreases as the material passes through the die. Therefore, high pressure was
only applied at the die entrance, i.e., the top of the die. Furthermore, the shear stress was
calculated assuming that the pressure gradient was constant throughout the whole die.
Therefore, the actual shear stress in most of the die was lower than the values in the figures.
However, the results demonstrated that high pressure was applied to the sample at least
in the top area of the die. In this area, miscibility might be affected by the reduction of
the free volume fraction. Under such high pressures, the interaction contribution plays an
important role in the Flory–Huggins parameter [13].

The effect of the applied pressure on PC/PMMA (70/30) was obvious at 200 ◦C, as
shown in Figure 7. In the figure, the top view of the cut strand as well as the side view
of the strand are shown. The diameter of the strand was around 1 mm. It was found that
the strand extruded at or below 43 s−1 was transparent. In contrast, the strand extruded
at 93 s−1 was opaque throughout, with a gross melt fracture due to high elongational
stress [34–36]. This pressure-induced demixing indicates that the interaction contribution
to the Flory–Huggins parameter was positive for PC/PMMA, i.e., PC/PMMA was a
repulsive system.
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circular sections, and (bottom) side views of the strands.

Figure 8 shows the PC/PMMA (70/30) strands extruded at 210 ◦C. The miscibility of
the blend was significantly sensitive to the applied shear rate. As with the compression-
molded film prepared at 210 ◦C, the strand was transparent under a low shear rate, e.g.,
200 s−1. At 430 s−1, only the exterior of the strand became opaque, whereas the interior was
transparent. Considering that the shear rate in the strand is a function of the distance from
the center, the critical shear rate for shear-induced demixing was approximately 430 s−1 at
this temperature. Furthermore, a strand with the opposite contrast was obtained at 930 s−1,
demonstrating that shear-induced mixing occurs at high shear rates. Because the shear rate
in the center of the strand was zero, the strand must have had three layers, i.e., miscible in
the outer layer, immiscible in the middle layer, and miscible in the center. At high shear
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rates, e.g., 2000 s−1, all areas became transparent again. Considering the distribution of
the shear rate, however, some areas with a shear rate of approximately 430 s−1 may have
a phase-separated structure, although the effect of the residence time on the morphology
change should also be considered. Moreover, the effect of the applied pressure on the
miscibility was affected by temperature, because the pressure at 2000 s−1 and 210 ◦C was
almost the same as that at 93 s−1 and 200 ◦C.
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Figure 8. Strands of PC/PMMA (70/30) extruded at 210 ◦C. (Top) Top views of the cut strands, i.e.,
circular sections, and (bottom) side views of the strands.

The strands extruded at 230 ◦C, i.e., below LCST, were transparent, irrespective of
the shear rate applied in the experimental range, i.e., below 2000 s−1. Moreover, any flow
instabilities, such as shark-skin failure and gross melt fracture, were not detected at even
2000 s−1. Therefore, processing at this temperature is preferable to ensure the transparency
of a product.

Figure 9 shows PC/PMMA (70/30) strands extruded at 250 ◦C. Because 250 ◦C
was above their LCST, the strand produced at a low shear rate was opaque, as with
the compression-molded film. However, at 2000 s−1, the strand was transparent, indicating
shear-induced mixing.
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Figure 9. Strands of PC/PMMA (70/30) extruded at 250 ◦C. (Top) Top views of the cut strands, i.e.,
circular sections, and (bottom) side views of the strands.

The results in Figures 7–9 indicate that even in the region in which the time–temperature
superposition principle is applicable, miscibility cannot be predicted by shear stress and
pressure. The discrepancy between the extrusion temperature and the LCST must also
affect miscibility.
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Figure 10 shows flow curves with pictures of extruded strands of PC/PMMA (80/20).
There was a rapid increase in the shear stress due to a reduction in the free volume fraction
at 200 s−1 and 210 ◦C. Measurements were not obtained beyond this shear rate due to
pressure limitations. At high shear stress, i.e., under high pressure (and consequently with a
reduced free volume fraction), the strand became opaque throughout, suggesting pressure-
induced demixing. The other strands shown in Figure 10, including those extruded at
230 ◦C, were transparent, suggesting that the appropriate processing window was enlarged
from the viewpoint of transparency as the PMMA content was reduced. The flow instability,
however, occurred easily due to high shear stress. In fact, the strand at 93 s−1 and at 210 ◦C
showed shark-skin failure.
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4. Conclusions

The effects of the pressure and shear rate on the miscibility of blends of PC and
PMMA were studied using a pressure-driven capillary rheometer. Because the PMMA
sample used had a low molecular weight, the blends containing 20 and 30 wt.% PMMA
had a miscibility window at temperatures below the LCST. The LCST was 230–250 ◦C for
PC/PMMA (70/30) and approximately 270 ◦C for PC/PMMA (80/20) without shear flow
under atmospheric pressure. Under high pressure, however, pressure-induced demixing,
i.e., phase separation, was detected in both blends, in which shear stress was greatly
enhanced by the reduction of the free volume fraction. Furthermore, PC/PMMA (80/20)
exhibited shear-induced mixing at relatively low shear rates, and shear-induced demixing
at high shear rates. When shear-induced mixing/demixing occurred, either the exterior or
the interior of the strand became opaque, whereas pressure-induced demixing produced
opacity throughout the strand. Currently, polycarbonates are being injection-molded at
high pressures in industries. Therefore, information about pressure-induced demixing and
shear-induced mixing/demixing is very important.
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Nomenclatures

α Coefficient of pressure-dependent shear viscosity
.
γ Shear rate
D Diameter of circular die
∆P Pressure difference
E′ Tensile storage modulus
E′′ Tensile loss modulus
G′ Shear storage modulus
G′′ Shear loss modulus
η Shear viscosity
L Length of circular die
LCST Lower critical solution temperature
PC Bisphenol-A polycarbonate
PMMA Poly(methyl methacrylate)
Q Volume flow rate through a circular die
σ Shear stress
Tg Glass transition temperature
Tr Reference temperature
w Weight fraction
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