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Introduction
Gene regulation in bacteria has been studied since the time of the operon model 
of Jacob and Monod  [1]. Knowing the regulators and mechanistic details of genes 
expression has greatly improved our understanding of cellular signal processing  [2], 
and has lead to various applications in systems and synthetic biology [2–5]. General 
factors like RNA polymerase activity can lead to an overall increase or decrease of 
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Background:  Gene regulatory networks coordinate the expression of genes across 
physiological states and ensure a synchronized expression of genes in cellular sub‑
systems, critical for the coherent functioning of cells. Here we address the question 
whether it is possible to predict gene synchronization from network structure alone. 
We have recently shown that synchronized gene expression can be predicted from 
symmetries in the gene regulatory networks described by the concept of symmetry 
fibrations. We showed that symmetry fibrations partition the genes into groups called 
fibers based on the symmetries of their ’input trees’, the set of paths in the network 
through which signals can reach a gene. In idealized dynamic gene expression models, 
all genes in a fiber are perfectly synchronized, while less idealized models—with 
gene input functions differencing between genes—predict symmetry breaking and 
desynchronization.

Results:  To study the functional role of gene fibers and to test whether some of the 
fiber-induced coexpression remains in reality, we analyze gene fibrations for the gene 
regulatory networks of E. coli and B. subtilis and confront them with expression data. We 
find approximate gene coexpression patterns consistent with symmetry fibrations with 
idealized gene expression dynamics. This shows that network structure alone provides 
useful information about gene synchronization, and suggest that gene input functions 
within fibers may be further streamlined by evolutionary pressures to realize a coex‑
pression of genes.

Conclusions:  Thus, gene fibrations provide a sound conceptual tool to describe tun‑
able coexpression induced by network topology and shaped by mechanistic details of 
gene expression.
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bacterial gene expression depending on cellular growth rate. The expression profiles 
of single genes are further regulated by specific transcription factors (TFs). At the 
same time, high-throughput expression studies have revealed the functional role of 
expression profiles: a variety of multivariate methods (including clustering, bicluster-
ing, plaid models, singular value decomposition, and Independent Component Analy-
sis) have been used to extract functional information from expression profiles, often 
taking co-expression as a sign for shared biological function [2].

Gene regulation by transcription factors is described by gene regulatory networks 
(GRN) [5–7] where nodes are genes and a directed edge from gene A to gene B states 
that gene product of A is a TF that regulates the expression of B as an activator, 
repressor, or dual regulator. TF activities may be further modulated by signaling mol-
ecules that bind to the TF to activate or inactivate the protein. This process conveys 
information about the state of the cell, implementing for example a negative feedback 
control from metabolic synthesis pathways. In the gene regulatory network, such 
effector signaling molecules appear as external inputs to the GRN. The topologies of 
GRNs have been studied in detail [6] and been used as blueprints for dynamic models 
of gene expression [5]. Such models describe the production and degradation of gene 
products (mRNA or proteins) and consider the regulatory input functions of individ-
ual genes, which reflect TF binding to genes’ promoter regions, with gene-dependent 
binding parameters and possible binding states.

In principle, synchronized activity in gene expression [8–14] in bacteria reflects the 
gene arrangement in operons since genes in operons are transcribed together into a 
single mRNA molecule. A transcriptional unit (TU) is a set of contiguous genes that 
are transcribed into one mRNA. An operon is a set of contiguous genes controlled by 
the same promoter. However, beyond this trivial synchronization in gene expression, 
the largest part of the co-expression synchronization of gene activity can actually be 
attributed to specific pathways in the GRN regulated by specific TFs.

Quantitative gene expression models based on realistic input functions for all of 
the genes are out of reach due to the multiplicity of parameters defining these input 
functions  [15]. Thus, there have been attempts to understand dynamic properties 
from network structure alone [15–18]. To establish GRNs for major model organisms, 
TF binding has been predicted from binding site sequences and based on ChIP/chip, 
ChIP-seq or ChIP-exo experiments. In these networks, motifs like the feed-forward 
loop [15, 17, 19] have been found by statistical methods, based on the frequent occur-
rence in networks, and have been studied as local signal processing circuits embed-
ded in larger networks.

In a series of recent papers, we showed that symmetry principles applied to biol-
ogy networks  [20–22] can explain the synchronization in gene coexpression pro-
files. Synchronization here denotes joint evolution in time. That is, if each gene i in 
the network is represented by it’s expression level xi(t) , as measured by the protein 
gene product with the time-scale approximations made, typically the concentration 
of mRNA in the cell, then genes i and j with expression levels xi and xj are synchro-
nized if limt→∞(xi(t)− xj(t)) → 0 . We have found structural symmetries in biological 
networks, described by the concept of symmetry fibrations [20], that provide a princi-
pled way to define building blocks of genetic networks supporting synchronized gene 
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expression. Symmetry fibrations are a powerful tool to describe the structure of net-
works that combines geometry and algebra data via category theory [23–25].

In this paper we first review the concept of symmetry fibration applied to GRNs in bac-
teria and we further address the question of gene synchronization and coexpression by 
comparing to existing experimental data, and ask how gene coexpression can be imple-
mented by network structure. The methodology allows the user to find groups of genes 
that are active at the same time. These groups may define trap spaces (groups of related 
attractors, with their corresponding basins of attraction) or even specific attractors espe-
cially if the pattern of synchronous genes includes inactive genes as well as active ones. 
In this paper we address the question of how the behavior of the system relates to the 
synchronous gene groups. In particular, we challenge the predominant view that coex-
pression (by which two genes show similar expression profiles) is necessarily a sign of 
coregulation (by which these genes are controlled by a common transcription factor) [2, 
26–39]. Instead, we claim that other, more complex circuits in the regulatory network 
can lead to coexpression. These circuits are identified by their symmetry properties and 
show synchronization in gene coexpression as a result of the underlying symmetries in 
the gene regulatory network.

In the case of GRNs, fibration symmetries can reveal meaningful building blocks in 
regulatory networks [20, 22]. In contrast to network motifs, which can only be found by 
their frequent occurrence, gene fibrations can find such circuits based on their symme-
try properties even if these circuits are large and appear only once in the network. Fur-
thermore, fibrations are mathematically proven to induce synchronization, which will be 
discussed in more detail in Chapter 2. The symmetry fibration is a transformation that 
reduces the networks to its base by collapsing symmetric genes into fibers. As will be 
discussed further, genes that belong to one fiber can show synchronous expression activ-
ity, resulting in coexpression patterns of all genes in the fiber. These circuits can perform 
signal processing tasks, namely generating structurally encoded, yet tunable patterns of 
gene coexpression. Other types of building blocks, such as densely connected modules 
defined by counting a ’density’ of edges within that module  [40], are not expected to 
show this property.

Thus, our previous work  [20, 22] shows that symmetry fibrations can group genes 
into fibers that point us to the synchronized building blocks of the GRN. Using the 
same approach, we managed to detect regulatory structures in the neural network of 
C. elegans worm and to give them a functional explanation [21]. If fibers can explain syn-
chronization between cells, we can expect to see the same principle within cells, in the 
coexpression of genes and the underlying gene regulatory networks. Thus, as a working 
hypothesis, we pose that coexpression, arising from transcriptional regulation, can be 
directly understood through genome organization, gene conservation across genomes, 
and network structure, namely through gene regulatory building blocks related to fibers, 
while quantitative details of gene regulation play a minor role.

To treat networks as “blueprints” of dynamic gene regulation models, gene regulatory 
input functions must be defined. With simple identical input functions, and disregard-
ing all quantitative differences (e.g.  in binding parameters or mRNA half lives defining 
the input functions), genes in a fiber are predicted to show identical expression pro-
files. Under this hypothesis, fibration symmetries lead to important consequences for 
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the dynamics of the gene expression in the network: fibrations give rise to the existence 
of synchronous solutions. In reality, however, input functions will differ between genes, 
and additional modulation of transcription factor activities by signaling molecules will 
come into play. The predicted symmetry will be broken and we expect a partial loss of 
synchronization. Genes i and j with dynamical solutions xi(t) and xj(t) that reach the 
state in which, after the time tsync , solutions are  ε-close are said to be  “almost synchro-
nized”. That is, two genes are almost synchronized if |xi(t)− xj(t)| < ε for t ∈ [tsync,∞] . 
It was shown [41] that slight mismatch in the parameters leads to solutions with nearly 
synchronous trajectories, that is, almost synchronized solutions. Detailed analysis of the 
situation with the difference in the input functions hasn’t been done in the literature so 
far, but basing on the conclusion in the networks with slight mismatch, we assume that 
in the networks with “slightly bigger” mismatch perfect synchronization will be broken 
even further. We hypothesize that precise coexpression, as predicted by our idealized 
model, will be reflected in cells in a partial coexpression that may be tuned by external 
biochemical signals.

Each gene (node of the network) and it’s time evolution is thought of as one variable—
it’s expression level. Thus, it may look like this method is not applicable to more complex 
organisms because processes like transcription, translation, folding and binding to DNA 
are lumped into one step and sophisticated effects like RNA splicing, DNA methyla-
tion, histone acetylation, and overwinding or underwinding of DNA are ignored. How-
ever, fibration theory can still be applied even when one node has a very complicated 
behavior that takes all of the above into consideration. For example, we can extend each 
node to two variables—mRNA and protein concentration, and then the dynamics of the 
symmetric nodes will be synchronous by variable. That is, in this example synchronous 
nodes will have both equal mRNA and protein concentrations. As discussed above, each 
level of complexity has a potential to create more symmetry breaking. Thus, whether 
gene fibrations are useful in practice depends on how much of the coexpression remains 
in reality. In this paper we study this question in detail by studying coexpression in 
Escherichia coli and Bacillus subtilis, the major Gram-positive and Gram-negative bacte-
rial model organisms: we predict a set of coexpressed genes based on fibration symmetry 
and confront these predictions with transcriptome data. The GRNs under study, which 
we analysed before in  [20, 22], contain various types of fibers, including feed-forward 
fibers, Fibonacci fibers, multilayer composite fibers, and n = 2 fibers  [20]. After giving 
an overview of the fibers from [20] in “Hierarchy of symmetry fibers in GRN” section, 
we study expression of groups of genes predicted to be coexpressed in “Synchronized 
coexpression within gene fibers—experimental validation” section.

The main approximation behind the existence of perfect synchronization in fibers is 
the ’uniformity assumption’: the assumption that all the parameters defining the input 
functions (i.e., the Hill function defining the interaction of the TF with the binding site 
of the target gene) of the genes in the fibers are the same. That is, the Hill input func-
tions, reflecting interactions of TF binding to DNA, as well as binding parameters or 
mRNA half lives, needs to be the same for all genes in a fiber to synchronize. Thus, our 
prediction of perfect synchronization in the fiber depends on a idealized model of gene 
regulation, where the input functions of genes in the fiber are the same. Under these 
conditions, fibration theory predicts perfect synchronization in the fiber. Of course, in 
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reality, input functions and interaction parameters of different genes will not be exactly 
the same, and the question becomes of how much loss of synchronization is caused by 
this symmetry breaking in the input functions and parameters of interactions.

Despite all the likely reasons for the loss of synchronization ignored in our working 
hypothesis, including differing gene input functions and various levels of gene regula-
tion, we find a measurable degree of synchronization, matching our simplified theory. 
We conclude that despite quantitative differences between gene input functions, genes 
within fibers have measurably more synchronization, which justifies our topological 
analysis in this case. A further possibility, supported by previously measured gene input 
functions, is that evolutionary pressures may be at work which “streamline” the gene 
input functions within fibers, thus preventing a stronger symmetry breaking.

The fibration formalism and synchronization
The main concepts from graph fibration theory for biological networks—isomorphic 
input trees, fibers, symmetry fibrations, and the base of a network—have been intro-
duced in Morone, Leifer and Makse  [20] (for details, see Methods “Gene fibrations” 
section) and are based on previous developments by Golubitsky and Stewart  [25] and 
Boldi and Vigna [24]. Examples of symmetry fibrations are displayed Figs. 2, 3, 4, 5 and 
6. All these concepts will be exemplified below. In the fibration formalism, a network is 
described as a directed graph. The input tree of a node represents all paths in the net-
work that lead to this node [20] and it exemplified in Fig. 3 further below. An input tree 
is constructed by considering the node of interest, which forms the root of the tree, that 
is, the end point of all the paths leading to that node. If a path contains loops, these loops 
become “unfolded” in the tree representation. Then, every node in a given layer of the 
tree represents the initial point of a path in the network leading to the root node. The 
first layer of the input tree contains all the nodes that are connected by a direct arrow 
to the root nodes (that is, by a path of length 1). The second layer contains nodes with 
paths of length 2, and so on. Two trees are called isomorphic if they are topologically 
identical, where the identity of nodes in the tree does not matter. Nodes with isomor-
phic input trees are considered equivalent and belong to the same fiber, as exemplified 
further below in Figs. 2, 3, 4, 5 and 6. A symmetry fibration of a graph G [20], called a 
surjective minimal graph fibration in  [24, 42, 43], is a transformation ψ : G → B that 
collapses the nodes in each fiber of G into a single representative node, thus reducing 
the network G to a graph B called its base (see Figs. 2, 3, 4, 5, 6). In this way, a symmetry 
fibration reduces a network to its most simple form by compressing the redundancies 
provided by the symmetric genes in the fibers.

In a GRN—with nodes representing genes or gene products – fibration symmetries have 
important consequences for gene expression dynamics. Theory developed in  [24, 25, 42, 
43] shows that a coupled-cell network (in this case gene regulatory network), set of admis-
sible ODEs (ODEs that respect the network structure, is discussed further) and balanced 
coloring (fibers, equivalence is discussed in Methods “Equivalence between fibers of sym-
metry fibration and minimal balanced coloring” section) are sufficient for the existence of 
the synchronized solution corresponding to the fibers of the network irregardless of the 
specific structure of the ODEs. That is, for the network G with fibers f1, f2, . . . fn consisting 
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of genes i1, i2, . . . i|fi| for i ∈ {1 . . . n} , where | fi | is the size of fiber i and each node (gene) is 
represented by the state variable xi there exists a solution that is synchronous by fiber i.e.

To gain an intuitive understanding of this concept, let’s consider the simple network in 
Fig. 1. This network is a trivial example of a fibration which corresponds to a regulon and 
it is shown here for didactic purposes. This network suffices to introduce the concept of 
fibration in a simplified setting. We will see that fibrations describe complex non-trivial 
circuits beyond this trivial case. Fibers will be discussed further in more detail, but for 
now note that both nodes 2 and 3 only receive one input from node 1 and therefore are 
input-equivalent. Thus, nodes 2 and 3 belong to the same fiber. Fibration ψ then takes 
graph G to graph B by collapsing nodes 2 and 3. Node i is associated with the variable 
xi and an ODE describing its dynamics. ODEs are admissible [25] if the ODE of node i 
depends on the variables corresponding to the nodes that send the input to node i and 
the variable of the node itself. In this case nodes 2 and 3 receive input from node 1, 
therefore their ODEs will depend on x1 . Admissible ODEs for the network G have the 
form:

where f and g are arbitrary functions. Nodes 2 and 3 are modeled with the same function 
g because they belong to the same fiber. xi in general can represent a k-dimensional state 
vector on Rk phase space. Dimensionality of different nodes can be different as long as 
nodes in the same fiber have the same dimensionality. Following a similar logic, we write 
admissible ODEs for the network B:

Take now the solution (x1, x2) of the system (3) and plug it in the system (2) such that 
nodes 2 and 3 are synchronous i.e. x2 = x3 . Then Equation (2) becomes:

(1)

x11(t) = x12(t) = . . . = x1|f1 |
(t),

x21(t) = x22(t) = . . . = x2|f2 |
(t),

. . .

xn1(t) = xn2(t) = . . . = xn|fn|(t).

(2)
ẋ1 = f (x1),
ẋ2 = g(x2, x1),
ẋ3 = g(x3, x1).

(3)
ẋ1 = f (x1),
ẋ2 = g(x2, x1).

1

32

1

2

G B

Fig. 1  Coupled-cell network of 3 nodes and it’s base. Admissible ODEs corresponding to the network G 
exhibit a synchronous solution x2 = x3 as a consequence of the existence of fibration ψ . This is a simple case 
of a fibration (corresponding to a trivial regulon) which is shown here only for a didactic purpose. We will 
show that fibrations describe non-trivial cases below
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Last two Eqs. of the system (4) are the same equation. Thus, the last equation can be 
dropped and since (x1, x2) is a solution of the system (3), it’s a solution of this system as 
well. Therefore, the vector (x1, x2, x2) is the solution of the system (2). Hence, the system 
(2) has a solution that is synchronous by fiber as a consequence of the existence of fibra-
tion ψ . Note, functions f and g are arbitrary and xi can be k-dimensional, which allows 
for simulations of very complex biological processes.

The distinction between the existence of a synchronized solution and synchronization 
(which means that the synchronous solution is stable) is important. For instance, predic-
tion of time-synchronized expression activity is only possible if (at least local) stability 
is verified. Depending on the type of coupling and parameter values synchronous solu-
tion can be stable or unstable. Additionally, stable solutions can have different size of the 
basin of attraction. Numerical solutions of the dynamical evolution of the fibers stud-
ied here and performed in [22] indicate that for the particular type of interaction fibers 
found in genetic networks are stable and have a very big basin of attraction. Analytical 

(4)
ẋ1 = f (x1),
ẋ2 = g(x2, x1),
ẋ2 = g(x2, x1).

Table 1  Distribution of the fiber sizes of B. subtilis for sizes between 2 and 24

Size Count Size Count Size Count Size Count

2 65 7 8 12 5 21 2

3 40 8 2 13 1 22 1

4 27 9 4 15 2 23 1

5 16 10 6 16 2 24 1

6 12 11 6 18 2

a b

Fig. 2  Trivial circuits leading to synchronization: Regulons with co-regulation. a Genes cbpAM, gltX, gyrB and 
msrA are controlled by the same TF (fis). Fiber numbers describing this circuit are |n = 0, ℓ = 1� since there are 
no loops and fiber has 1 regulator. Gene activity can synchronize, because any two nodes can be permuted 
without the change in the network under the S4 symmetry group. fis won’t be synchronized with cbpAM, gltX, 
gyrB, msrA, because it can’t be permuted with any of the genes without changing network. b Regulon circuit 
consisting of genes clrA, fiu and operons entCEBAH, fepA-entD controlled by two regulators crp and fis also 
synchronizes, because symmetry group S4 is conserved irregardless of the number of the regulators. In this 
case fiber has two regulators and no loops and therefore is characterized by fiber numbers |n = 0, ℓ = 2�
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investigation of the stability and attractiveness of these solutions is out of the scope of 
this paper, but it can be done using the approach introduced by Pecora, Sorrentino and 
collaborators [44–47].

Since genes in fibers are synchronized and therefore redundant from the point of 
view of the dynamics, the symmetry fibration reduces the network to a smaller num-
ber of nodes, while preserving the dynamical state of the network. As discussed, this 
statement relies on a strong uniformity assumption about Hill input functions, which 
will be scrutinized in subsequent sections.

To summarize, fibration is a mapping between graphs that collapses fibers. Fibers 
are nodes that have isomorphic input trees and can be collapsed together by map 
(fibration) with these properties. Fibrations symmetries is the term that we use to 

a

b

Fig. 3  Non-trivial circuits leading to synchronization: AR loop with regulon. a Genes aroH and trpLEDCBA 
can be permuted under S2 symmetry group, while trpR can’t be permuted with them without changing the 
network. b trpR receives input only from itself, therefore its input tree is an infinite chain. aroH and trpLEDCBA 
receive input from trpR, that in turn receives input from itself turning these input trees into chains too. 
Therefore, input trees of all 3 genes are isomorphic to each other. Thus, aroH, trpLEDCBA and trpR belong to 
the same fiber and can synchronize their activity. Circuit has one loop and no external regulators, therefore it 
is classified as |n = 1, ℓ = 0�
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describe the symmetries that we are using. The fibers represent the functional set of 
synchronized genes in the GRN. For the GRNs of E. coli and B.  subtilis and other 
species, we have previously organized the different types of observed fibers into a 
hierarchy, reflecting the different complexity of the topological features of their input 
trees [20, 22]. This hierarchy identifies a broad range of fibers: 91 in E. coli (see [20] 
for the full list of fibers and Table 2 for the distribution of the 85 fiber sizes between 2 
and 24) and 216 in B. subtilis (203 fibers of sizes 2 to 24 are considered and their size 
distributed is shown in the Table  1). Despite their various topologies, the resulting 
fibers can be concisely classified with just two numbers, called ’fiber numbers’ |n, ℓ� , 
which specify the number of loops in the fiber, n, and of external regulators of the 
fiber ℓ [20].

The fibrations of GRNs can be computed by algorithms to find ’minimal balanced 
coloring’ available in the literature [20, 48]. Equivalence between fibers and minimal 
balanced coloring is discussed in Methods “Equivalence between fibers of symmetry 
fibration and minimal balanced coloring” section and a more detailed description of 
the algorithm is given in Methods “Algorithm for balanced coloring to identify fibers” 

a

b

Fig. 4  Non-trivial circuits leading to synchronization: FFF (AR loop with regulon and external regulator). 
a purR and its target gene pyrC regulated by fur form a FFF. FFF has one loop and one external regulator 
and therefore is classified as |n = 1, ℓ = 1� . purR and pyrC belong to the same fiber (will be shown in b) 
and therefore are “collapsed” under fibration ψ , while fur is left untouched. b purR receives an input from 
itself creating an infinite chain and regulator fur, that doesn’t have any inputs. Therefore, infinite chain with 
additional input on each layer represents an input tree of purR. Similarly, pyrC receives input from purR that 
leads to the infinite chain and fur that creates an additional input. fur doesn’t receive any inputs and therefore 
has an input tree of height 0. Input trees of purR and pyrC are isomorphic, therefore purR and pyrC belong to 
the same fiber and synchronize their activity
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section. Code to find fibers is available at https://​github.​com/​ianle​ifer/​fibra​tionS​
ymmet​ries.

Mathematical work on fibrations  [24, 25] has been concerned with the existence of 
synchronized solutions, but in some cases realization of the synchronized solution is 
quite unprobable. We can imagine a trivial case of a network with just 2 nodes with no 
edges. These two nodes can be synchronized since synchronous solution exists for the 
two nodes, yet, these solutions may not be most probable (small basin of attraction) 

b

a

Fig. 5  Non-trivial circuits leading to synchronization: Multi-layer composite fiber. a Circuit consists of two 
layers of fibers: add, dsbG, gor, grxA, hemH, oxyS, trxC classified with |n = 0, ℓ = 1� and rbsR, oxyR classified with 
|n = 1, ℓ = 1� , therefore forming a multi-layer composite fiber |n = 0, ℓ = 1� ⊕ |n = 1, ℓ = 1� . Fibration ψ of 
this circuit “collapses” both fibers and leaves the regulator untouched. b Genes in the red fiber receive one 
input from the gene in the green fiber, which in turn receives an input from itself and the regulator. Therefore, 
input trees of genes in the red fiber resemble the sum of an input tree of |n = 0, ℓ = 1� , followed by the 
input tree of |n = 1, ℓ = 1� . Input trees of the green fiber are those of the FFF. Regulator node has no inputs. 
Thus, multi-layer composite has two non-trivial fibers that can synchronize their activity. Note, gene add is 
separated from the rest of the red fiber by two steps, therefore allowing for a long range synchronization in 
the network

https://github.com/ianleifer/fibrationSymmetries
https://github.com/ianleifer/fibrationSymmetries
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since they require some ad-hoc set of initial conditions. In terms of the mathematical 
definition of symmetry fibrations, the existence of these synchronous solutions is con-
sistent. However, in the real system we obviously do not require these two nodes to 
belong to the same fiber. We solve this problem in the following way. We first find all 
strongly connected components with no input (including single nodes with no input) 
and assign them to different fibers. In this way we avoid finding these stray solutions.

Gene regulatory networks of E. coli and B. subtilis
In this paper, we first review the fibers found in the GRNs of E. coli and B. subtilis stud-
ied in [20, 22] and then organize this rich set of fibers into a well-defined hierarchy. At 
the most simple and trivial level in this hierarchy, we find the known structures of oper-
ons and regulons that trivially lead to synchronization. The hierarchy then builds up to 

a

b

Fig. 6  Non-trivial circuits leading to synchronization: Fibonacci fiber (FF). a FF circuit is the FFF circuit with 
the additional edge from the fiber back to the regulator. In this example uxuR sends back to exuR, creating an 
extra loop in the circuit. Extra edge won’t change the fiber, therefore fibration will stay the same. b However, 
extra loop changes an input tree of fiber nodes. uxuR receives from itself and exuR, which in turn receives 
from uxuR, which creates an input tree with layer sizes following Fibonacci sequence. Branching ratio then 
defines the first fiber number and this FF is classified as |ϕd = 1.6180 . . . , ℓ = 2� . Note, node lgoR receives 
an input from exuR and then from uxuR, which means that even if there was no link from uxuR to lgoR, 
information would still be passed along through the regulator. This is another way how networks can process 
the information
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more complex architectures as the fiber numbers |n, ℓ� , describing topological features 
of the fibers such as n loops and ℓ regulators, increase, and progresses to fibers like the 
autoregulation loops, feed-forward fibers, Fibonacci fibers, n = 2 fibers and multilayer 
composite fibers.

The studied networks are constructed from data in RegulonDB for E. coli  [49] and 
Subtiwiki  [50] for B. subtilis, well curated resources for gene annotations, regulation, 
and function in the two bacteria. From the TF-gene bipartite networks we construct a 
GRN with directed weighted links. Nodes of these networks represent genes and edges 
are interactions between source gene producing TF (source) that binds to the DNA 
sequence upstream to the other gene (target). Edges are considered as three different 
types according to their function: activation, repression, and dual.

The regulons are the first (trivial) members in this hierarchy with a structure repre-
sented by no loops and ℓ regulators: |n = 0, ℓ� . Next, the scheme classifies non-trivial 
fibers by |n = 1, ℓ� as feed-forward fibers (FFF) and autorregulation loops (AR), and 
|n = 1, ℓ� as binary tree fibers. The list is completed with more complex fibers with non-
integers fiber numbers called Fibonacci fibers with |φd , ℓ� , where φd is the generalized 
golden ratio, and composite multilayer fibers as combinations of the fibers above. We 
have shown in [22] that this set of fibers arises as a constructive procedure that mim-
ics a growth procedure by recursively iterating a constructive process that expands the 
existence of all fibers in the network. We elaborate on this hierarchy in the rest of this 
section. In “Synchronized coexpression within gene fibers—experimental validation” 
section, we shall test the biological significance of these fibers by testing the prediction 
of synchronization inside the fibers.

Hierarchy of symmetry fibers in GRN
An important concept in this work is the distinction between coexpression resulting 
from trivially sharing the same operon and regulon versus synchronization induced by 
more complex symmetry fibration. That is, the difference between coregulation by fiber 
(coexpression resulting from shared input trees which take into account extended paths 
in the network) versus coregulation by a single input of a regulon. Both of them lead to 
coexpression, but the former is more complex than the latter, which is considered trivial 
synchronization, while the fiber synchronization is not. We ellaborate on these distinc-
tion in the next two subsections.

Operons

The trivial building blocks leading to synchronization are operons and regulons. Oper-
ons are gene arrangements ubiquitous in bacteria [1]: genes in an operon have a com-
mon promoter and are not transcribed into individual mRNAs, but as transcription 
units, yielding a single mRNA strand containing several contiguous genes. Depending 
on the locations of promoters and terminators, the transcription units can also be over-
lapping. The expression of genes in an operon will be automatically synchronized since 
they are translated together. In the case of multi-promoter operons, we can group the 
genes into minimal transcription units, each being controlled by the same combination 
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of promoters. The genes in such a minimal units should be precisely coexpressed (oper-
ons with several terminators can be subdivided similarly). In our analysis we take the 
operon as a single node in the GRN. When two or more TFs belong to the operon, we 
leave one TF associated with the operon and separate the remaining TF from the operon.

Regulons

Beyond operons, the next trivial network structure that can synchronize genes is the 
regulon, defined as the set of genes regulated by a single TF. Figure 2a shows an exam-
ple, the regulon of the transcription factor Fis in E. coli. The regulon contains four units: 
the operon cbpAM and the genes gltX, gyrB, msrA. Gene fis, is also in turn regulated 
by Crp. Crp and Fis are two master regulators involved in a myriad of functions, the 
most important is carbon utilization. This regulon is an example of a first form of simple 
symmetry, assuming that the genes have no other regulators: a simple permutation sym-
metry (called automorphism) of the regulated genes, for instance cbpAM ↔ gltx, or any 
permutations between the four genes (Fig. 2a). This symmetry is described by a symme-
try group called the symmetric group Sn , which consists of all permutations of n nodes, 
in this case S4 . This symmetry implies that all the genes in the regulon are synchronized 
by trivial coregulation of fis.

When the genes in a regulon are also under the control of other TFs, then there is also 
a chance that the regulons would preserve symmetries. For instance, the single-regulon 
circuit controlled by fis (Fig. 2a) can be augmented by a second regulator as in Fig. 2b. 
The same symmetric group S4 describes the symmetry between the genes clrA, fiu and 
operons entCEBAH, fepA-entD since all of them can be permutated. These genes are 
synchronous, but not with the regulators crp, fis.

Following the nomenclature for fibers developed in [20, 22], we characterize these cir-
cuits by fiber numbers |n = 0, ℓ� since they have no loops, n = 0 , inside the fiber and ℓ 
external regulators.

It is interesting to compare the circuits found by fibrations with the most commonly 
used network motifs. In the network motif nomenclature of Alon et al., the |0, 2� fiber 
shown in Fig. 2b is called FAN motif [15], while the |0, 1� fiber depicted in Fig. 2a is called 
a star motif. We will see next that in order to synchronize the regulator with its regulon, 
and extra autoregulation loop is required to induce a fibration symmetry, leading to the 
first form of non-trivial fiber beyond the regulons and simple symmetric groups Sn , as 
we show next.

The autoregulation (AR) loop and regulated genes

The first non-trivial form of synchronization in the hierarchy of symmetry fibrations 
is found when a TF regulates its own expression, forming an autoregulation (AR) loop, 
and further regulates other genes. This is exemplified in Fig. 3a. In E.  coli, such a cir-
cuit is found in the biosynthesis of tryptophan, which is regulated by TrpR [53], which 
represses itself, the gene aroH (2-Dehydro-3-deoxyphosphoheptonate aldolase), and the 
trpLEDCBA operon, which codes for the enzymes of the tryptophan biosynthesis path-
way. This circuit is turned on by the presence of intracellular level of L-tryptophan [54]. 
When tryptophan is in the cell the TF binds and turns off the genes in the operon.
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While the AR loop at trpR does not affect the automorphisms formed by the regu-
lated genes (i.e., the regulated genes are invariant under permutations of the symmetric 
group S 2 ), the AR loop introduces the fibration symmetry between trpR, trpLEDCBA, 
and aroH. This symmetry is not captured by a simple permutation of the nodes. For 
instance, permuting the operon trpLEDCBA with aroH preserves the adjacency, but per-
muting trpR with either the operon or aroH does not preserve adjacency. Therefore trpR 
does not belong to the symmetry group formed by trpLEDCBA and aroH. Still, as we 
show next, trpR is synchronized with trpLEDCBA and aroH by the symmetry fibration 
of the input trees. We call this circuit |1, 0� since it contains an AR loop and no external 
regulators.

The feed‑forward fiber

When an AR circuit with its regulon fiber is regulated by an external TF, it becomes 
a |1, 1� fiber. This is a prominent circuit in bacteria; we call it the feed-forward fiber 
(FFF)  [20]. The FFF resembles the feed-forward loop (FFL) network motif introduced 
in [19], except for the additional AR at the intermediate TF. This crucial addition trans-
forms a FFL into a FFF composed of three genes into a synchronized fiber [22]. This type 
of building block is abundant in E. coli and B. subtilis GRNs [22].

An example of an FFF is observed in the purine biosynthesis circuit in E. coli, shown in 
in Fig. 4a. It is composed of the repressor TF purR and its target gene pyrC, both regu-
lated by the master regulator fur. The input trees of the genes in this FFF are shown in 
Fig. 4a. We see that pyrC and purR receive the same inputs from both fur and purR. On 
the first layer of the input tree, we find that purR is an autoregulator and also regulates 
the gene. The second level of the input tree contains exactly the same genes, and so on. 
This forms an input tree of infinitely many layers since there is a loop in the fiber at purR.

Multilayer composite fiber

Synchronization of the fiber is defined by the isomorphism between input trees of the 
nodes in the fiber. Consider the input tree of the FFF building block in Fig. 4. First layer 
for both purR and pyrC contains the regulator (fur) and the green node (purR). There-
fore, the second layer not only has the same topology, but it has the same nodes. Hence, 
there is no way to break the isomorphic topology after this layer, because inputs of the 
same nodes are considered. Therefore, in the case of the FFF building blocks and all the 
other building blocks considered so far one layer of the input tree or the input set alone 
is enough to detect synchronization. The next level of complexity in the hierarchy of fib-
ers are circuits where the synchronization depends on deeper input layers of synchro-
nized genes, and longer loops of information. This increase in complexity of the circuits 
is seen in multilayer composite fibers and Fibonacci fibers which we treat next.

Figure 5a shows an example of a multilayer composite fiber in E. coli whose main regu-
lator is crp. In this case, crp is the inducer of a composite fiber, composed of oxyR and 
rbsR and responsible for further downstream regulation of several carbon utilization 
subsystems of genes.

The topology of the input trees of this fiber is isomorphic to the one of FFF |1, 1� , 
despite the fact that the building block has a very different topology than the FFF shown 
in Fig. 4a. This first layer of genes regulates via oxyR and rbsR a second fiber composed 
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of genes add, dsbG, gor, grxA, hemH, oxyS, trxC. If the branch corresponding to rbsR is 
disregarded, the building block of the fiber of genes dsbG, gor, grxA, hemH, oxyS, trxC is 
classified as a single layer |0, 1� . Thus, the building block corresponding to the entire fiber 
in Fig. 5a in red is a double layer composite that we denote: |add − oxyS� = |0, 1� ⊕ |1, 1�
.

Notice that gene add is two edges apart from the rest of its own fiber genes, thus 
achieving synchronization at a distance of two in the network.

Multilayer fibers are the predominant way for distant synchronization, indicating the 
higher level of complexity in these composite circuits.

Fibonacci fibers and the strongly connected component of the network

The next stage in our hierarchy is the Fibonacci fiber (FF) shown in Fig. 6a [20, 22]. The 
FF shows a higher level of complexity in the paths that regulate the fiber. To understand 
the FF, we use the concept of strongly connected component, SCC  [20]. In general, a 
fiber may receive information from the entire network through its input tree. When the 
fiber is not connected to a SCC, then information is processed only inside the fiber. This 
was the case with all fibers described so far and characterized by integer fiber numbers 
n = 0, 1, 2.

However, if a fiber is connected to a SCC and sends back information to its own regu-
lators through the SCC, the level of complexity in the fiber topology increases. In previ-
ous examples, the input trees were infinite due to self-loops, here the input tree becomes 
infinite due to longer loops in the SCC of the network, i.e., information cycles through a 
longer loop returning back to the fiber. The input tree of the fiber contains longer loops 
in the information cycles arriving to the root gene. These loops introduce extra terms in 
the sequence layers in the input tree leading to Fibonacci sequences in the number of 
paths, (see [20] for details). There are an infinite number of possibilities for these cycles 
to appear in the network. We find three types of Fibonacci fibers in the GRN of E. coli 
in our previous work [20], one of which is shown in Fig. 6a. Eukaryotes like yeast and 
humans present a much richer variety of Fibonaccis as shown in [22].

|n = 2, ℓ� : binary tree fiber

The last type of building block in the hierarchy of fibers in bacteria is characterized by 
two AR loops, leading to a symmetric input tree. This procedure can be iterated to any 
number of loops, but in the studied bacterial networks we did not find any fiber with 
n > 2 , suggesting a practical limit in complexity in these organisms.

Synchronized coexpression within gene fibers—experimental validation
We saw that gene fibrations, in theory, can lead to synchronization. To see whether 
this prediction takes place in reality, we now consider the gene fibers uncovered in 
bacteria and confront the predicted coexpression structures with experimental tran-
scriptome data (for details see Methods  “Gene expression data” section). We use the 
gene expression compilations from Ecomics [60] (for E. coli) and SubtiWiki [50] (for 
B.  subtilis). The Ecomics portal collects microarray and RNA-seq experiments from 
different strain and sources including NCBI Gene Expression Omnibus (GEO) public 
database [61] and ArrayExpress [62]. The data is also compiled at the Colombos web 



Page 16 of 34Leifer et al. BMC Bioinformatics          (2021) 22:363 

portal  [63]. We choose Ecomics over Colombos because Ecomics provides absolute 
expression levels. Datasets for gene expression like Colombos [63] do not provide the 
absolute expression levels but the fold change from a wild-type to a perturbation state 
such as a mutation. Measuring the fold change does not allow to test the synchro-
nization in fibers since the prediction of the theory refers to unperturbed states in 
the wild type. Thus, we base our analysis on the wild-type networks. Expression data 
from mutant strains were not taken into account, since mutations lead to breaking 
of symmetries. Theoretical predictions for the response to mutations will be studied 
elsewhere.

Subtiwiki is a comprehensive knowledge database for bacterium B. subtilis con-
taining expression, pathways, interactions and regulation data in the wild-type strain 
across different experimental conditions. A test for gene synchronization in fibers has 
been performed in our previous study in [20] by looking at specific experimental con-
ditions where the genes have been activated. Below, we test the existence of fibers in 
a larger context with and without activated conditions and test the statistical signifi-
cance of these correlations, as assessed by p values.

We assess synchronization in gene expression data using Pearson coefficient of cor-
relation. To find the Pearson coefficient of correlation between gene expression pro-
files of genes i and j we use:

where T is the number of conditions, xi,t is the expression value of gene i for condition 
t, and µi and σi are the respective mean and standard deviation of expression values of 
gene i for all conditions.

We start by considering expression of few pairs of nodes that are predicted to be 
synchronized by fibration theory in E. coli. Figure 7 shows the gene expression cor-
relations between four different gene pairs, each from one fiber, in the form of scat-
ter plots. Each plot can be quantified by a single Pearson correlation value. Figure 7c 
depicts the expression of rrsH vs rrsG which form a fiber, and are predicted to be 
synchronized. Each point in the plot represents a single experiments with a particu-
lar growth condition for the bacterium as obtained from the Ecomics dataset. The 
observed Pearson correlation value is 0.98 which indicates a strong synchronization in 
the activity of the genes across the experimental conditions. These genes are located 
far away in the genome and, as it can be seen from the scatter plot, their expression 
is highly correlated. Figure 7d–f shows another few scatter plots of gene expression 
in E.coli. For instance, fig. 7f shows the correlation between fadI and fadE which also 
form a fiber with a correlation coefficient 0.49. These highly correlated examples are 
picked only for illustrative purpose, but not all fibers synchronize so well, and as it 
can be seen from Fig. 7 there is a lot of noise.

In the following sections we assess whether the observed correlations are signifi-
cantly large within the predicted fibers by assessing gene correlations in the entire 
data set, within and between gene fibers. We report two kinds of correlations: (a) 
correlations computed from the entire data set, that is, using all the experimental 
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conditions appearing in Ecomic for E. coli without filtering, irrespective of whether 
the genes are being expressed in the particular conditions or not, and (b) correla-
tions obtained after filtering for “active experimental conditions”, specifically chosen 
for each set of genes in the fibers. This second approach has been used in our previ-
ous study in [20] and it is similar to the filtering method employed by the Colombos 
database at [63]. Then, we scrutinize the statement that fibrations predict larger mean 
correlation (i.e. gain of synchronization) in the fibers of E.coli. Again, we first give 
significant results without filtering and we continue by applying the variation of the 
filtering method used by Colombos [63] and showing significance and results of that 
method.

a

dc

e f

b

Fig. 7  Similarity in gene expression data for selected pairs of genes belonging to the same fiber. Gene 
co-expression is demonstrated on the data from all experiments in the Ecomics database. We pick best 
examples out of 85 fibers obtained in E. coli. a, b Gene expression of pairs of genes in rrsH, rrsG and ykgM, 
znuA for 1575 experimental conditions from Ecomics. It’s easy to see that data is highly correlated. c Gene 
expression of rrsH (Position in genome: 223771–> 225312) vs gene expression of rrsG (Position in genome: 
2729616 <– 2731157), correlation = 0.98, d Gene expression of ykgM (312514 <– 312777) vs gene expression 
of znuA (1941651 <– 1942583), correlation = 0.58, e Gene expression of yfdE (2488023 <– 2489168) vs gene 
expression of yegR (2167989<– 2168306), correlation = 0.49, f Gene expression of fadI (240859 <– 243303) vs 
gene expression of fadE (2459159 <– 2460469), correlation = 0.49
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Correlations within and between gene fibers

In this subsection we give an overview over the correlations between all genes in the 
dataset, and their relation to gene fibers. We start by grouping the genes in the predicted 
fibers (85 in total in E. coli) and then using all the experimental conditions in Ecomics 
(1575 conditions) we calculate the correlation matrix between and within genes in fibers 
to test for synchronization. Later we will filter these conditions to those where the genes 
are active.

In order to quantify the synchronization in the fibers we consider the statistics of 
mean correlations inside the fiber, where mean correlation is the mean of all off-diagonal 
terms in the correlation matrix. To assess the statistical significance of the correlations 
we compare the fiber mean correlations with mean correlations of random sets of nodes 
of the same size. We assume that mean correlations of random blocks of a given size are 
distributed normally. We define mean and standard deviation of the random set by find-
ing mean correlation of 100,000 random sets of fibers of size ranging from 2 to 24 genes 
(as found in E. coli) using all the conditions of expression data. Then we find mean and 
standard deviation of this 100,000 random sample. Summary of this analysis is shown 
in Fig. 8. In general we find that the mean correlation for the genes inside the fiber is 
relatively low, with all fibers with mean correlation below 0.5. We will see below that this 
is due to the fact that in many experimental conditions from Ecomic the fibers are not 
activated. However, it is also clear from the data that there is an increase in correlation 
inside the fibers (blue curve in Fig. 8) as compared with the mean correlation in the ran-
dom sets (red curve in Fig. 8), but how significant is this increase?

In order to quantify the statistical significance of the increase in correlations in fibers, 
we study the probability that random sets of genes of size n have the mean that is higher 
or equal than the mean correlation of fibers of the same size n. We then calculate the p 
value of the measured distribution belonging to the random distribution.

Fig. 8  Mean correlation within the fibers, computed without filtering versus sizes of gene fibers (number of 
nodes). Black and orange dots—mean correlation of 85 fibers of size < 25. Shape shows significance: black 
diamond—significant, orange circle—insignificant. Blue—mean of mean correlation of real fibers in black 
(smoothed with moving average). Green error bars—mean± 1.65 ∗ SD of random fibers mean correlations. 
1.65 is chosen, because 0.05 values of the normal distribution with µ = 0 and σ = 1 are above 1.65, therefore 
1.65 corresponds to the p value of 0.05. Red—mean correlation of the random fibers
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The sampling distribution of a normal distribution of size m has the mean distributed 
normally with mean ( µm = µ ) and standard deviation σm = σ√

m
 , where µ and σ are 

mean and standard deviation of the original distribution [64]. For a normal distribution 
with known mean and standard deviation, we find a z-score that corresponds to our 
measurement, i.e. to the mean of mean correlations of fibers µreal as Z = µreal−µm

σm
 and 

the corresponding p value. Table 2 shows the summary of these measurements. We find 
that 68 out of 85 fibers are significant, which indicates that for most of the fibers the 
mean correlation is significantly higher than random. Therefore fibers significantly pre-
dict the gain of synchronization even in this unfiltered dataset. However the typical 
mean correlation is low enough (below 0.5) to consider this result of high significance.

Inverse Coefficient of Variation to filter out conditions with non‑activated genes

The results so far refer to gene correlations across the entire data set, including all 
experimental samples. However, in our theoretical predictions we assume that correla-
tions in a fiber should only exist when the fiber is “active”, that is, in a subset of “active” 
experimental conditions, which is specific to this fiber. Since we don’t have any other 
information about these active conditions, next, we determine a set of active conditions, 
for each single fiber, by a heuristic criterion, based on the ICV (Inverse Coefficient of 
Variation, see Methods). It is important to note that this filtering for high ICV values is, 
basically, also a filtering for conditions in which the genes tend to be correlated: i.e. our 
filtering for active conditions will induce correlations. To see which of these correlations 

Table 2  Significance of the increase in correlation obtained using method with no filtering

P values < 0.05 in bold. 68/85 are significant. Random sample consists of 100,000 fibers

Fiber size Mean of mean 
correlations 
( µreal)

Mean of random 
mean correlations 
( µm)

Standard deviation of 
random mean correlations 
( σm)

Number of 
blocks (m)

p value

2 0.20 0.07 0.20 24 0
3 0.17 0.07 0.13 11 0.01
4 0.20 0.07 0.10 10 0
5 0.14 0.07 0.09 6 0.03
6 0.10 0.07 0.08 8 0.11

7 0.20 0.07 0.07 4 0
8 0.22 0.07 0.07 5 0
9 0.38 0.07 0.06 2 0
10 0.26 0.07 0.06 2 0
11 0.06 0.07 0.05 1 0.60

12 0.11 0.07 0.05 2 0.12

14 0.17 0.07 0.05 3 0
16 0.05 0.07 0.04 1 0.63

17 0.24 0.07 0.04 1 0
18 0.12 0.07 0.04 1 0.11

22 0.07 0.07 0.04 2 0.45

23 0.10 0.07 0.04 1 0.17

24 0.01 0.07 0.03 1 0.95
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represent “real” correlations and not just statistical artifacts, we rely again on our per-
mutation test.

Indeed, cells can adapt to varying growth conditions by sensing extracellular cues, 
using intracellular effector molecules to modulate transcription factor activities. This 
activation can happen directly or via intermediate signaling pathways such as the two-
component systems (TCS) in bacteria. Therefore, different genes will not be expressed 
all the time, but will only be expressed under specific external experimental growth 
conditions. We consider that a gene is either active (expression much larger than noise 
range) or inactive (expression in the noise range). Furthermore, the activity of all TFs 
are modulated by effectors (ligands and metabolites). In our approach, these additional 
regulations are ignored and requiere a detailed consideration of the metabolic networks 
that is coupled to the GRN. Such coupling will be studied in a forthcoming paper. In the 
present analysis we consider that these effectors activate and deactivate the fiber circuits 
identified by fibrations and are determined by the internal metabolism of the cell and the 
external growth conditions where fibers are activated.

A specific example of activation mediated through a known effector is the cAMP acti-
vation of crp. When the genes are not significantly expressed or expressed below the 
noise level, the corresponding activity in expression is expected to be random noise. 
When the genes are active or significantly expressed for a given statistical test of sig-
nificance, the genes can be coexpressed by showing large correlations in their expression 
levels or they cannot be coexpressed, by showing zero or near noise level correlations in 
their expression levels over time.

When the expression correlations between genes are computed from the entire set of 
conditions as done in the previous section, the noise in the conditions where genes are 
inactivated distorts the results. That is, using the inactivated states to compute the cor-
relations, there will be noise, which makes it hard to detect correlations, leading to the 
need to filter the conditions.

Thus, to test coexpression patterns in a given set of genes, we first find the conditions 
under which this set of genes is active, ie, over-expressed under a given statistical test. 
Then we assess, just for these conditions, the coexpression between our genes. Being 
inactivated together by external effectors, we filter out for experimental growth con-
dition where the fibers are activated and present correlations over a given determined 
threshold of noise. We note that activation of genes does not imply correlations per se. 
Thus, there are two different stages in the analysis that are subject to different statistical 
tests of their significance as we explain below.

For this study we use Ecomics since it provides the data in the wild-type (WT) condi-
tions, rather by providing the data using the fold-change that compares a mutation or 
perturbation to the WT. Using Ecomics [60], we obtain the set of experimental condi-
tions where the particular genes in a given fiber have been significantly expressed. For 
this task we follow standard gene expression analysis similar to the one developed in 
colombos.net and Ref. [63] for the expression levels in E. coli to first identify the set of 
growth condition where the genes in a given fiber are significantly expressed respect to 
random noise and then test the synchronization through correlations in gene’s activity 
using these conditions. We then repeat the scheme using the conditions in Subtiwiki for 
B. subtilis [50].
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To choose our gene sets to test for synchronization, we first consider the building 
block of the fiber. We test the synchronization in the fiber of the building block and the 
lack of synchronization between the fiber and its external regulators. We then consider 
the cross-correlations between fibers.

For a given set of genes in a fiber, we find the experimental conditions for which the 
genes have been significantly expressed by comparing the expression samples over dif-
ferent biological conditions. To filter conditions where the genes are expressed we use 
the Inverse Coefficient of Variation (ICV) similar to the one applied by Colombos [63]. 
We consider the genes in the fiber and obtain their expression levels for all conditions. 
Then we calculate the ICV for all conditions using the method explained in “Selecting 
relevant experimental data based on the inverse coefficient of variation” section.

After selecting the conditions for expression according to the relevant ICV, we use the 
expression data for the selected experimental conditions and we find the Pearson cor-
relation coefficient of correlation between gene expression profiles of genes i and j. For 
genes that are in the same fiber, we calculate the correlation matrix averaging over the 
experimental conditions of the fiber using the ICV method explained above. To compute 
correlations between genes belonging to different fibers, we consider the correlation 
function calculated over the union of conditions used for two fibers.

The above framework yields a correlation matrix for a fiber and its regulators. We 
apply the method to each fiber in the networks of E. coli and B. subtilis to test the predic-
tion that genes in the fiber are more correlated with genes in the fiber, than with genes 
outside the fiber.

To deal with the noise generated by the inactivated states of the genes, we filter the 
conditions based on the ICV [63]. ICV allows us to consider only conditions where mean 
expression is few standard deviations higher than 0, that is µexpression > n ∗ σexpression , 
where n is an arbitrary number (see Methods). In other words, we consider conditions 
where the fiber is activated. This filtering could create a bias towards increased correla-
tion, so the question arises of how significant results obtained using this method are.

The analysis of gene correlations with ICV filtering was performed as follows. We 
considered each fiber, determined the active conditions for this fiber, and computed the 
intra-fiber correlations over this set of conditions. To compute gene correlations across 
two different fibers, we considered the previously determined active conditions for both 
fibers and computed the correlations over these conditions.

Figure 9 shows the summary of the results similar to the one presented before in Fig. 8 
for the method with no filtering by comparing the significance of the correlations in the 
fibers with a null model of 100,000 random set of genes with sizes from 2 to 24. First, 
we observe that mean correlation in the random set approached 1 when the size of the 
set approaches 2. This implies that for fibers with two genes, the filtering method is not 
significance, i.e., any random set of genes will show high correlations after filtering the 
conditions with ICV. However, the average of the within-fiber mean correlation for a 
given size of fiber as a function of the size of the fiber (red curve in Fig. 9) slowly decays 
towards the red dashed line, which means that the correlation bias created by ICV disap-
pears for bigger sizes of the fiber. Second, we can see a clear increase of mean correlation 
(blue line being higher than red) similar to the one we observed in the method with no 
filtering. This implies that we again see the increase in correlation within the fiber using 
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the method of ICV. Significance of this increase can be studied observing Table 3. We see 
that 28 out of 85 fibers are significant. The proportion of the fibers that are significant 

Table 3  Significance of the increase in correlation obtained using ICV

P values < 0.05 in bold. 28/85 are significant. Random sample consists of 100,000 fibers

Fiber size Mean of mean 
correlations 
( µreal)

Mean of random 
mean correlations 
( µm)

Standard deviation of 
random mean correlations 
( σm)

Number of 
blocks (m)

p value

2 1 0.99 0.08 24 0.32

3 0.81 0.78 0.17 11 0.25

4 0.78 0.58 0.22 10 0
5 0.53 0.46 0.22 6 0.24

6 0.44 0.38 0.20 8 0.20

7 0.50 0.32 0.19 4 0.03
8 0.51 0.28 0.18 5 0
9 0.77 0.25 0.17 2 0
10 0.55 0.22 0.16 2 0
11 0.25 0.20 0.14 1 0.37

12 0.20 0.18 0.14 2 0.44

14 0.28 0.15 0.12 3 0.03
16 0.07 0.14 0.11 1 0.74

17 0.50 0.12 0.10 1 0
18 0.19 0.11 0.09 1 0.21

22 0.10 0.10 0.08 2 0.43

23 0.23 0.09 0.07 1 0.03
24 0.02 0.09 0.07 1 0.84

Fig. 9  Mean correlation of fibers calculated using the filtering method of ICV vs number of nodes in the 
fiber. Black and orange dots—mean correlation of 85 fibers of size < 25. Shape shows significance: black 
diamond—significant, orange circle—insignificant. Blue—mean of mean correlation of real fibers in black 
(smoothed with moving average). Green error bars—mean± 1.65 ∗ SD of random fibers mean correlations. 
1.65 corresponds to the p value of 0.05 as explained in Fig. 8. Red solid line—mean correlation of random 
fibers found using ICV. Red dashed line - mean correlation of the random fibers without filtering
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using the ICV method is lower than without filtering, which is mostly happening due to 
the fact that the increase in the correlation for the smaller sizes is less significant.

Having studied the correlations across all genes in fibers with filtering and no filter-
ing of conditions, we conclude that there is a clear pattern of increase of correlation 
between genes in the fiber. The method with no filtering shows that small fibers detect 
the significant gain of synchronization, while the method with filtering shows the gain 
of synchronization in bigger fibers. It’s important to note that there are fibers that are 
significant and highly correlated individually as it can be seen from Figs. 8 and 9, but 
what we observe here is a consolidative effect of gain of synchronization, although 
with extra fiber-fiber correlations which are not directly related to the fiber structure 
but may indicate activation of different fibers under same conditions. We shall now 
describe some particular cases of fibers with biological functionalities.

Fiber synchronization in the hierarchy of fibers in E. coli and B. subtilis at the network level

So far we have tested coexpression within fibers separately, selecting for each fiber the 
conditions under which the genes in this fiber are activated. Next, we consider cross-
correlation between a selected set of fibers well studied in the literature with concomi-
tant high activation levels since many conditions have been set in experiments to study 
their behavior, to check the validity of our results. A synchronization across fibers might 
indicate that our gene fibers are not correct, maybe because of missing edges in the 
reconstructed network.

To calculate the correlations inside fibers we again use the conditions where each fiber 
has been overexpressed as given by the ICV. In general, these sets of conditions need not 
overlap for two different fibers. When calculating the off-diagonal correlation between 
different fibers we consider the union of the conditions of both fibers to calculate the 
correlation matrix.

Figure 10 shows the expression correlation matrix for genes in a number of circuits in 
E. coli and B. subtilis, following the hierarchy of fibers explained in “Hierarchy of sym-
metry fibers in GRN” section. We study the following fibers: |0, ℓ� with ℓ = 1, 2 , followed 
by three examples of Chain Fibers |1, ℓ� with ℓ = 0, 1, 2 and by a case of a multilayer com-
posite, present in both species. Looking at the multilayered fiber in B. subtilis in Fig. 10 
we observe synchronization of the fiber and it’s regulators. Since this multi-layered 
building block in bacillus is fully synchronized, we predict that there should be a AR on 
the regulator SpoIIID that will turn this in a |1, 0� fiber in order to explain this synchroni-
zation. Finding these missing links is a useful byproduct of the existence of symmetries, 
which can be done systematically to find and annotate new regulatory interactions.

The activity of the genes in operons are reported individually in Ecomics, so we use the 
activity of the individual genes (genes in one operon are marked in the plots). Synchro-
nization within operons is a trivial finding, and the test of fiber synchronization is done 
by comparing the activity of any gene in the operon with the genes outside the operon. 
Moreover, the fiber predicts no synchronization between any gene in the operon and the 
external regulator.

We note the lack of synchronization between the fiber genes purR-pyrC and its regu-
lator fur as predicted by fibrations. This is despite the fact that the fiber is the regulon 
of fur, that is, direct regulation does not lead to synchronization. As predicted, genes 
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are highly coexpressed within fibers, but not significantly correlated with the regulator 
genes.

Observed correlations largely confirm the synchronization within fibers. However, 
there are some interesting exceptions. For instance, the genes cssR and cssS in B. subtilis 
present large anticorrelations with a fiber (the one containing the gene cgeC). This unex-
pected anti-correlation may indicate extra transcriptional regulations between these fib-
ers. These type of correlations can be used to guide in the search for missing regulation 
edges, which are ubiquitous in genetic network reconstructions.

Fig. 10  Fiber Class Examples. We display the six different fiber classes with their genetic circuit and 
correlation matrix. Genetic circuits: A graphical representation of the genes and their regulators interactions. 
Edges: Black—Activation, Red—Repression. Nodes: Green and red—Fibers, White—Regulators. Correlation 
graphs: Correlation between Fiber genes (green and red font) and regulators (black font). Operons are shown 
with lines along the correlation matrix diagonal. Black lines in the correlation matrix enclose fibers, black 
dotted lines show cross-correlations between fibers and inside multi-layered fibers. Genes inside fibers are 
correlated and are not correlated with regulators and different fibers. Note, observed correlations have high p 
values using ICV method. This happens due to the fact that the displayed fibers are small and, as mentioned 
before, small fibers are have high p values with method with no filtering. Observed correlations can guide 
future research in finding missing transcriptional regulations. For example, self-regulation loop on spoIIID 
could explain the correlation inside multi-layered fiber in bacillus
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Coexpression of regulators of alternative carbon source utilization

The underlying assumption in the functional annotation of genes is that the genes that 
are highly connected in modules have a functional relation among them; an assump-
tion that is usually called ’guilty by association’  [2, 40]. We now scrutinize this gene 
annotation method in light of the existence of fibers.

For this purpose we take a closer look at a number of fibers involved in the well 
studied functional module regulated by the master regulator crp involved in the regu-
lation of carbon source catabolism, a well-characterized gene regulatory system. We 
will also study how the fibers are integrated into a larger network. It has previously 
been found that this circuit contains many types of network motifs, including feed-
forward loop (FFLs), FANs and others [15, 38]. We will see that these network motifs 
are not related to the synchronized fibers.

Carbon u�liza�on network correla�on
COG Categories
Category Descrip�on

G
K
M
T

Carbohydrate metabolism and transport
Transcrip�on
Cell wall/membrane/envelop biogenesis
Signal Transduc�on

Galactosamine
agaS-kbaY-agaBCDI

araE-ygeA
araFGH

fucAO

lsrACDBFG-tam

A

B
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D

E
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G

H
G

G
G

G

G
G

M

K
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G
C

T
G

K

K
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G
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G
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C

C
K

K
K

Arabinose

N-acetylglucosamine

Fucose

L-idionate

Galacturonate

Ribose

Maltose

p = 0.05

p = 0.06

p = 0.38

p = 0.09

p = 0.4

p = 0.45

p = 0.001

p = 0.45

Fig. 11  Carbon utilization circuit: correlation matrix. Correlation matrix of the fiber building blocks involved 
in the carbon utilization system. Colored rectangles A, B . . .H on the left code gene names that will be 
used in expression matrix plot Fig. 12 and structure vs function plot Fig. 13. Operons are shown with lines 
along the correlation matrix diagonal. Black crosses show correlation entries below 0.6 to compare low 
cross-correlation with high correlation inside fibers. COG categories are obtained using UniProt database [65]. 
Function of each block (Galactosamine, Arabinose, etc.) is defined by the type of it’s regulator obtained from 
RegulonDB [49]
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To build the carbon utilization network we select those building blocks in which the 
TF (that generates the input tree) belongs to the alternative carbon sources functional 
category [66] that catabolizes sugars in the absence of the main source of sugar intake 
that is glucose. This includes the catabolism of a number of sugars: maltose, ribose, 
galactosamine, fucose, N-acetylglucosamine, L-idonate, and galacturonate. Correla-
tion matrix of the regulation network is shown in Fig.  11. Gene expression profile 
corresponding to this network demonstrating filtering explained in Section VII G is 
shown in Fig. 12. Topology of the regulation network is shown in Fig. 13.

Even thought genes involved in carbon utilization have a related common biological 
function, that is the assimilation of alternative carbon sources, these genes may not be 
expressed all together. Indeed, each unit of this group must be activated in the presence 
of the effector involved in the regulation. Different building blocks are activated under 
different nutrient intakes of sugars like the presence of arabinose, maltose or ribose. 
Most of these systems are additionally regulated by the master regulator crp.

We start the analysis with the TF AgaR that catabolizes Galactosamine that is regu-
lated by crp, this TF regulates the fiber agaS-kbaY-agaBCDI. AgaR has several binding 
sites on the downstream region of AgaS. The binding sites repress the promoter agaSp. 
Also agarR is only regulated by AgaR with two binding sites on the downstream region 
of gene agaR near promoter agaRp. From literature  [38] it is known that in the arab-
inose system, araJ and araE code for low-affinity transporters, while the araFGH operon 
codes for a high-affinity transporter, these transport systems differ in other properties 
in addition to their affinity for their substrate, that is, they have different physiological 
properties. The araFGH operon is subject to strong catabolic repression, that is, it is not 
expressed if glucose is present in the medium. On the other hand, the low-affinity trans-
porter AraE works at moderate arabinose concentrations. The expression of this trans-
porter favors the entry of the substrate and the expression of the enzymes that are going 
to metabolize.

We found that the genes in the alternative carbon utilization system show measurable 
coexpression within fibers, just as predicted (see Fig. 11). The coexpression in the fibers 
(e.g., malI, mlc) is captured by the fibration symmetry. This result shows also that the 
share of input functions among genes, like in a regulon/operon does not necessarily lead 
to synchronization.

Carb twork expression matrix

A

B

C

D

E

F

G

H
Ge

ne
s

Fig. 12  Carbon utilization circuit: expression profile. Expression profile of 39 genes involved in the carbon 
utilization system over 1575 experimental conditions. Gene names correspond to the building blocks 
A, B . . .H defined in Fig. 11. Conditions in white are filtered out using the method of ICV described in 
“Selecting relevant experimental data based on the inverse coefficient of variation” section and the rest of the 
conditions are used to calculate the correlation represented in Fig. 11
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We have also found fibers that contain genes with different input functions like the 
ones in ribose circuit, yet, they still have measurably high co-expression. They are also 
correlated by function, since NagE is a N-acetylglucosamine PTS permease, while YcdZ 
is a putative transmembrane protein that have been predicted to interact with several 
sugar PTS permeases (Uniprot). Thus, fibers do not only hint at synchronization, but 
also at putative functional relations.

Fig. 13  Carbon utilization circuit: structural network vs functional network. Top part shows topology of the 
transcriptional regulation of the carbon utilization system. Bottom part shows the functional network of the 
carbon utilization system based on the Pearson correlation from Fig. 11. Correlation C(i, j) is thresholded at 
C(i, j) > 0.6 to produce a functional network
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We also observe many network motifs in the carbon network as it was found previ-
ously [15, 17, 66–69]. For instance the genes gntR, idnR, idnK form a FFL as shown in 
Fig. 13. However these network motifs are not necessarily related to the functional fibers 
of synchronized blocks. Finally, the structure-function relation predicted by fibrations 
is shown in Fig. 13. This relation cannot be predicted by building blocks built from net-
work motifs [17] nor modularity analysis based on community detection methods [40, 
70].

Summary and outlook
Their potential for implementing controllable gene coexpression and for facilitating gene 
rearrangements make gene fibers an interesting tool of analysis not only for studying 
existing GRNs but also for synthetic biology. Our results show that gene fibers can cap-
ture measurable gain of synchronization in gene expression in two well-reconstructed 
genetic networks, those of E. coli and B. subtilis. With this experimental confirmation of 
our symmetry hypothesis, fibration symmetry seems to be a plausible starting point for 
a broader theory of gene synchronization. Such a theory would start with the descrip-
tion of exact symmetries and would then proceed with perturbative schemes, allowing 
for heterogeneities, based on controlled loop expansions on the theory [71]. The overall 
goal would be a predictive framework for gene synchronization, including an assessment 
of the effects of mutations. In the present study, we focused completely on wild-type 
strains. It would be interesting to study knockout experiments, where fibrations might 
predict a loss of synchronization in comparison to the wild-type predictions.

Methods
Network construction

The gene regulatory network of E. coli was obtained from the operon dataset from Regu-
lonDB [49] with additional filtering. An operon starts with a promoter, but can also have 
internal promoters and terminators. In a study in E.  coli, about 45% of all genes were 
found to be single genes, about 20% were in traditional operons with one promoter (plus 
7% for operons with several terminators), and about 20% were in operons with inter-
nal promoters (plus 8% for operons with internal terminators) [72]. In our networks, we 
consider each operon as a single node, unless an operon contains several TF, in which 
case, the TFs are considered individually separately, but the genes in the operons that do 
not express a TF, like for instance enzymes, are considered as a single node together with 
one of the TF in the operon. For instance, the operon gadAXW in E. coli is considered as 
the operon gadAX which includes one TF, and the other TF, GadW. For detailed descrip-
tion of filtering process in E. coli see [20] (SI Chapter III).

The B. subtilis gene regulatory network was obtained from SubtiWiki [50] with addi-
tional filtering. All sigma factor genes were removed from the network. Additionally 
all types of link like “positive_regulation”, “transcription_activation” and “transcrip-
tional_activation” were assigned as “activation” and “anti-activation”, “auto-repression”, 
“negative_autoregulation”, “transcription_repression”, “autorepression” and “negative_
regulation” as “repression”.
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Gene fibrations

When two nodes in a directed graph have isomorphic input trees, the nodes are sym-
metric and synchronize their activity even if they are not in the orbit of an automo-
sphism. In this case, the synchronized nodes are said to belong to the same fiber  [20, 
22, 24, 73, 74]. The symmetry fibration is then a transformation that collapses nodes in 
a fiber into a single node called the base and thus reduces the circuit to its most simple 
form. The “orbits” of synchronized genes in an automorphism are now called the nodes 
in the fiber produced by the symmetry fibration.

Groups of nodes that share fibration symmetry are called fibers. Nodes that have iso-
morphic input tree belong to the same fibers of minimal fibrations (further referred as 
fibrations for simplicity) [24]. For example the input trees of all the genes in the trypto-
phan circuit are isomorphic. They consist of a infinite chain as shown in Fig. 3b, since this 
circuit contains one single loop and no external regulators that do not belong to the fiber. 
Thus, we characterized it by the fiber numbers |1, 0� . The symmetry fibration is a transfor-
mation that reduces this circuit by collapsing all nodes in the fiber to one, called the base. 
This is only possible since all genes in a fiber are redundant in a dynamical state.

Equivalence between fibers of symmetry fibration and minimal balanced coloring

Equivalence between fibers of symmetry (surjective minimal) fibration and minimal bal-
anced coloring (or coarsest equitable partition) is formally proven in Chapter 4 in [74]. In 
particular, Theorem 4.7 states that maximal balanced equivalence relation is equivalent 
to the isomorphism relation between input trees of the infinite depth. That is, minimal 
balanced coloring induced by the maximal balanced equivalence relation is equivalent 
to having classes of nodes with isomorphic input trees, which correspond to the fibers 
of the symmetry fibration. Rigorous proof requires a fairly involved mathematical analy-
sis [74], so we will only give a brief idea here. Consider graph G with fibers f1, f2, . . . fn 
and balanced coloring C = {c1, c2, . . . cm}.

1. Let there be two nodes n ∈ fi and m ∈ fj that belong to different fibers and have the 
same color ck . Since n and m are of the same color, they will have isomorphic input trees. 
Therefore, there exists a fibration ϕ that can collapse fi and fj . Hence, ψ is not minimal, 
which contradicts the assumption.

2. Let there be a fiber fi that breaks into two colors cj and ck . Since C is minimal, nodes 
of the different colors will have input trees that are not isomorphic. Therefore, there is a 
node n ∈ cj and a node m ∈ ck input trees of which are not isomorphic. Therefore, n and 
m can’t belong to the same fiber, as required.

Consequently, there can’t be any two nodes that belong to the same fiber, but have 
different colors and the opposite. Ergo, fibers of symmetry fibration are equivalent to 
minimal balanced coloring.

Algorithm for balanced coloring to identify fibers

Several algorithms can be used to find fibers in networks [49, 74, 75]. All available algo-
rithms are based on finding ’balanced equivalence’ relations in the network, see [25] for 
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details. Current algorithms are based on the algorithm introduced in 1982 by Cardon 
and Crochemore  [75]. In  [20, 22] we have used the version developed by Kamei and 
Cock [49]. A detailed explanation of this algorithm is given in [20, 22]. In a recent review 
article we further discuss a fast algorithm that is scalable to large system sizes in [76]. 
The code of the algorithm in R can be accessed at https://​github.​com/​ianle​ifer/​fibra​tionS​
ymmet​ries.

Gene expression data

Expression data for E.  coli were obtained from Ecomics  [61] (Multi-Omics Compen-
dium for E. coli). Ecomics contains microarray and RNA-seq experiments gathered from 
NCBI Gene Expression Omnibus (GEO) [62], for several E.coli strains in 1575 different 
experimental growth conditions for 4096 genes. We only used data from WT strains. 
The advantage of Ecomics datasets compared with others compilations of expression 
experiments like Colombos [64] is that they provide absolute expression levels instead 
of fold-changes. Expression data for B. subtilis were obtained from SubtiWiki [51]. Sub-
twiki contains data from the GSE27219 experiment in GEO that has 104 experimental 
conditions for genes in wild type B. subtilis.

Using these data for a global analysis would be difficult since they stem from differ-
ent platforms used by the different experimental groups. Thus, raw data on gene expres-
sion among different experiments from different labs is pre-processed by the curators of 
Ecomics and SubtiWiki to produce normalized expression levels across platforms and 
experiments by using noise reduction and bias correction normalized data across dif-
ferent platforms. For our analysis, we selected data from wild-type strains only (select-
ing WT conditions in ’strain’, ’medium’ and ’stress’) to ensure the behavior of genes on 
standard growth conditions without genotype modification from gene knockouts. The 
’perturbation’ conditions in the Ecomics dataset referring to mutants strains were not 
taken into account, and we use always the same E. coli strain.

Data and code availability

The datasets used in this study are available at Refs.  [50] and  [51] and code for fiber 
finder used in this study can be downloaded at https://​github.​com/​Makse​Lab. Expres-
sion data from E. coli and B. subtilis along with codes reproducing co-expression analy-
sis are available at https://​github.​com/​makse​lab/​geneC​oexpr​essio​nFibr​ation.

Selecting relevant experimental data based on the inverse coefficient of variation

To select experimental samples in which a gene set of interest is active, ie, significantly 
expressed above random noise level, we used the Inverse Coefficient of Variation (ICV) 
as a criterion similar to the approach used by Colombos [64]. We consider the genes in 
the fiber and obtain the expression levels for all conditions for the genes. Then we calcu-
late ICV for all conditions using the following equation as is done in Colombos (details 
on the expression analysis can be found at Ref. [64] and at https://​doi.​org/​10.​1371/​journ​
al.​pone.​00209​38.​s001):

https://github.com/ianleifer/fibrationSymmetries
https://github.com/ianleifer/fibrationSymmetries
https://github.com/MakseLab
https://github.com/makselab/geneCoexpressionFibration
https://doi.org/10.1371/journal.pone.0020938.s001
https://doi.org/10.1371/journal.pone.0020938.s001
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where µt is the average expression level of the chosen genes of the fiber in the con-
dition t and σt is the standard deviation. Following  [64], we select conditions with 
ICVt >< ICVt > , i.e., where the average expression levels in the particular condition 
t are higher than certain threshold that is given by the average ICV for all conditions 
of the fiber. This score reflects the fact that, in a relevant condition, the genes show an 
increment on their expression above the individual variations caused by random noise. 
ICV is a measure of scattering of the data. The more scattered the data is compared with 
it’s mean, the less is the value of ICV.

We calculate the p value of condition t for the fiber genes using z-score of the ICV 
coefficient for the selected condition using

where
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