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Abstract

We develop a new hidden Markov model-based method to analyze C elegans locomotive behavior and use this method to
quantitatively characterize behavioral states. In agreement with previous work, we find states corresponding to roaming,
dwelling, and quiescence. However, we also find evidence for a continuum of intermediate states. We suggest that roaming,
dwelling, and quiescence may best be thought of as extremes which, mixed in any proportion, define the locomotive
repertoire of C elegans foraging and feeding behavior.
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Introduction

Food is one of the most important determinants of an animal’s

behavior. Some of the effects of food are obvious: if there is food,

an animal may eat, while if there is no food, or if the food available

is poor in quality, it may instead search for new food (see, e.g.,

Shtonda and Avery [1]). But other effects are complex and depend

on the animal’s internal state: how recently it has eaten, the

presence of food in the digestive tract, the quantity and nature of

stored reserves such as fat or glycogen. Information about

nutritional state is communicated within the animal by a complex

and only partly understood system of signals, and much of the

animal’s computational machinery is devoted to dealing with food

and nutrition [2]. Better understanding of these signals might help

in treating disorders of feeding, nutrition, and energy balance

ranging from anorexia to obesity.

Despite its simple nervous system, the nematode C elegans has a

complex array of signals to control feeding and food-related

behavior [3–5]. Indeed, it is only a small oversimplification to say

that in the C elegans hermaphrodite all behavior is food-related,

since food and nutritional state affect every behavior that has been

tested, often profoundly. Locomotive behavior has been studied

with particular intensity. Previous workers have described three

behavioral states that characterize the locomotive response to

food: roaming, dwelling, and quiescence.

When actively feeding, worms alternate between roaming and

dwelling [6–8]. Roaming worms move swiftly and relatively

directly from one place to another, while dwelling worms move

slowly and reverse frequently, thus covering little distance.

Roaming and dwelling are respectively exploration and exploita-

tion behaviors. Shtonda and Avery [1] and Ben Arous et al. [7]

showed that worms roam more on low-quality food and dwell

more on high-quality food. An additional behavioral state,

quiescence, has recently been identified and characterized as a

sleep-like state [9–11]. We found that worms enter quiescence

when they become satiated [11]. Together, these studies show that

locomotive activity is determined by nutritional status and that

nutritional status can regulate switching between behavioral states.

We undertook the work described here to solve a particular

problem: measuring satiety quiescence. Satiety quiescence has

been particularly difficult to study, because quiescent worms are

easily disturbed. In fact, it has not been possible to watch satiety-

induced quiescence for more than about a minute, since for

reasons that are not fully understood, quiescent worms wake up

under continuous observation, even under conditions where they

can be shown to spend most of their time quiescent when not

observed [11,12]. One consequence of this limitation is that we

know little of the kinetics of quiescence: do worms cycle in and out

of quiescence, and if so, at what rate? Which molecular

mechanisms and which neurons and circuits regulate it? Our

efforts succeeded: we can now measure satiety quiescence, and in

future publications we hope to answer some of the mechanistic

questions. However, in the course of this work we made an

unexpected discovery, which is the focus of this paper.

We analyzed behavior using movement tracking and hidden

Markov model analysis. Using this method we were able to

identify behavioral states in recordings of movement that

correspond to roaming, dwelling, and quiescence. However, the

new method allowed us to describe behavior more precisely than

previously, and as a result we could see something that was missed

before. We found, to our surprise, that behavior seemed not to be

limited to these three previously described states. A range of
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intermediate states also occurred. These states, taken together,

suggest the existence of a behavioral state space with a triangular

shape. The vertices of the triangle are pure roaming, dwelling, and

quiescence, and the interior is occupied by mixed states. We

suggest that roaming, dwelling, and quiescence are best thought of

as archetypal states that can be mixed to form the range of

locomotive foraging and feeding behaviors available to the worm.

Results

Roaming, Dwelling, and Quiescence can be Detected by
HMM Analysis

Motion recording and analysis. To quantify quiescence

over relatively long time periods, we developed an automated

procedure to monitor worms. Because quiescence is suppressed by

the presence of other worms [11], we recorded only a single worm

at a time. To avoid mechanical disturbance, we did not

mechanically track the worm, but instead placed it on a small

spot of food, which did not move during recording. To test

whether worms became quiescent under these conditions, we

measured their speed of movement, assessing quiescence by

counting time points at which speed was less than 1 mm s21. Time

at such low speeds was greater under conditions that promote

quiescence, rising to 20% for worms fasted, then refed on good

food (data not shown). These results suggest that satiety quiescence

occurred under our recording conditions, although probably not at

the level previously inferred for completely undisturbed animals

[11].

Previous studies [6,7] quantified two characteristics of the

worm’s motion: speed and change of direction (referred to as

‘‘curvature’’ by Ben Arous et al. [7] and ‘‘turning’’ by Fujiwara

et al. [6]). Change of direction cannot be measured accurately

when the worm is moving slowly. To solve this problem, we

measured speed, change of speed (tangential acceleration),

reversal, and turning (radial acceleration) from each set of three

successive points (see Motion characteristics in Methods). To

illustrate motion characteristics of roaming, dwelling and quies-

cence, we show three short movie segments that illustrate typical

roaming, dwelling, and quiescence behavior (Figure 1; see

Statistically typical tracks in Methods). We found two differences

between roaming and dwelling. First, consistent with Fujiwara

et al. [6], reversals were much more frequent in dwelling. Second,

during dwelling acceleration was correlated with speed. During

roaming, in contrast, there was no obvious correlation of speed

with acceleration.

Our results showed mostly low radial acceleration during

dwelling, which appeared to contradict its previous description as

the state with frequent changes in direction. However, after

calculating speed and absolute angular change in direction across

all our tracks, we found that change in direction is almost entirely

reversal. ‘‘Change in direction’’ conflates two distinct behaviors,

reversal and turning. The large average angles reported previously

for dwelling and roaming [7] are because a majority of

nonreversals–angles near 0u–are averaged with a substantial

minority of reversals–angles near 180u (Figure S1, Figure S2).

Standard state fits. To capture the information available in

the time course of behavior, we used a hidden Markov model

(HMM). Behavioral state can’t be reliably determined by looking

at a single point in time. For instance, although a dwelling worm

moves most of the time, there are time points at which no

detectable movement occurs. By themselves, these cannot be

distinguished from quiescence. However, this ambiguity can be

resolved by looking at the time course of behavior. A dwelling

worm is still only at isolated points in time, while a quiescent worm

remains so almost continuously. In HMM analysis the state

inferred at one time depends, not just on behavior at that time, but

also on states immediately before and after (Figure 2A, B).

We deduced the characteristic behavior of roaming, dwelling,

and quiescent worms from records acquired under conditions in

which worms have been reported to spend most of their time in

just one of these states (see Standard state fits in Methods).

Figure 2C shows the result of such a fit to a recording of a well-fed

wild-type worm on good food. Although there were brief periods

during which behavior was ambiguous (e.g., just before 1000 s,

when there is a ,75% probability of dwelling and ,25% of

quiescence), at most times one state was identified with close to

100% confidence.

We developed a statistic, excess entropy, to quantify the extent

to which the analysis helped to explain behavior. The fit in

Figure 2C had an entropy of 0.86 bits. (The maximum possible is

log23&1:58.) To test if the fit truly detected coherent time-

dependent changes in behavior, we scrambled the data and

repeated the fit. Figure 2D shows an example of one such fit to

scrambled data. No state changes are detected, and the entropy is

only 0.074 bits. Fits of 363 recordings from 49 experiments (Table

S1) had entropies of 0.6560.17 (mean 6 standard deviation;

range 1026–0.98). In contrast, fits to 7260 scrambled records had

entropies 0.1360.13 (3610210–0.67). The difference between

these distributions is significant (Pv10{246, Kolmogorov-Smirnov

test).

Using this analysis, we confirmed and extended earlier results.

For instance, low-quality food suppresses quiescence [11] and

promotes roaming [1,7]. We confirmed these results (Figure 2E).

Further, our analysis allowed us to estimate the rate at which

worms switch from one state to another. The suppression of

quiescence was explained mainly by a decrease in the rate at which

worms switch from dwelling to quiescence (Figure 2E).

The Behavior of a Roaming Worm Varies Depending on
History, Food Quality, and Genotype

A simple hypothesis for the control of locomotory behavior is

that food quality and other conditions affect only the rates at

which worms switch between states. Under this hypothesis worms

on poor food would spend more time roaming, but during the time

they spend roaming, worms would behave the same on good food

and on poor food. The alternative is that the behavior of a worm

depends not only on the state it is in, but also on conditions. Under

this hypothesis roaming worms might behave differently on good

food and on poor food.

To test these hypotheses, we compared the motions of worms in

the same state under different conditions. Figure 2F shows an

example: the speed of worms on good food, poor food, or a

mixture, measured only during the time they spent roaming. The

simple hypothesis was decisively rejected. Roaming worms on

poor food moved faster than roaming worms on good food and

roaming worms on mixed food. (Ben Arous et al. [7] also reported

that roaming worms move faster on poor food.) The conclusion

generalized to motion characteristics other than speed and states

other than roaming. Dwelling worms moved differently depending

on conditions, and there was even a suggestion of changes in the

small restless movements that sometimes occur during quiescence

(data not shown).

Unbiased State Discovery
The observation that the behavior of a roaming worm depends

on conditions such as food quality raised a difficult question: how

are roaming, dwelling, and quiescence defined? Above we claimed

C. elegans Behavioral States

PLOS ONE | www.plosone.org 2 March 2013 | Volume 8 | Issue 3 | e59865



that roaming worms moved faster on poor food. This claim is

correct, if roaming is defined by the motions of worms under

conditions that have been reported to promote roaming. However,

speed is one of the characteristics that distinguishes dwelling and

roaming. If poor food caused dwelling worms to move faster, they

might be classified as roaming. If poor food in addition caused

dwelling worms to reverse less and to accelerate less, any method

that deduces behavioral state from these characteristic motions

would classify the behavior as roaming.

To address this problem, we developed an unbiased analysis in

which state characteristics are derived directly from the behavior

of a single worm (Figure S3; see Unbiased closed-loop fits in

Figure 1. Motion characteristics of roaming, dwelling, and quiescence. Short movie segments illustrating statistically typical roaming (A, B),
dwelling (C, D), or quiescence (E, F) (chosen as described under Statistically typical tracks in Methods) were analyzed to determine speed,
acceleration, and reversal at each time. The tracks are shown in A, C, and E. Time is indicated by color. Note the difference in scale between A and the
other two. The grey ellipses are 1.2 mm long60.1 mm wide, about the size of the worm. B, D, F: Tangential and radial acceleration are plotted on the
x and y axes. Speed is indicated by color, with the lowest and highest speeds indicated by purple and red. (Color is normalized within each track, so
that, for instance, red points within the dwelling plot represent a lower speed than red points in the roaming track.) Reversal is indicated by filled
circles, and nonreversal by empty circles.
doi:10.1371/journal.pone.0059865.g001
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Figure 2. Hidden Markov model analysis, standard state fits. A, B. A simplified explanation of how HMM analysis uses both time and behavior
to determine state. The plots show a hypothetical record of speed vs time. The bell-shaped green and blue curves at the right of each plot show the
probability for a dwelling or a quiescent worm to move at a given speed. The distributions overlap, because while dwelling worms usually move
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Materials and methods). Our fits of 363 recordings yielded a total

of 1083 state descriptions from 357 three-state and 6 two-state fits.

A state description is the list of seven parameters that specify such

behavioral characteristics as the probability of reversal, the mean

speed, and the correlation between speed and acceleration. Each

state is thus a point in a seven-dimensional space. Interestingly,

however, most of the points lay close to a plane–93% of the

variance is captured in two dimensions. It was thus possible to plot

them in two dimensions while preserving most of their geometric

relationships. Figure 3 shows such plots.

We were able to identify regions of the plot that correspond to

roaming, dwelling, and quiescence by considering their motion

characteristics and by comparing our results with published results.

The arrangement of states is roughly triangular (Figure 3G). The

location corresponding to immobility is near the lower left, so this

is the direction of quiescence. Speed increases towards the upper

right of the plot, while reversal increases towards the lower left.

Thus, upper right is the direction of roaming, which is

characterized by high speed with few reversals. Covariance of

acceleration and speed increases towards the upper left, which is

thus the direction of dwelling.

To more precisely identify regions with states, we looked at the

results of specific experiments. Wild-type worms fasted for twelve

hours then refed with good food for three hours alternate between

quiescence and dwelling [11]. (When not observed, worms so

prepared spend most of their time quiescent, but watching them

disturbs them in some unknown way, causing them to wake and

dwell [11]. Our recording conditions allowed some quiescence,

but were disturbing enough that the worms also dwelled.) Each

such worm had two high-probability states, one in a region close to

the lower half of the left side of the triangle, and another near the

center (Figure 3A), which we thus identified as quiescence and

dwelling, respectively. On poor food wild-type worms roam. They

spent most of their time in states near the right vertex (Figure 3B).

The states of egl-4(lf) mutant worms, which spend most of their

time roaming even on good food [1], were in the same general

region (Figure 3C). Worms engineered to express constitutively

active cGMP-dependent protein kinase in ASI neurons showed an

unusual pattern that was never seen in wild-type worms. They

alternated between two states, a less probable one near the

boundary between dwelling and roaming, and a more probable

one near the upper left corner of the triangle. We call the latter

state hyperdwelling, since it exhibits the characteristics of dwelling

even more strongly than a dwelling wild-type worm. Figure 3F

summarizes the regions corresponding to roaming, dwelling, and

quiescence.

Are there Discrete Locomotive Behavioral States?
We were surprised that we did not find discrete, well-separated

clusters corresponding to roaming, dwelling, and quiescence.

Rather, as shown in Figure 3G, the observed states filled most of

the triangle, sparing only the region between quiescence and

roaming. This suggests that our previous view, that the worm has

available to it three distinct patterns of locomotive behavior, might

be too simple. Instead the worm may be able to continuously tune

its behavior between these three patterns.

We considered three alternative explanations for the failure to

observe discrete clusters of states. First, the clusters might exist but

be blurred by noise. There is error in every measurement. Perhaps

the errors were so great as to spread the clusters until they merged

with each other, giving a false appearance of continuity. This

explanation was refuted by looking at single experiments.

Figure 3A–D clearly show well-defined clusters of states. Each of

A and D, in fact, shows two well-separated clusters, and each

worm in those experiments alternated between a state in one

cluster and a state in the other. We clearly had the ability to

resolve distinct patterns of behavior. Figure 3E emphasizes this by

showing that the states discovered in the experiments of A–D

occupy six distinct, well-defined positions.

Figure 3E suggests a second possible explanation for the lack of

clusters. Although 9 of our 49 experiments were done on wild-type

worms, the rest were done on various mutant genotypes. Perhaps

normal worms do have discrete roaming, dwelling, and quiescence

states, but the unnatural behavioral patterns of mutants fill up the

blank regions between the wild-type states. In fact, it was obvious

that without the ASI::egl-4CA and egl-4(lf) experiments, the wild-

type states of Figure 3A,B would form three discrete clusters (red

and orange states in Figure 3E). To test this, we plotted all the

states discovered in experiments on wild-type worms (Figure 3H).

Even when we looked only at wild-type, discrete clusters were not

evident.

faster than quiescent worms, at some time points they move as little as a quiescent worm. (Although a quiescent worm doesn’t move at all, its
measured speed will usually be positive because of small errors in the measurement of its position.) The problem is to determine what state the
worm was in at the central time point, where it did not move. Looking at this point alone, one would conclude that the worm was probably
quiescent, because the probability for a quiescent worm to move so slowly (PQ ; panel B) is much higher than the probability that a dwelling worm
will do so (PD ; panel A). However, the behavior of the worm immediately before and immediately after is inconsistent with quiescence. Therefore, if
the worm is quiescent at the central time point, it must have switched from dwelling to quiescence immediately before and must switch back
immediately after. The probability that the worm is quiescent is therefore P2

switchP2
Q. If the time between points is small, the probability of a switch,

Pswitch, is a small number, and P2
switchPQ%PD. The worm is thus correctly inferred to be dwelling. The actual analysis is more complicated, since other

motion characteristics than speed are used, and a probability is assigned to each state at each time point. C. The results of a standard state fit to a
wild-type track. The lower plot shows speed; red, green, and blue lines in the upper plot show probability of the roaming, dwelling, and quiescence
state at each point in time. The color bar at the top summarizes the probabilities. (The small gap is a brief period of missing data.) The change in
behavior with time is most easily seen by looking at the frequency of very low speed (,20 mm/s). Such time points are a majority in quiescence, a
substantial minority in dwelling, and almost absent in roaming. Most time points are assigned to a single state with near 100% probability, and the
worm spent a substantial amount of time in each of the three. This is reflected in the high excess entropy, 0.857 bits. D. The results of a similar fit to
the same data as in C, but scrambled into random order. The three-state fit did not have substantially more information than a single behavioral state,
as shown by the very low entropy (S). E. Rate graphs summarizing state probabilities and transition rates between states based on analysis of well-fed
wild-type worms on either good food (E coli HB101), poor food (HB101 treated with aztreonam) or a mixture of good and bad. The area of each circle
is proportional to the amount of time worms spend in that state (red = roaming, green = dwelling, blue = quiescence). Thicker arrows represent faster
switching from one state to another. Darker arrows are more accurately measured, lighter grays represent less accurate measurements, based on
variability from one worm to another. *P,0.05, **P,0.01, ***P,0.001, different from good food, Mann-Whitney U-test. Thus, for instance, worms
switch from dwelling to roaming more rapidly (P,0.01) on poor food than on good and spend more time roaming (P,0.001). Number of worms for
each graph as in F. Dataset S1 contains the raw data on which these rate graphs are based for all experiments in this work. F. Mean speed of roaming
worms. These data are based on the same tracks as E. Number of worms in each experiment is shown above the bar. *P,0.05, ***P,0.001, Mann-
Whitney U-test.
doi:10.1371/journal.pone.0059865.g002
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Figure 3. Geometry of behavioral states. This figure shows the two-dimensional arrangement of behavioral states discovered by unbiased open-
loop fits. Each circle (except the black one near the bottom of each panel, which represents complete immobility) represents a single state from a
single worm. The area of the circle is proportional to the amount of time the worm spent in that state. The gray background in A–F and H,
representing all states discovered in all experiments, is shown for context. States are colored by experiment; the same colors are used in panels A–E
and G–H and in Figure S5. Arrows show the directions in which three of the seven state parameters increase. pr is the probability of reversal, ms is
mean deskewed speed, and sas is the covariance of deskewed speed and acceleration. A–D: States discovered in four experiments. Lines join states
discovered in the same worm. A. 14 wild-type worms, fasted for 12 hours, refed on good food (E coli HB101) for 3 hours, then recorded on good food.
B. 12 wild-type worms, grown on good food and recorded on poor food. (Poor food is HB101 treated with aztreonam, which prevents cell division
[7].) C. 12 mutant worms lacking cGMP-dependent protein kinase (PKG, encoded in C elegans by egl-4 [6]), grown and recorded on good food. D. 12
transgenic worms that express constitutively active PKG in ASI neurons, grown and recorded on good food. E. States from the four previous
experiments plotted together. F. Regions of the triangle can be identified as roughly corresponding to roaming, dwelling, and quiescence, as
described in the text. G. All behavioral states discovered in 49 experiments on 363 worms. H. States from all experiments on wild-type worms (80
worms total). These experiments differ only in whether the worms were well-fed or starved and refed, and in the quality of food on which they were
recorded.
doi:10.1371/journal.pone.0059865.g003
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A third possible explanation for our failure to identify clusters is

more complicated. The plots in Figure 3 show the disposition of

states in two dimensions, but the actual state space is seven-

dimensional. Perhaps roaming, dwelling, and quiescence are

separated from each other in the full seven-dimensional space, but

this separation is lost when they are projected onto a plane. While

we cannot entirely exclude this possibility, we found no evidence

for it. It is somewhat implausible on its face, since the two

dimensions plotted capture 93% of the variance–any additional

separation could occur only in the remaining 7%. We examined

state plots in 3 dimensions and looked at projections onto planes

containing each of the seven dimensions and found no evidence of

discrete clusters. In addition, we attempted to automate the search

for clusters using hierarchical cluster analysis based on all seven

state characteristics (Figure S4). The results were disappointing.

While by design cluster analysis always finds clusters, the state

clusters were excessively sensitive to the details of the algorithm

(different distance measures and linkage methods often produced

widely different clusters) and to the data included (during the

course of this work clusters often changed radically with the

addition of a few new recordings). Furthermore, the clusters failed

basic experimental consistency criteria. For instance, if the red,

green, and blue clusters in Figure S4 corresponded to roaming,

dwelling, and quiescence, we would expect that fasted and refed

wild-type worms would alternate between a blue state and a green

state. Some of them did, but in others the two main states were

both green. We do not believe that the clusters identified by cluster

analysis have any biological reality.

Behavioral States are Arranged in a Triangle
Looking at the arrangement of all states (Figure 3G), we were

struck by the impression that they fill out most of a triangle. To test

this impression, we used a test recently described by Shoval et al.

[13]. We compared the area of the smallest polygon that contains

the states to that of the smallest triangle that contains them

(Figure 4A). If they were really arranged in a triangle, the smallest

polygon that contains them would be a triangle and the ratio of

areas 1. Non-triangular points, in contrast, would give a smaller

ratio. (For a circle, for instance, the ratio is ,0.605.) The actual

ratio, 0.916, was significantly greater than that expected for a

random arrangement of points at Pv10{5.

Change of Behavior with Time
The discovery of a continuous state space raises the possibility

that a single worm can vary its behavioral state continuously in

time. For instance, behavior depends on food quality and feeding

history (Figure 1F, Figure 3A, B, H). This suggests that a worm

that sees a change in the quality or quantity of its food might

respond by gradually changing its behavior.

To test this hypothesis, we developed a way to measure how

similar the behavior in one recording is to another (see Fit and

state dissimilarity in Methods). To validate this measure, we first

tested the hypothesis that identically treated worms of the same

genotype would behave similarly to each other. The dissimilarity

of tracks within the 49 experiments was 0.6060.60 (mean 6

standard deviation; range 0.016–5.3); between experiments it was

1.4161.52 (range 20.0007–12). The difference between the two

dissimilarity distributions was significant (Pv10{266, Kolmo-

gorov-Smirnov test). Figure S5 shows the clustering of tracks

within experiments graphically.

Figure 4. Behavioral states are arranged in a triangle. A. Each of the 832 states with probability greater than 10% is plotted in two dimensions
as in Figure 3. The black line is the smallest polygon that contains all of them (the convex hull). The area of this polygon is 90.5% that of the smallest
triangle containing them, significantly greater than that expected if they are not constrained to a triangle (P,1025). The corresponding figure for a
test using all the states, not just those with probability greater than 10%, is 90.8% (P,1025). B. An interpretation of the triangular state space. We
suggest that the locomotive behavioral patterns available to a worm can be any mixture of three archetypal patterns, represented as red, green, and
blue circles. Like primary colors, these mix to form a triangle of possibilities.
doi:10.1371/journal.pone.0059865.g004
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The experiments discussed above were designed to produce

stable behavior: the worms were given a long time to adapt to

conditions, and recordings lasted at most an hour. To see how

behavior changes with time, we placed starved worms on food and

recorded their behavior for four hours, starting immediately, then

broke each track into 15 min segments for analysis (Figure S6).

If a worm’s behavior changes gradually with time, its behavior

should be more similar at short time intervals than at long.

Figure 5A shows that this was the case. Behavior during the first

15 min was very different from all subsequent times (probably

because of the enhanced slowing effect [14]) as shown by the red

points. But, excluding this segment, a worm’s behavior changed

gradually with time interval. (Even including the red points, the

association between dissimilarity and time difference is significant

at Pv10{8; see Starvation recovery statistical tests in Methods.) A

gradual change in behavior need not imply that states change

continuously–it is possible that the states remain the same, but

their probabilities change gradually. In an attempt to test this, we

developed an alternative measure, state dissimilarity, in which only

state characteristics are used in the comparison of behavior, not

state probabilities or transition frequencies. By this measure as well

behavior changes gradually with time interval (Figure 5B;

Pv10{9). This suggests that the states of a single worm are not

discrete, but can change continuously. This is only a suggestion,

however, since state dissimilarity may not be completely immune

to effects of state probabilities.

The gradual increase in dissimilarity with time interval was not

visible in comparisons between different worms. Different worms

were no more alike at the same time than after intervals of hours

(Figure 5C; P~0:83). This shows that behavior varies from one

Figure 5. Behavior change during recovery from starvation. A. Each point is a mean of fit dissimilarity over 14 worms recovering from
starvation. The dissimilarities are between two 15 min cuts recorded from the same worm, and they are plotted against the time difference between
the cuts. For instance, one of the points at Dt~30 averages the dissimilarity between the 15–30 min and the 45–60 min cuts of worm 1, the
dissimilarity between the 15–30 min and the 45–60 min cuts of worm 2, …, and the dissimilarity between the 15–30 min and the 45–60 min cuts of
worm 14. Other points at Dt~30 average dissimilarities between 30–45 min and 60–75 min cuts, between 45–60 min and 75–90 min cuts, …, and
between 195–210 and 225–240 min cuts. Dissimilarities involving 0–15 min cuts are highlighted in red, e.g. the red point at Dt~30 averages
dissimilarities between the 0–15 min and the 30–45 min cuts. The 0–15 min behavior was very different from behavior at all later times. Aside from
this exception, a given worm’s behavior changed only gradually with time, as shown by the gradual increase in dissimilarity with time interval. B. Like
A, except that state dissimilarity is plotted instead of fit dissimilarity. C. Individual worms behave differently from each other. As in A, each point is an
average of fit dissimilarities between cuts separated by Dt in time, but here each worm is compared not to itself, but to other worms. D. This plot
shows mean 6 standard error of between-worm dissimilarities plotted against time. The points of the fit dissimilarity plot are the same as those at
Dt~0 in C, but now plotted against the time at which they were recorded. Both fit and state dissimilarities start out high, but decrease with time as
the worms settle into their new behavior.
doi:10.1371/journal.pone.0059865.g005
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worm to another–a worm is more like itself 30 min later than like a

genetically identical worm with identical history. While there is

nothing fundamentally shocking about this discovery, it surprised

us, because the different-worm dissimilarities were roughly twice as

large as the same-experiment dissimilarities measured previously.

The contradiction was resolved by looking at how behavior varied

with time. Both fit and state dissimilarities between worms began

high, but decreased with time (Figure 5D; Pv0:001). After four

hours mean fit dissimilarity was 0.42, comparable to the mean

within-experiment dissimilarity of 0.60 measured above. This

suggests that the worms reacted diversely to a sudden change in

the environment, but settled into similar behavior with time. State

dissimilarity showed the same pattern.

Discussion

Behavioral states like sleep and hunger reflect patterns of

excitable cell activity. For instance, in humans sleep is associated

with certain types of activity or inactivity in the thalamus.

Questions about the nature and relationships of behavioral states

are interesting because they give us hints of the underlying patterns

of neural activity. Discrete states, for instance, might suggest the

existence of one or a small number of on-or-off neurons.

Continuous states would be difficult to reconcile with such a

mechanism. Furthermore, to investigate the neural basis of

behavioral states, for instance by testing the effect of activating

specific neurons or imaging neural activity in a worm that switches

state, we need to be able to measure states.

Hidden Markov Models
HMM analysis improves on previous methods of analyzing C

elegans locomotion. Behavior is inherently variable, and as a result

it is difficult to identify the type of behavior an animal is engaged

in by looking at a single point in time. HMM analysis is a simple

way of using the information present in the time course of

behavior to mitigate this problem. Markov models have previously

been used to characterize behavioral sequences (e.g. [15,16]).

Their usefulness does not depend on the (highly implausible)

assumption that the animal under study actually is a Markov

machine. The Markov model is useful because it makes minimal

assumptions about the timing of state transitions. The inferred

behavior is therefore driven by the data, rather than being

determined by the model. HMM analysis has been used to analyze

behavior in C elegans [17], mice [18], and humans [19]. HMM

analysis allows the use of Markov models with noisy data, can be

applied to multidimensional data series, and, as we have shown,

allows automation of the recognition of behavioral patterns.

Continuous State Space
Based on previous results, we expected to find three distinct and

well-separated patterns of behavior corresponding to roaming,

dwelling, and quiescence. These would appear as three clusters of

states. While clusters would not be perfectly tight (it had already

been reported, for instance, that the speed of roaming worms

depended on food quality [7]), we expected that states within a

cluster would be far more similar to each other than to states in

another cluster. Such clusters can indeed be found in many

individual experiments (e.g. Figure 3A, D). But taking all

experiments as a whole, or even experiments on wild-type, no

discrete clusters are evident (Figure 3G, H).

Although this result surprised us, it is entirely consistent with

past results, if not necessarily with published interpretations of

those results. The hypothesis that the worm switches between two

or three discrete states is based mainly on two observations: that

the pattern of behavior shows large changes with time, and that

these large changes in behavior are often abrupt. In fact, we also

see large abrupt changes in behavior in our recordings. Discrete

state models do indeed imply abrupt changes in behavior. But

while continuous state models do not necessarily imply abrupt

changes in behavior, they are consistent with them.

It is not surprising that past workers missed these intermediate

behavioral states, for two reasons. The first is simple: they may not

have been looking for them. For instance, in our work on satiety

quiescence [11], we were not trying to find behavioral states, but

only to distinguish whether a worm was quiescent or not. The

other reason is the technical limitations of past analyses. First,

deskewing is important. Without this transformation, everything

that happens at low speed is compressed into a small region of

behavioral space, and it becomes difficult to make any distinctions

other than fast movement and slow movement. Second, the past

analyses didn’t distinguish enough behavioral dimensions. Both

Fujiwara et al. [6] and Ben Arous et al. [7] were aware of this

problem and attempted to solve it by measuring two motion

characteristics: speed and change of direction. However, our

results show (and this is consistent with data in both papers) that

change of direction is actually almost entirely reversal (Figure S2),

and that probability of reversal is tightly inversely correlated with

mean speed (Figure 3), although the tight correlation was obscured

in past work by the noisiness of the change of direction

measurement at low speed. Thus, Fujiwara et al. [6] and Ben

Arous et al. [7] effectively measured only one behavioral

dimension. Our analysis extracts four motion characteristics,

reversal, speed, tangential acceleration, and radial acceleration,

from the record. HMM analysis allowed us to measure many more

derived characteristics, three of which we used: variance of speed,

variance of acceleration, and covariance of speed and acceleration.

Although there are correlations among these seven, behavior is still

spread over two dimensions, and this is enough to separate

intermediate behaviors.

Pareto Optimization
Figure 4B shows an interpretation of the proposed continuous

state space. We suppose that the worm has available to it three

extreme patterns of behavior, shown as red, green, and blue

circles. However, the worm can also mix these in any proportions,

the way an artist mixes colors in a palette, to form intermediate

patterns.

Recently, Shoval et al. [13] showed that the phenotypes of

organisms trading off the abilities to optimally carry out three tasks

can form a triangular pattern. The vertexes of the triangle are

archetypes: phenotypes that are optimal for a single task. The

optimum for an animal that needs to be able to execute two of the

three will be on the line joining the two corresponding archetypes,

and to execute all three in the interior of the triangle, at a point

determined by the relative importance of the three tasks. In

economics, the problem of finding such an optimum is called

Pareto optimization. Pareto optimization has another conse-

quence, which we also observe: dimensional reduction. The

phenotypic space resulting from trade-offs between three goals is

two-dimensional, even if the space of all possible (non-optimal)

phenotypes has more dimensions. Although Shoval et al. [13]

discussed the phenotypes of different species in a taxonomic group,

their reasoning is equally applicable to the selection of patterns of

behavior by an animal.

We suggest that the two-dimensional, triangular locomotive

state space we discovered is explained by the need to trade off

three goals. The archetypal roaming state, represented by the red

circle in Figure 4B, is behavior optimized for finding new food.
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The archetypal dwelling state (green circle) is optimal for

exploiting a food source, once it has been found. And the

archetypal quiescent state (blue circle) is optimal for minimizing

movement. The gap along the lower edge of the triangle also finds

an easy explanation. It is there because no circumstances exist (or,

at least, none were tested in our experiments) in which an animal

tries to simultaneously satisfy the goals of remaining immobile and

searching for food.

Are there Discrete States?
Our results are consistent with the hypothesis that the time

course of behavior of a single worm can be explained by discrete

states. The discovery of a continuous state space would not directly

contradict this hypothesis–it could be that continuity is only

evident when one looks across many worms under a wide variety

of conditions. It does, however, raise the possibility–conceivably

even a single worm varies its behavioral states continuously in

time. For instance, the behavior of a wild-type worm varied

depending on food quality and feeding history (Figure 2F,

Figure 3A, B, H). This implies that a worm that sees a change

in the quantity or quality of its food will respond by changing its

patterns of behavior. Since the detection of food and response to

this change cannot be instantaneous, this suggested that a single

worm might show a gradual change in behavior. We directly

tested this possibility, and found that it was true (Figure 5).

Furthermore, the results were consistent with continuous change

in the states themselves, not just in the kinetics of switches among

them.

Continuous states complicate our view of behavior. A simple

version of the discrete state model that has until now implicitly

guided the analysis of worm locomotion has three characteristics:

(1) States are well separated from each other. (2) The switch

between states is abrupt. (3) The characteristics of a state do not

change with time. The discovery that the state space may be

continuous suggests that all or some subset of these statements may

be false. Our current analysis cannot test them, because they are

embedded in the model on which it is based: a discrete-state

Markov chain. We are working to develop continuous-state hidden

Markov models that will allow us to separately test the three.

In addition to improved analysis, better data would help in

determining whether there are discrete states, specifically in testing

criterion 1. Our failure to see well-separated clusters of states may

result in part from missing information. Currently we use only the

average position of the worm, a single x, y point at each time. Two

other types of behavioral information might be helpful: the shape

of the worm [20], and feeding. Casual observations suggest that

roaming, dwelling, and quiescent worms have distinct postures

(our unpublished observations), and feeding stops during quies-

cence [11]. It is possible that these measurements would separate

the state continuum into discrete clusters. Ultimately behavioral

states must reflect the state of the nervous system. The most

informative additional data would be the time course of activity of

neurons in freely moving animals. Such experiments are

challenging, but are being done [21–23].

Materials and Methods

Preparation of Bacteria
Five ml LB was inoculated with a single colony of E. coli strain

HB101 expressing mCherry and incubated shaking overnight at

37uC. The culture was removed from the incubator and allowed to

sit at room temperature overnight. The sample was centrifuged at

4,000 RPM for three minutes. After decanting the supernatant,

the pellet was resuspended in the small residual amount of broth

and transferred to a microcentrifuge tube. 40 ml of this suspension

was twice serially diluted 1:1 with M9 (for a final 46dilution). 5 ml

of this suspension was pipetted onto a 35 mm NGM plate and

allowed to dry completely.

Aztreonam was used to prepare poor (i.e., low-quality) food [7].

Aztreonam prevents bacterial cell division, so that the bacteria

turn into long snakes, which are difficult for the worm to eat.

Aztreonam-treated bacteria were prepared as above with one

additional step. After shaking overnight at 37uC, 1 mL of turbid

LB was added to 4 mL fresh LB and aztreonam (Sigma-Aldrich)

was added to a final concentration of 5 mg/mL. This was

incubated overnight shaking at 37uC, and then allowed to sit at

room temperature overnight.

Locomotion Assays
L4 worms were picked to an HB101 seeded NGMSR plate and

given 8 hours to develop to young adult stage. For fasted

conditions, young adult worms (adults containing no eggs) were

picked to individual 60 mm NGMSR plates without food and

starved for 12–14 hours. A single starved worm was then

transferred to a 6 mm diameter spot of bacteria made by placing

5 ml bacterial culture on a plate, focused under the camera, and

allowed to refeed for 3 hours. The microscope light was then

turned on and video capture was started at 1 frame/second for 1

hour. In the starvation recovery experiment the worms were

treated identically, except that recording started immediately after

transferring the worm to food and continued for four hours.

For nonfasted assays, worms were prepared identically except

that young adults were transferred to a 60 mm NGM plate with

food for 12–14 hours and worms were given 30 minutes on the

assay plate to recover from being transferred, followed by taking a

30 minute video at 1 frame/second.

In the 49 experiments listed in Table S1, worms were recorded

using a Leica MZ6 microscope at 2.56magnification with a 1.06
lens and a Retiga-4000R camera and Image Pro Plus 6.2. These

videos were analyzed by Image Pro Plus software. In the starvation

recovery experiment, recordings were made on a modified version

of the nine-worm recording station described by Shtonda and

Avery [1] in which the worms were imaged through Computar

MLM3X-MP macro zoom lenses onto Pointgrey GRAS-14S5M-

C digital cameras, and the videos were analyzed by MATLAB

scripts of our design. In all cases a low pass filter was applied to

each frame of the movie and the light/dark threshold was adjusted

to find the outline of the worm. The center of mass was calculated

at each time, reducing each recording to a series of t,x,yð Þ points,

which were the basis for all subsequent analyses. In the starvation

recovery experiment, each 4 hour track was broken up into 16

segments, each 15 min long.

A certain amount of motion is detected even from a completely

stationary worm, as small fluctuations in measured brightness of

border pixels cause them to vary above and below threshold. This

noise motion places a limit on our ability to detect immobility and

therefore quiescence. To quantify it, we recorded a worm

immobilized with 30 ml of 1 M sodium azide before transfer to

the assay plate. The mean speed of an immobilized worm was

0.32 mm s21, and the speed was below 1 mm s21 99.7% of the

time. Apparent motion was biased along one direction, as

expected, since most border pixels are farther from the center in

the anterior/posterior direction than in the dorsal/ventral

direction.

Motion Characteristics
Explanation. Fujiwara et al. [6] and Ben Arous et al. [7]

both began their analysis by measuring speed and change of
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direction (called ‘‘turning’’ by Fujiwara et al. [6] and ‘‘curvature’’

by Ben Arous et al. [7]). Change of direction is a problematic

measurement. From 3 consecutive center of mass positions

p1,p2,p3 one calculates h12, the direction from p1 to p2, h23, the

direction from p2 to p3, and finally the minimum angular

difference required to get from heading h12 to h23. If the worm

didn’t move between time 1 and time 2, h12 is undefined; if the

worm moved little, h12 is measured with poor accuracy. Since

change of direction is the difference between two angles, it is

poorly determined if there is little movement between time 1 and

time 2 or between time 2 and time 3. The fundamental problem is

that the function mapping positions to change of direction is

discontinuous at p1~p2 and at p2~p3. Since we needed to

analyze behavior under conditions where the worms spend much

of their time not moving, this was a problem. A less important

problem is that speed and change of direction do not capture all

the useful information in three consecutive points.

To solve these problems, we systematically redesigned the

process of motion reduction, by which we mean the derivation of

rotation and translation-invariant descriptions of motion from

laboratory-frame Cartesian data. Three consecutive x,yð Þ center

of mass positions have six degrees of freedom. However, three of

those describe where the petri plate is located and how it is

oriented with respect to the camera and are of no interest in

understanding the worm’s behavior. This leaves three numbers’

worth of useful information. A natural way to remove the

translational information is to measure velocity, the change in

position, and acceleration, the change in velocity. Each of these is

a two-vector, and together they capture all the translation-

invariant information. Furthermore, they are continuous functions

of the positions, so they are well-defined for both small and large

motions.

Removing the rotational degree of freedom is more difficult.

One way to do this is to rotate the velocity and acceleration vectors

into a coordinate system whose axes are defined by p1,p2,p3 in

such a way as to covary with the orientation of the petri plate. An

obvious choice for the x axis of this coordinate system is the

direction of the velocity vector. When v is rotated to point along

the x axis, its x component is just the speed, and its y component

becomes 0 and can be discarded. Speed is a continuous function of

the positions. The acceleration vector a, rotated into the same

coordinate system, has two components, tangential acceleration at,

acceleration along the direction of motion, which measures the

rate of change of speed, and radial acceleration ar, acceleration

perpendicular to the direction of motion, which is proportional to

the rate of change of direction.

Unfortunately, acceleration thus defined is not a continuous

functions of the positions. The rotation to the direction of motion

depends on accurate measurement of that direction, which

depends on the worm moving. We first attempted to solve the

problem by using the sum of two velocities 2v13~v12zv23~
p3{p1

Dt

to define direction. This works well if the worm moves very little in

the first time interval, the second time interval, or even in both

time intervals. (In the last case, although the direction of the

velocity vector is poorly defined, the acceleration is close to 0, so

the function is still continuous.) It is discontinuous only when the

worm moves during the first time interval then reverses its

movement during the second time interval, so that it ends up

where it started. In practice, the worm need not reverse its motion

exactly for this to be a problem–if the distance from p1 to p3 is

close to or smaller than the typical position measurement error,

acceleration is poorly defined. Although this does not occur

frequently, it is common enough to be a problem, especially during

dwelling.

Fortunately, when the worm reverses its motion another well-

defined direction can be derived from the positions: the difference

in velocities v12{v23. By itself the difference is no better than the

sum, but by choosing the larger of the two in every case, we always

have a well-defined direction vector if the worm moves at all.

Furthermore, if acceleration is defined (conventionally) based on

the difference of the two velocities when v12zv23 is larger and

(unconventionally) on the sum of the two velocities when v12{v23

is larger, acceleration is a continuous (though not differentiable)

function of the positions.

There is one lingering problem: one bit of information has been

lost. From the number s and vector a we cannot tell which branch

of the calculation was followed. For instance, s~1,a~ 0,0ð Þ is

consistent both with constant movement in one direction and

back-and-forth movement. To preserve this bit of information, we

defined a new motion characteristic, r for reversal, which is 1 when

v12{v23 is larger and 0 when v12{v23 is larger. (Equivalently,

r~1 if and only if the change of direction is greater than 90u.) In

addition, the branched calculation was useful in an unintended

way: r is a behaviorally relevant measure. Reversals are more

common during dwelling than during roaming.

Calculation. r (reversal), s (speed), and a = (at, ar) (accelera-

tion) were calculated as follows. From three consecutive center of

mass positions p1,p2,p3 we calculate velocities v12~
p2{p1

Dt
,

v23~
p3{p2

Dt
. If v12

:v23v0, the motion is a reversal, r~1, and

d~
v12{v23

v12{v23k k

a~
v23zv12

Dt

ð1Þ

If v12
:v23§0, the motion is a non reversal, r~0, and

d~
v12zv23

v12zv23k k

a~
v23{v12

Dt

ð2Þ

The unit vector d is an estimate of the direction along which the

worm is moving. a is the laboratory-frame acceleration. To get

acceleration along the direction of motion, we rotate a through the

angle that brings d to the x axis.

a~Ra ð3Þ

where

R~

dx dy

{dy dx

� �
r~0

{dx {dy

{dy dx

� �
r~1

8>>><
>>>:

ð4Þ

(The negation of the first row of R in case of reversal preserves the

continuity of at across the switch without changing its magnitude).

The components of a have error on the order of
sp

Dt2
where sp is

the position measurement error (typically about 1 mm), even if the
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worm moves very little between time 1 and time 2, between time 2

and time 3, or in both intervals.

In the case of a reversal, a and therefore a do not correspond to

conventional acceleration, since a is based on the sum of the two

velocities rather than their difference. For instance, a worm that

exactly reverses its movement and ends up at time 3 where it

began at time 1 is measured as having 0 acceleration. at thus

corresponds more closely to the common meaning of acceleration,

change in speed, rather than the meaning in classical mechanics,

change in velocity.

Finally, speed is

s~
v12k kz v23k k

Dt
ð5Þ

Together, r, s, and a contain all the translation and rotation-

invariant information in p1,p2,p3ð Þ–from r, s, and a three positions

can be calculated that differ from p1,p2,p3ð Þ only by translation

and rotation.

Deskewing
The distribution of speed is strongly skewed to the right (Figure

S7A). Right skew commonly arises when quantities are better

compared by their ratios than their differences, e.g., if one

considers speeds of 5 mm s21 and 20 mm s21 to be equally different

from 10 mm s21. It is corrected by taking logs. Figure S7B shows

the distribution of logs. The right skew has been corrected, but

there is now a long tail to the left. In the low-speed region, speeds

are better compared by differences than ratios: 0.1 mm s21 is very

little different from 0.2 mm s21–given the typical noise of position

measurement in our system, these are nearly equivalent (assuming

a time interval of 1 s). The inverse hyperbolic sine transformation,

s’~sinh{1 s

e
ð6Þ

solves this problem: it is linear for s%e and logarithmic for s&e
[24].

To allow comparisons between present and future datasets, we

did not want e to be a function of data on hand. Instead we chose

one value of e to use for all analyses. Since the switch from

logarithmic to linear variation in our data occurs because of

measurement error at the low end, we chose e~1 mms{1, the

approximate speed measurement error. Figure S7C shows the

results of this transformation. The distribution is not symmetrical,

nor is it expected to be, since the distribution of behavior is not,

but both long tails have been eliminated.

Magnitude of acceleration a~ ak k and radial acceleration ar

were similarly deskewed using

a’~ sinh{1 a

e

a’r~ sinh{1 ar

e

ð7Þ

with e~1 mms{2.

The results are not sensitive to the precise form of the deskewing

transformation. We have also used s’~ log szeð Þ, which has the

same characteristic of being linear for s%e and logarithmic for

s&e. We have also tried different values of e; any values of the

order of 1 mm s21 (for speed) and 1 mm s22 (for acceleration) gave

similar results. For instance, we re-ran the entire analysis leading

to Figure 3 with e~0:25 mms{1 and e~0:25 mms{2, or with

e~4 mms{1 and e~4 mms{2. The results were subtly different in

predictable ways (smaller values stretch out the low-speed region a

little, larger compress it), but none of our conclusions would be

altered with this change.

State Parameters Describing Motion
Based on previous publications [6,7,11], we expected that

different states would be distinguished by speed and reversal

frequency. Previous descriptions of roaming as ‘‘sustained’’ and

‘‘straight’’ [7] suggested (misleadingly, as it turned out) that

roaming would be characterized by a low magnitude of

acceleration and low radial acceleration. Reversal frequency is

characterized by pr, the probability of reversal. Speed and the

magnitude of acceleration are characterized by mean speed ms,

mean acceleration ma, variance of speed s2
s , and variance of

acceleration s2
a. Because we lack information about the dorsal/

ventral orientations of the worms and expect them to be random,

the mean of radial acceleration was assumed to be zero, so ar was

characterized by its variance s2
ar

alone. (The zero mean

assumption was later tested and found to be correct.) Finally,

some preliminary explorations suggested that acceleration and

speed might be correlated during dwelling, so we added their

covariance s2
as as a seventh parameter. All parameters except pr

are based on deskewed characteristics.

Using these parameters, we used unbiased closed-loop fitting to

identify states as described below. We then calculated 20

parameters for each state: the means, variances, and covariances

of r, s’, a’, a’t, and a’r. (a’r was not assumed to have mean 0 for this

analysis, but in fact the measured mean was very close to zero.) We

developed a principal component analysis (PCA) browser tool that

allowed us to interactively select any subset of these 20 state

parameters, carry out PCA on the subset and plot any subset of the

experiments in two dimensions with any two of the components

chosen as axes, and arrows showing the direction and rate of

increase of any subset of the parameters under consideration.

Using this tool we systematically surveyed all 20 parameters for

those that helped to separate states from tracks recorded under

different experimental conditions.

This survey showed that 12 of the 20 parameters were not useful

in discriminating states. Including any of these 12 only increased

noise. The eight parameters that did help were the original seven

plus one more, s2
rs, the covariance of reversal and speed. Although

this parameter helped when some of the original seven were left

out, it didn’t improve discrimination when added to them, i.e.,

states were not noticeably better separated using eight parameters

than seven. We therefore settled on the original seven parameters

for further analysis.

Emission Probabilities
To estimate whether a worm is in a state characterized by the

parameters above, we need first to estimate the probability that a

worm in that state would exhibit the behavior actually observed

(the emission probability). The relationship between r and pr is

simple: the probability of r~1 is pr; the probability of r~0 is

1{pr. The continuous characteristics s, a, and ar are more

complicated. In general, the probability of speed s’ should be high

for values close to the mean ms and low for values whose distance

from the mean is large compared to the standard deviation ss. The

(unnormalized) probability density of a particular s’ is thus.

P s’ð Þ~f
s’{ms

ss

� �
ð8Þ
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where f xð Þ is some positive even function with a maximum at

x~0 and a value that decreases monotonically as DxD increases. An

obvious possibility (and our first choice) for f was a Gaussian

f xð Þ~e{x2=2; with this choice s’ is normally distributed with

mean ms and variance s2
s . But our attempts at HMM analysis with

Gaussian emission distributions failed: no states could be detected

that lasted more than a few seconds.

The normal distribution has a perverse property. Consider two

states, state D with mean speed 1 and standard deviation 1, and

state R with mean 2 and standard deviation 1. If you observe

speed 2, you will naturally conclude that the evidence favors state

R over D. The extent to which this is true is
PR 2ð Þ
PD 2ð Þ&1:65. This

probability ratio increases as s’ increases:

If speed is normally distributed, a value of s’ 8 standard

deviations from the mean is almost 5000 times more probable than

one 9 standard deviations from the mean. In the absence of

evidence to the contrary, a speed of 10, all by itself, would be

sufficient to make you very nearly certain that the worm was in

state R rather than D. This, however, is an absurd conclusion,

because if speed truly is normally distributed with mean 2 and

standard deviation 1, one should not see a speed of 10: the

probability is v10{15. Speeds 8 standard deviations from the

mean are not evidence that the worm is in state R–they are

evidence that the normal distribution doesn’t correctly describe

behavior. Rather, the behavior must be described by a distribution

that has much higher probabilities of extreme events.

Such distributions are called fat-tailed distributions. The

Student’s t distribution is a commonly used symmetric fat-tailed

distribution [25]. It corresponds to f xð Þ~ 1

1zx2=n

� � nz1ð Þ=2
.

The parameter n determines how fat the tails are: smaller n implies

higher probabilities of extreme events. For instance, with n~5 the

probability of a speed 8 standard deviations above the mean is

about one in 4,000. Such events, while rare, should be seen many

times in hundreds of hours of recording. The relative probabilities

of R and D with this distribution are:

With this distribution the probability ratio never rises above

3.79, and it actually decreases for extreme speeds. An intuitive

interpretation is that a speed of 20 is a poor fit to both states and

therefore does not bias one strongly towards one or the other.

The generalization of equation (8) to multiple dimensions is

P sð Þ~f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s{mð ÞT S{1 s{mð Þ

q� �
ð9Þ

where s is the vector of observations, m its mean, and S its

covariance matrix. We chose to use a Student’s t distribution with

n~5, the smallest integer for which the distribution has defined

mean and variance in three dimensions. After scaling and

normalization, the probability density for r,s’,a’,a’r was

P r,s0,a0,a0r
� �

ds0da0da0r~P rð Þ 4

p2
ffiffiffiffiffiffi
Sj j

p 1

1zxT S{1x

� �3

ds0da0da0r

P rð Þ~
pr r~1

1{pr r~0

(

x~

s0{ms

a0{ma

a0r

0
BB@

1
CCA

S~

s2
s s2

as 0

s2
as s2

s 0

0 0 s2
ar

0
BB@

1
CCA

ð10Þ

This distribution is at best an approximation to the true

distribution. For instance, it has a finite probability of negative

speed, even though speed by definition is never negative.

Transition Probabilities
HMM fitting is the process of looking for an explanation of the

worm’s behavior in terms of changes in its behavioral state. Two

things determine the posterior probability that the worm is in state

i at time t. The first is the probability that a worm in state i would

display the behavior actually observed at time t, i.e., how well is

behavior explained by state? This is the emission probability just

described. The second is the probability that it could have entered

or remained in state i at time t, given the state probabilities at the

previous and subsequent time points. If the time between

subsequent points is short, the worm should usually stay in the

same state. Thus, explanations in which state changes are rare are

preferred (Figure 2A,B). It is this second criterion that allows

HMM fitting to make use of information about how behavior is

arranged in time.

The penalty for switching between states is governed by a

lifetime t. The transition probability matrix T from time t to time

tzDt is

T~ exp QDtð Þ

qij~

{
1

t
i~j

1

m{1ð Þt i=j

8>><
>>:

m~number of states§2

ð11Þ

t is a tuning parameter that can be used to trade stability for

rapid response. Formally it is the mean lifetime of a state in the

s’
PR s’ð Þ
PD s’ð Þ

2

1.65

5

33.1

10

4915

20

251658240

s’
PR s’ð Þ
PD s’ð Þ

2

1.73

5

3.38

10

1.94

20

1.38
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underlying Markov chain. However, in HMM fitting it is better

thought of as the weight of behavioral evidence required to

recognize a state switch. For most of our analysis we used

t~86,400 s (one day). With this value and Dt~1 s behavioral

evidence for a switch from state 1 to state 2 must be sufficient to

overcome an 86,400 fold penalty against switching. Such evidence

could be supplied by three points in which the behavior has a 50-

fold higher probability of occurring in state 2 than in state 1

(503~125,000w86,400). We chose t~86,400 s so that a single

outlying point would not be sufficient to force a state switch.

However, rapid changes in behavior might be missed with this

large a value of t. For the starvation recovery experiment, in

which we were looking for rapid changes of behavior, we used

t~300 s (5 min).

t does not constrain the actual lifetimes observed. If 50-fold

differences in emission probabilities are common (and they were),

a state switch can be recognized in as little as 3 s. In fact, with

t~86,400 s the typical lifetimes observed were between 1 and

2 min. Furthermore, results were fairly insensitive to this setting.

As a check, we re-ran the entire analysis leading to Figure 3 with

t~300 s. The results are only subtly different, and none of our

conclusions are changed. Even with t~300 s, typical observed

lifetimes were about 30 s.

Parameter Estimation
Given the seven parameters describing each state, a track can be

fit to an HMM by the forward-backward algorithm [26, Section

16.3]. From the fit one obtains the likelihood that a worm whose

behavior was governed by the model would behave as this worm

actually did, as well as a set of state probabilities for each point.

In general, the behavior of the worm in state i in a particular

track will not precisely match that described by the input

parameters. For example, suppose that a track is fit to a model

with two states, state R with mean speed 2 and state D with mean

speed 1. However, this worm is actually switching between a state

with mean speed 3 and another with mean speed 0.5. Despite the

mismatch between the model and actual behavior, the fit will

detect the alternation between states, since state R will fit better to

the speed 3 state than state D does, and state D will fit better to the

speed 0.5 state than state R does. In this case, by looking at the

actual behavior during the times when state R was determined to

be more probable, the true characteristics of the high-speed state

can be estimated.

Actual behavior was estimated from the fit as the average of

functions of motion characteristics, weighted by the state

probabilities:

Ei x½ �~

P
t

pitxtP
t

pit

~
X

t

witxt ð12Þ

where

Ei x½ �~expected value of x in state i

xt~measured x at time t

pit~probability that the worm was in state i at time t

wit~
pitP

t

pit

ð13Þ

Equation (12) is a straightforward extension of the Baum-Welch

method for estimating the symbol probability matrix for an HMM

with discrete emissions [26]. Intuitively, it says that those time

points at which the worm has a high probability of being in state i

are weighted heavily in estimating the characteristics of state i.

We estimated parameters pr,ms,ma, and s2
ar

in this way,

using

p̂pir~Ei r½ �

m̂mis~Ei s’½ �

m̂mia~Ei a’½ �

ŝs2
iar

~Ei a2
r

� �
ð14Þ

The variances and covariance s2
is,s

2
ia, and s2

i,as were esti-

mated using

ŝs2
is~Ci Ei s02

� �
{m̂m2

is

� �
ŝs2

ia~Ci Ei a02
� �

{m̂m2
ia

� �
ŝs2

i,as~Ci Ei a0s0½ �{m̂miam̂misð Þ

Ci~
1

1{
P

t

w2
it

ð15Þ

Ci corrects for the bias introduced by using estimated means

instead of the (unknown) true means in estimating variances. This

correction is unnecessary for s2
ar

because the mean of ar is assumed

zero.

Unbiased Closed-loop Fits
Given guesses of the behavioral states, an HMM fit can be

performed on a track and new estimates calculated as described

above (an open-loop fit, Figure S3A). Instead of stopping there,

however, one can feed these new estimates into a second HMM fit

of the same track to obtain a third set of estimates, and so on.

Under favorable conditions the estimates will eventually stop

changing. We call this a closed-loop fit (Figure S3B). Some

adjustments were necessary to achieve convergence in closed-loop

fits. First, we do not use re-estimated transition probabilities, but

constrain them to the form described above. Second, we do not

allow the variance parameters to vary independently for the

separate states, but instead calculate a single value for each of these

as a weighted average of the estimates for the separate states.

Because of the form of the distribution we assumed, this ensured

that the ratios of emission probabilities were bounded. After

convergence, we run the states through a single round of open-

loop fit with these constraints relaxed so as to estimate

independent variance parameters for each state. We also did a

single step of the Baum-Welch algorithm [26] for re-estimating the

transition matrix T.

The closed-loop fit still requires initial guesses of state

parameters to get started, and it is conceivable that these initial

guesses might influence the states eventually discovered. In an

unbiased closed-loop fit, initial guesses derived entirely from the data

(Figure S3C). We began by fitting the data to a one-state model. In

this case no initial guess is necessary, since the worm must be in the

single state with probability 1 during the entire track. We then split

the state into two, one identical to that derived from the one-state

fit, and a second with slightly greater mean speed, and used these
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as the initial estimates for a two-state closed-loop fit. Although the

fit began with two almost identical states, the slightly higher-speed

state has higher probability during portions of the track when the

worm is moving faster and the lower-speed state when the worm is

moving slower. If there are coherent behavioral variations, the low

and high-speed states will therefore take on different characteristics

on parameter re-estimation, and during subsequent iterations they

converge on different parts of the track. If the two-state fit

converged, its higher-speed state was split in the same way to

produce initial guesses for a three-state fit. Goodness of fit,

measured by likelihood, tended to increase with more states: log-

likelihood per point increased by 0.3460.20 (mean 6 standard

deviation; range 0.013–1.14, Pv10{60, signed rank test) in going

from one to two states, and 0.06960.065 (range 20.016–0.35,

Pv10{59). (In 18/363 cases likelihood decreased slightly in going

from two to three states. It is not surprising that likelihood

decreased slightly in some cases, since the unbiased parameter

estimates (14), (15), are not maximum likelihood estimates. The

equal variance constraint can also prevent achieving maximum

likelihood.) We didn’t try to continue past three states, since in

most three-state fits there was at least one in which the worm spent

little time. The fit with the highest excess entropy was used for

further analysis.

Although we refer to these fits an ‘‘unbiased’’, we recognize that

this description is relative. Any method of recognizing behavioral

patterns will of course be biased by the data collected. More subtly,

to use the method it is necessary to reduce possible patterns of

behavior to numerical descriptions, as described above. There is

no fixed recipe for developing such a description scheme, and it

determines what sort of patterns can be recognized.

Standard State Descriptions and Fits
While unbiased closed-loop fits capture a lot of information

about an individual worm’s movement, they are difficult to

compare to published results. We therefore developed standard

roaming, dwelling, and quiescence state descriptions that could be

used for fitting all tracks. While these standard state fits probably

do not classify behavior as accurately as unbiased fits, they have

the advantage of describing behavior in familiar terms.

Based on past results, we identified pure plays–conditions under

which a worm spends most of its time in one of the three states.

These conditions were:

Roaming: well-fed wild-type worms on poor food, well-fed egl-4

loss-of-function mutant worms on poor and medium-quality food.

Poor food is E coli HB101 grown on aztreonam [7]. Medium-

quality is a mixture of aztreonam-treated and untreated. Poor food

suppresses dwelling and quiescence, and egl-4 is necessary for both

[1,6,11].

Dwelling: well-fed ttx-3, tax-4, and daf-7 loss-of-function mutant

worms on good food (E coli HB101); daf-7 loss-of-function mutant

worms fasted for 12 h, then refed for 3 h on good food. Under our

recording conditions well-fed worms show little quiescence on

good food. ttx-3 and tax-4 are necessary for normal levels of

roaming [1,7]. daf-7 worms have been reported to be defective in

both roaming [7] and quiescence [11].

Quiescence: egl-4 gain-of-function mutant worms fasted for

12 h, then refed for 3 h on good food [10,11].

Unfortunately, none of these is a perfect pure play. We therefore

chose the most probable state from the unbiased closed-loop fit of

each track as the basis for pure-play state descriptions. The seven

parameter values were calculated as described under Parameter

estimation, except that in

E x½ �~

P
t

pitxtP
t

pit

~
X

t

witxt ð16Þ

pit now refers to all time points in all the tracks being pooled to

produce a state description, and i is the most probable state in each

track. Parameters pr,ms,ma, and s2
ar

of the pure play states are

thus the weighted average of the means of the corresponding

parameters of the most probable states in the constituent tracks.

The variances s2
s ,s2

a and the covariance s2
as are larger, however,

since they are based on the common means over all tracks rather

than the within-track means.

Two kinds of effects can be detected in standard state fits. First,

a treatment or genotype may affect the rate at which a worm

switches between roaming, dwelling, and quiescence. Second, the

treatment may affect the way a worm behaves when in a particular

state. For instance, it has been suggested, and we confirmed, that

roaming worms move faster on low-quality food [7]–this effect is in

addition to the increase in the frequency of roaming. Interpreta-

tion of these fits is complicated by the fact that one effect can

masquerade as the other. For instance, if in some genotypes

dwelling worms behave in ways that are closer to quiescent worms,

this may appear as an increase in the frequency of quiescence.

Statistically Typical Tracks
The short illustrative statistically typical segments in Figure 1 in

were chosen as follows. First, the most probable states from

unbiased closed-loop fits on which the corresponding standard

state description was based (see above) were averaged to get the

target state. Next, the state descriptions were standardized to have

standard deviation 1, and that state and track that yielded a

standardized description closest to the mean were chosen. Finally,

the central 90 s from the longest segment within this track in

which the probability of being in this state remained continuously

at §99% was chosen.

Excess Entropy
Excess entropy in bits per point for an m-state fit to a track was

calculated as

S~
1

N

X
t

Xm

i~1

pit log2pit{
Xm

i~1

pilog2pi ð17Þ

N is the number of time points, and pi~
1

N

X
t

pit is the

probability of state i in the track as a whole. Since plog2p is

convex, S§0 by Jensen’s inequality. The maximum possible

value, log2m, occurs when all states are equally probable in the

track as a whole, but at each time point one state has probability 1.

This maximum is 1 bit for a two-state fit and 1.58 bits for a three-

state fit.

An analogy will help to understand the meaning of excess

entropy. Suppose there are three weather forecasters. Forecaster 1

says the probability of rain is 1/7 every day this week. Forecaster 2

says the probability of rain is 1/12 Sunday through Friday and 1/

2 Saturday. Forecaster 3 says the probability of rain is 0 Sunday

through Friday and 1 Saturday. Suppose too that over the long

term all three forecasters are statistically accurate, e.g., it rains on

one out of twelve of those days on which Forecaster 2 says there is

a 1/12 probability of rain. Despite the equal accuracy of all three

forecasts, Forecaster 29s prediction is more informative than that
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of Forecaster 1, and Forecaster 39s prediction is more informative

still. The excess entropy of Forecaster 29s prediction is 0.094 bits/

day: on the average, she provides 0.094 bits more information

each day than Forecaster 1. The excess entropy of Forecaster 39s

prediction is 0.59 bits/day. Excess entropy is a measure of

precision, not accuracy. The excess entropy of Forecaster 39s

prediction is 0.59 bits/day even if it rains on Friday and not

Saturday.

Principal Components, Cluster Analysis, and Triangularity
Test

We used principal component analysis (PCA) to reduce the

dimension of states discovered by unbiased closed-loop fits as an

aid in visualization. These fits often gave rise to outlying states of

low probability. (These are visible in Figure 3GH as small dots

surrounding the main body of states; in 3 dimensions they are even

more evident.) To reduce the influence of these low-probability

states we weighted the PCA by state probability. Let xi be the

parameter 7-vector describing state i and pi the probability of that

state in the track in which it occurred as a whole. We defined

expectation over this set by

E x½ �~

P
i

pixiP
i

pi

~
X

i

wixi

wi~
piP

i

pi

ð18Þ

i runs over all states in all tracks. Means, variances, covariances,

and correlations were then defined in the usual way using this

expectation, and principal components were calculated by

diagonalizing the correlation matrix so defined.

For hierarchical clustering, we first standardized all 1083 states

so that each parameter had mean zero and standard deviation 1

by the weighted measure (18). We then eliminated all states with

probability less than 10%, leaving 832, which were clustered using

the Hierarchical Clustering package in Mathematica (Wolfram

Research). Cluster analysis was done using distance measure

Euclidean Distance or Euclidean Distance Squared and all

available linkage methods. Results varied greatly depending on

these settings. We got the best results with Euclidean Distance

Squared and linkage method Median; these are shown in Figure

S4. Results were also sensitive to the inclusion or exclusion of

particular datasets–often the inclusion of a few new recordings

caused a near complete rearrangement of the clusters.

Triangularity was tested as described by Shoval et al. [13], with

small modifications. The test is based on a statistic t, the ratio of

the area of the convex hull of the points in two dimensions (i.e., the

first two principal components) to that of the smallest triangle that

contains them. For points arranged in a triangle, this ratio is 1; for

a more compact arrangement, it is smaller than 1. We tested

significance by randomly permuting one component, so that the

permuted data contained the same x’s and y’s, but associated with

each other randomly. (This is slightly different from Shoval et al.

[13], who derived new points by independently resampling the x

and y distributions, but the central idea of scrambling the

association between x and y is the same.) We sampled either 104

or 105 permutations to determine the distribution of t. We first

tested the full set of 1083 states and found that they were

significantly triangular with Pv10{5. The test is sensitive to

outliers, so we repeated it on the set of 832 states with probability

at least 0.1 used for cluster analysis, which was also significant

triangular at Pv10{5.

Fit and State Dissimilarity
We developed measures of the difference in behavior between

two worms based on HMM analysis. The fundamental logic is

simple: if worm A and worm B behave similarly, the model that

best describes worm B’s behavior should also do well at describing

worm A. We use log likelihood per point as a measure of goodness

of fit. Define

‘m,AB~
1

NA

log 2Lm,AB ð19Þ

‘m,AB~log likelihood per point of track A fit to B

2Lm,AB~likelihood of worm A behavior under the

model that optimally explains B

NA~number of points in track A

ð20Þ

Optimal models come from unbiased closed-loop fits.

Model dissimilarity between A and B is then

dm,AB~
1

2
‘m,AA{‘m,ABz‘m,BB{‘m,BAð Þ ð21Þ

Model dissimilarity thus defined doesn’t properly account for

differences in state probabilities. For instance, suppose that worm

B is optimally described by a two-state model in which state 1 has

a lifetime 1.5 times that of state 2, so that the worm is expected to

spend 60% of its time in state 1 and 40% in state 2. Worm A, on

contrast, spends 100% of its time behaving as expected in worm

B’s state 1. In this case, ‘m,ABw‘m,BB; worm A better fits B’s model

than B itself does. A simpler example illustrates why this happens.

Suppose you have a biased coin that comes up heads 60% of the

time. The most likely sequence, if you flip it 100 times, is 100

heads in a row. This is more likely than any single sequence of 60

heads and 40 tails by a factor of 1:540&1:1|107. Model

likelihood fails to account for the fact that there are many

sequences of 60 heads and 40 tails,
100

60

� �
&1028 of them,

compared to just one sequence of 100 heads.

Let pA,i(B) be the probability of worm B’s state i in the behavior

of worm A. If worm A’s behavior were statistically identical to

worm B’s, the likelihood of particular values of PA,i(B) would be

described by the multinomial distribution,

2Lp,AB~

NA

NApA,1(B) NApA,2(B) ::: NApA,m(B)

 !
Pm

i~1p
NApA,i(B)
B,i(B)

ð22Þ

Defining log likelihood per point analogously to (19), one finds

that in the limit as NA??,
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‘p,AB~
Xm

i~1

pA,i(B)log
pB,i(B)

pA,i(B)
ð23Þ

‘p,AB is 0 when the pA,i(B)~pB,i(B) and negative for any other

pA,i(B). State probability dissimilarity dp,AB is defined analogously

to (21). Fit dissimilarity, our measure the similarity of behavior, is

the sum of model dissimilarity and state probability dissimilarity

df ,AB~dm,ABzdp,AB ð24Þ

(24) may overweight state probabilities, since it effectively treats

each time point as independent, although in reality behavior at

nearby times is correlated. However, it is our impression that the

ad hoc emission distribution (10) overweights the match of behavior

to state parameters. We consider the correct weighting of dm and

dp to be an empirical question, rather than a theoretical one. In

practice, (24) produces useful results (Figure 5, Figure S5).

We also designed a related measure, state dissimilarity, in an

attempt to measure only the difference in state characteristics.

State dissimilarity ds is defined like dm, except that in computing

‘s,AB the transition frequencies estimated from model B are not

used. Instead, worm A is fit to a model in which the state

parameters are those of model B, and the transition matrix is as

given by eq (11), using the same value of t as for the closed-loop fit

used to determine model B. No probability dissimilarity is used.

The effect is that the only information from B used in the fit of A is

the state parameters. Unfortunately, this measure does not

perfectly separate state characteristics from state probability.

Suppose worms A and B have identical states, but the probability

of state 1 is high in worm A and very low in worm B. It may be

that worm B does not enter state 1 at all during the course of a

recording, so that its characteristics can’t be estimated. In this case

worm A will fit poorly to B’s model, ‘s,AB will be small and ds,AB

large, even though the two worms have identical states.

Multidimensional Scaling
We used multidimensional scaling for two purposes: first, at the

request of one reviewer, to check the configuration of the state

space shown in Figure 3, and second, to visualize fit dissimilarity

within and between experiments (Figure S5). For the first purpose,

the distance dij between states i and j was the Euclidean distance

between their parameter vectors, standardized as for hierarchical

clustering above. Starting from locations defined by the first

components of principal component analysis, we then searched for

locations xi that minimized the potential

U~
X
ivj

pipj xi{xj

		 		{dij

� �2 ð25Þ

The sum runs over all pairs of different states. As above, pi is the

probability of state i in the track in which it occurred as a whole.

The stress for the optimal locations, defined as

s~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UP

ivj

pipjd
2
ij

vuut ð26Þ

was 0.047 in two dimensions. (Stresses below 0.1 are typically

considered acceptable.) The optimal configuration of states (not

shown) was only subtly different from that obtained by principal

component analysis (Figure 3).

For the second purpose, multidimensional scaling was done on

the 363 tracks, rather than the 1083 states. We began with fit

dissimilarity, df (eq (24)). Fit dissimilarity is not a distance metric,

since it doesn’t satisfy the triangle inequality dijƒdikzdjk. In

addition, it can with low probability be negative. (Of the 90,679

dissimilarities calculated for this paper, one was very slightly

negative, at 20.0007.) Thus, we first derived a distance metric

from fit dissimilarity.

We combined two methods of eliminating triangle violations.

The first was simply to add a constant to all dissimilarities. (This

also fixes the negative dissimilarity.) Unfortunately, the constant

required if this method was used alone would have been 6.28.

Since the median within-experiment dissimilarity was 0.28, this

would have destroyed close relationships, making every track very

distant from every other. The second method was to let dij be the

weighted graph distance from track i to track j on a graph with

edge weights dij . That is, the distance from i to j is the length of the

shortest path from i to j, whether direct or via other tracks. This

method, used alone, had the opposite problem: it made distant

things too close. The combined method we finally adopted was to

use weighted graph distance with edge weights dijzc. Since our

goal was to find dij that mimicked the dij as closely as possible, we

chose the constant c to maximize the reflective correlation between

dij and dij .

rr~

P
dijdijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
d2

ij

P
d2

ij

q ð27Þ

The optimal value of c was 0.071, safely less than 0.28.

The dij computed, the remaining steps were conventional, using

Torgerson’s double-centering method to derive an initial config-

uration, then optimizing an unweighted spring potential.

U~
X
ivj

xi{xj

		 		{dij

� �2 ð28Þ

Optimized stresses were 0.072 in two dimensions and 0.044 in

three. The optimal two-dimensional configuration is shown in

Figure S5, but the third dimension from the optimal three-

dimensional configuration was used to determine the order in

which points were plotted, to give a sense of front and back.

Starvation Recovery Statistical Tests
For the starvation recovery experiment we needed to test

whether certain mean dissimilarities (same/different worm, same/

different time) depended on either t or Dt. There are several ways

to test this–the values reported are those from the most

conservative test, which was based on the significance of the slope

parameter in a linear regression of mean dissimilarity against time

or time interval. Other tests, e.g. rank-based tests such as

Spearman’s rank correlation, gave smaller (i.e., more highly

significant) P values. Although the points involving the 0–15 min

cuts diverged significantly from the others and are highlighted in

Figure 5, they were included in the test on an equal footing. P

values were lower if they were excluded.
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The P values we report for dependence on Dt exclude Dt~15.

Consider, for example, the 15–30 min cut and the 30–45 min cut. They

are contiguous in time and are extracted from one continuous

recording. Unless the worm happened to change state between

t~1800s and t~1801s, it would have begun the 30–45 min cut in

the same state in which it ended the 15–30 min cut. This would

lead to a similarity between these segments that might not reflect

ongoing changes in the underlying drivers of the worm’s behavior.

We thus excluded comparisons between adjacent cuts from

statistical tests, so that the tests only included cuts whose end

and beginning were separated by at least 15 min. The mean state

lifetime in these experiments was 35 s; the probability that a state

with lifetime 35 s persists for 15 min is v10{11. P values were

lower if Dt~15 min points were included.

Software
MATLAB and Mathematica scripts developed for this analysis

are available at http://elegans.som.vcu.edu/̃leon/HMM.

Supporting Information

Figure S1 Roaming, dwelling, and quiescence speed
histograms. All 363 tracks were analyzed by open-loop fits to

the standard roaming, dwelling, and quiescent state descriptions

defined by standard state analysis, then the time points were

selected at which one state was assigned with at least 99%

probability. At each such point we determined center of mass

speed and change in direction. This histogram plots speed alone;

Figure S6 shows both speed and direction change. Blue is

quiescence, green dwelling, and red roaming. To allow all three

distributions to be clearly seen, the plot was cut off at 0.2. The

probability of s ,5 mm s21 for quiescence is 0.76.

(TIF)

Figure S2 Speed and direction change for roaming,
dwelling, and quiescent worms. For each point classified as

described in the legend to Figure S1, we determined speed and

absolute change in direction of the center of mass. In all states the

direction change is concentrated near 0u and near 180u, with a

wider spread at low speeds as expected from the difficulty of

accurately measuring directions when movements are small. Our

motion analysis classifies as reversals those points with a direction

change greater than 90u.
(TIF)

Figure S3 Open-loop, closed-loop, and unbiased closed-
loop fits. A. In an open-loop fit, a behavioral record is fit to a

hidden Markov model based on states with predefined character-

istics. The results are then used to re-estimate the characteristics of

the behavior actually observed. However, because the state

classification is based on the predefined states, the re-estimated

state characteristics will tend to resemble those of the predefined

input states. B. In a closed-loop fit, the fit is repeated with re-

estimated state characteristics. This process is repeated until the

estimates stop changing. C. In an unbiased close-loop fit, initial

estimates are derived from the behavioral record itself.

(TIF)

Figure S4 Hierarchical cluster analysis of states. A.

Hierarchical clustering of state descriptions resulting from

unbiased closed-loop fits. 832 of the 1083 states plotted in

Figure 3G, those with probability §10%, were clustered. The

seven values constituting each description are plotted in the heat

map below the dendrogram, and the top three clusters are

highlighted in blue, green, and red. B. Identification of clustered

states. States, plotted as in Figure 3, are identified by red, green,

and blue dots according to which cluster they belong to.

(TIF)

Figure S5 Under similar conditions, worms behave
similarly. Each of the 363 dots in each of the 49 panels

represents a single worm. In each panel tracks from one

experiment are highlighted in color. The text above each panel

corresponds to its ID in Table S1. The color assigned to each

experiment is the same as in Figure 3. The dots are arranged in

two dimensions so that those representing similar behavior are

closer to each other than those representing dissimilar behavior

(see Multidimensional scaling in Methods). A third dimension is

hinted at by the partial obscuring of some dots by others in front of

them.

(TIF)

Figure S6 State changes during recovery from starva-
tion. Each panel shows the states of 14 worms recovering from

starvation during one 15 min interval, plotted as in Figure 3. The

gray background shows all states from the 49 experiments in Table

S1–it is slightly different from Figure 3 because these experiments

were analyzed with lifetime parameter t~300 s. Each worm is

assigned a different color.

(TIF)

Figure S7 Deskewing speed. A. A histogram of speeds from

all tracks combined. The distribution is strongly skewed to the

right. B. Histogram of the logarithm of speed. This distribution

shows a tail to the left. C. Histogram of speed deskewed using

sinh{1 s

1mm=s

� �
. Both tails have been eliminated.

(TIF)

Table S1 Experiments analyzed.

(DOC)

Dataset S1 State probabilities and transition rates.

(XLSX)

Movie S1 Well-fed wild type (30 min). The following 4

video files are provided as examples of behavioral states. Each

video shows the movements of the center of mass of a single worm

over 30 or 60 min at 15 times actual speed. Behavioral state (based

on a fit to standard states) is coded by color. 100% probability of

roaming, dwelling, and quiescence are shown as pure red, green,

and blue, respectively, and times at which more than one state has

finite probability are shown as mixtures of these three colors. A

black ring indicates a reversal. Empty circles are times for which

we do not have data; state and position are interpolated at these

times. Movie S1 is the track analyzed in Figure 2C.

(MOV)

Movie S2 Wild type, fasted and refed (60 min).

(MOV)

Movie S3 Wild-type on medium-quality food (30 min).

(MOV)

Movie S4 egl-4(gf) fasted and refed (30 min).

(MOV)
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