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Orexin/Hypocretin and MCH
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Beyond Arousal
Cristina Concetti and Denis Burdakov*

Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland

The lateral hypothalamus (LH) is classically implicated in sleep-wake control. It is
the main source of orexin/hypocretin and melanin-concentrating hormone (MCH)
neuropeptides in the brain, which have been both implicated in arousal state switching.
These neuropeptides are produced by non-overlapping LH neurons, which both project
widely throughout the brain, where release of orexin and MCH activates specific
postsynaptic G-protein-coupled receptors. Optogenetic manipulations of orexin and
MCH neurons during sleep indicate that they promote awakening and REM sleep,
respectively. However, recordings from orexin and MCH neurons in awake, moving
animals suggest that they also act outside sleep/wake switching. Here, we review recent
studies showing that both orexin and MCH neurons can rapidly (sub-second-timescale)
change their firing when awake animals experience external stimuli, or during self-paced
exploration of objects and places. However, the sensory-behavioral correlates of orexin
and MCH neural activation can be quite different. Orexin neurons are generally more
dynamic, with about 2/3rds of them activated before and during self-initiated running,
and most activated by sensory stimulation across sensory modalities. MCH neurons are
activated in a more select manner, for example upon self-paced investigation of novel
objects and by certain other novel stimuli. We discuss optogenetic and chemogenetic
manipulations of orexin and MCH neurons, which combined with pharmacological
blockade of orexin and MCH receptors, imply that these rapid LH dynamics shape
fundamental cognitive and motor processes due to orexin and MCH neuropeptide
actions in the awake brain. Finally, we contemplate whether the awake control of
psychomotor brain functions by orexin and MCH are distinct from their “arousal” effects.

Keywords: hypothalamus, neuropeptide, orexin, melanin-concentrating hormone, memory, locomotion

A BRIEF HISTORICAL OVERVIEW AND INTRODUCTION

Based on behavioral effects of anatomically targeted lesions, the lateral hypothalamus (LH) has been
long recognized as a key brain center in the control of appetite and arousal [reviewed in Saper et al.
(2005); Burdakov et al. (2013), Stuber and Wise (2016); Herrera et al. (2017), Bracey and Burdakov
(2020)]. It is now known to contain neurochemically and biophysically heterogeneous neuronal

Frontiers in Neuroscience | www.frontiersin.org 1 March 2021 | Volume 15 | Article 639313

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.639313
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2021.639313
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.639313&domain=pdf&date_stamp=2021-03-22
https://www.frontiersin.org/articles/10.3389/fnins.2021.639313/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-639313 March 16, 2021 Time: 18:58 # 2

Concetti and Burdakov Lateral Hypothalamic Neuropeptides Beyond Arousal

populations, which express a plethora of neuropeptides and
almost invariably co-express the classic fast neurotransmitters,
GABA and glutamate (Schöne et al., 2011; Schöne and
Burdakov, 2012; Stuber and Wise, 2016; Romanov et al., 2017;
Kosse and Burdakov, 2018; Mickelsen et al., 2019). Some of
these neuropeptides, such as orexin/hypocretin and melanin-
concentrating hormone (MCH) are generally thought to be
unique to the LH (i.e., they are not made anywhere else in the
brain) (de Lecea et al., 1998; Sakurai et al., 1998; Bittencourt,
2011). Although the canonical appetite and arousal roles of LH
neurons have been receiving the most attention, there is also
historic and modern evidence that can be interpreted to place
the LH among essential brain structures in cognitive and motor
control (Marshall et al., 1971; Schwartz and Teitelbaum, 1974;
Levitt and Teitelbaum, 1975; Karnani et al., 2020).

This article presents recent experimental evidence and
interpretations linking these “non-canonical” LH functions to
specific neuropeptidergic neural subsets of the LH, specifically
orexin and MCH neurons. The overall aim of this review is
to place a small number of recent studies from the authors’
laboratory in a broader context; for more exhaustive reviews
of the LH the readers are referred elsewhere (e.g., Saper et al.,
2005; Burdakov et al., 2013; Stuber and Wise, 2016; Bracey
and Burdakov, 2020). First, we will review basic physiological
and anatomical properties of these neurons at the cellular and
molecular levels. Second, we will highlight some recent studies
linking temporally defined, brief activity epochs of these neurons
in the awake brain to specific aspects of behavior and cognition.
Finally, we will highlight the many remaining questions,
and present some arguments that orexin and MCH neurons
dynamically shape brain function beyond their canonical roles
in “arousal.”

OREXIN AND MCH CELLS CONTROL
THEIR NEURAL TARGETS VIA
GLUTAMATE/GABA AND PEPTIDE
CO-TRANSMISSION

Orexin neurons are known to be essential for stable wakefulness,
and their loss produces the sleep disorder narcolepsy across
mammalian species (Chemelli et al., 1999; Lin et al., 1999;
Nishino et al., 2000; Thannickal et al., 2000; Bassetti et al., 2019).
MCH neurons have been reported to promote REM sleep (Verret
et al., 2003; Jego et al., 2013), though some studies also conclude
that they can promote NREM sleep (Konadhode et al., 2013).
These sleep/arousal effects of orexin and MCH neurons will not
be discussed here, since they have been the subject of many recent
publications (Ferreira et al., 2017; Bassetti et al., 2019; Burdakov,
2019; Adamantidis et al., 2020).

Orexin and MCH immunoreactivities do not overlap,
implying that these peptides are made by distinct classes of LH
neurons (Broberger et al., 1998; Peyron et al., 1998; Mickelsen
et al., 2017). The two cell types are also thought to have opposing
roles on arousal, and correspondingly often show reciprocal
activity profiles in vivo and in brain slices, and are differentially

modulated by some indicators of body energy status, such as
glucose (Hassani et al., 2009; Karnani and Burdakov, 2011;
Apergis-Schoute et al., 2015; Kosse et al., 2015; Burdakov and
Adamantidis, 2020). However, in many other ways, the two
cell types are similar. They both project their axons widely
throughout the brain, with innervations not only of regions
regulating arousal and reward, but also many other aspects of
cognition and motor control (Peyron et al., 1998; Bittencourt,
2011; Gonzalez et al., 2012; Jego et al., 2013). Both cell types
also receive brain-wide monosynaptic innervations (Gonzalez
et al., 2016a). The specific G-protein coupled receptors (GPCRs)
for orexin and MCH are expressed equally widely in the
brain, with only some differences, and the distribution of the
receptors generally (but not always) mirrors that of projections
(Saito et al., 2001; Sakurai, 2007). Orexin binding to orexin
GPCRs is rapidly coupled to depolarization and excitation of
neuronal plasma membranes, due to activation of non-selective
cation channels and/or Na+/Ca2+ exchangers (Eriksson et al.,
2001; Burdakov et al., 2003; Burdakov, 2004; Kukkonen and
Leonard, 2014). MCH binding to MCH GPCR has less clear
electrical effects, but has been linked to control of glutamate
receptor expression and function, or to control of presynaptic
transmitter release (Gao and van den Pol, 2001; Wu et al., 2009;
Pachoud et al., 2010).

In addition to orexin and MCH peptides, both neural types
express the classic “fast” neurotransmitters. For orexin neurons,
many histological and functional studies agree that their fast co-
transmitter is mostly glutamate (Schöne and Burdakov, 2012).
Indeed, when orexin neurons are optogenetically stimulated,
the postsynaptic electrical excitation involves both glutamatergic
and orexinergic components, which can be pharmacologically
dissociated at both intrahypothalamic (Schöne et al., 2012,
2014) and extrahypothalamic (Sears et al., 2013; Blomeley et al.,
2018) projection targets. Orexin receptor -mediated postsynaptic
excitation gradually “ramps up” during steady-rate orexin neuron
stimulation, and this ramping has been proposed to be an
outcome of temporal integration of presynaptic input, which – in
the context of feedback loops of which orexin neurons are part –
reveals a potential computational mechanism (formally known as
integral feedback control) for wakefulness stability implemented
by the orexin system (Kosse and Burdakov, 2014; Schöne et al.,
2014; Schone and Burdakov, 2017).

For MCH neurons, the nature of their fast co-transmitter
is more controversial. Molecular screens identify markers for
both GABA and glutamate in MCH cells (Del Cid-Pellitero and
Jones, 2012; Chee et al., 2015). Optogenetic stimulation of MCH
cells produces GABAergic outputs inside the hypothalamus, but
glutamatergic outputs in other brain areas (Jego et al., 2013;
Chee et al., 2015). The possibility remains that there may be
distinct subsets of GABAergic and glutamatergic MCH cells is
being explored, but there is not yet a clear logic for how this
is arranged in the brain. Overall, despite clear evidence for
intra- and extrahypothalamic functional neural circuits made
by orexin and MCH neurons (Apergis-Schoute et al., 2015;
Kosse et al., 2017; Kosse and Burdakov, 2019; Adamantidis
et al., 2020; Burdakov, 2020), at the multiple projection targets
of orexin and MCH neurons in the brain, the relative roles
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of their peptide and small-molecule neurotransmitters remain
incompletely understood overall.

OREXIN NEURON DYNAMICS
UNDERLYING SENSORIMOTOR
CONTROL AND SPATIAL EXPLORATION

Brain slice patch clamp recordings from orexin neurons show
that they can intrinsically generate tonic firing in a regular,
pacemaker-like manner (van den Pol et al., 1998; Li et al.,
2002; Eggermann et al., 2003; Yamanaka et al., 2003b; Burdakov
et al., 2004, 2005; Williams et al., 2007, 2011; Gonzalez et al.,
2009b; Williams and Burdakov, 2009; Schöne et al., 2011).
In vitro, this intrinsic activity can be slowly modulated by
specific nutrients, gasses, and neuromodulators (Li et al., 2002;
Yamanaka et al., 2003a; Williams et al., 2007; Gonzalez et al.,
2008, 2009a,c; Karnani et al., 2011a,b; Carus-Cadavieco et al.,
2017). However, the activity dynamics of orexin neurons in vivo
change much more rapidly than in brain slices, likely reflecting
the brain-wide neural inputs that they receive (Gonzalez et al.,
2016a). Orexin cell activity of awake rodents responds to sensory
stimuli on a subsecond timescale, and this activation correlates
with muscle/EMG activation and movement (Lee et al., 2005;
Mileykovskiy et al., 2005; Takahashi et al., 2008; Gonzalez et al.,
2016a,b; Hassani et al., 2016; Burdakov and Peleg-Raibstein,
2019). In this section, we review some emerging roles of
this awake orexin cell activity, focusing on a small selection
of recent studies.

Recent orexin neural network imaging at cellular resolution
indicates that the rapid dynamics of orexin cells during
wakefulness appears to be a property of most orexin cells.
2-photon calcium imaging of >300 orexin neurons during

locomotion reveals that the majority (around 70%) of orexin
neurons activate around initiation of running bouts (Karnani
et al., 2020; Figure 1). Optogenetic evidence indicates that this
peri-initiation activity of orexin cells appears to be causally
linked to locomotion initiation. Optogenetic excitation of orexin
cells at frequencies resembling their natural in vivo firing
(Lee et al., 2005; Mileykovskiy et al., 2005), produces frequency-
dependent running (Karnani et al., 2020). In turn, optogenetic
inhibition of orexin neurons makes both sensory-evoked and
self-paced running less likely (Karnani et al., 2020).

These experiments supply causal evidence for a role of
orexin neurons in rapid sensorimotor control in the awake
brain (Karnani et al., 2020). This augments the previous
conceptualization of orexin neurons as slow modulators of
sleep states. While previously orexin neurons were known to
display rapid sensory responses in vivo (Mileykovskiy et al., 2005;
Gonzalez et al., 2016a,b; Hassani et al., 2016), until the study
of Karnani et al. (2020), the causal role of these rapid activity
changes was unknown. The finding that subsecond sensory
dynamics of orexin cells produces rapid locomotor control,
which is not entirely dissimilar to cortical-mediated sensorimotor
transformations (Ferezou et al., 2007; Svoboda and Li, 2018),
clarifies why orexin cells may need to update their awake activity
on a subsecond timescale. However, the downstream mechanisms
underlying the fast sensorimotor control by orexin cells, such
as the postsynaptic CNS regions responsible and the roles of
co-released orexin vs. glutamate, remain unknown at present.

Another recent study examined the role of the awake activity
of orexin neurons by optogenetic silencing of this activity during
self-paced spatial exploration in awake mice (Garau et al., 2020).
Optosilencing of orexin cells caused mice to spend more time in
the silencing-associated place in real-time place preference tests,
where the cells are optosilenced in video-controlled closed-loop

FIGURE 1 | Orexin neural ensemble dynamics underlying running initiation. (A) 2-photon volumetric imaging of multiple orexin neurons in head-fixed mice running on
a treadmill. (B) Orexin cell activity profiles aligned to onset and offset of self-initiated running bouts. Source: Karnani et al. (2020).
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FIGURE 2 | Role of natural orexin cell activity in spatial avoidance.
Optogenetic silencing (“LASER ON”) of orexin-ArchT neuron in one half of
exploration arena causes mice to spend more time in that half. Source: Garau
et al. (2020).

based on the spatial position of the animal in the experimental
arena (Garau et al., 2020; Figure 2). In turn, constant orexin
cell silencing in arenas containing regions that are aversive
for mice (exposed or bright-illuminated regions) caused mice
to increase their self-paced entries into these aversive regions
(Garau et al., 2020). It is important to note that these are short-
lasing experiments, typically taking a few minutes, during which
the mouse is actively exploring the cage and does not enter sleep
(at least not the kind of sleep where the animal cannot walk).
Together with similar studies involving optogenetic stimulation
of orexin cells (Giardino et al., 2018), this suggest that “awake”
orexin cell activity may create an aversive brain state that drives
the animal to move while avoiding potentially dangerous places
(Burdakov, 2019, 2020; Garau et al., 2020). We note that viewing
the orexin system as a “stress/aversion” system is, in our opinion,
not contradictory to viewing it as a “reward-seeking” system
(Harris et al., 2005; Harris and Aston-Jones, 2006), because
reward-seeking is often driven by reward-deficit (i.e., stress), and
so a “stress” neural signal would be expected to drive reward
seeking [this point has also been made well by others, notably
(Boutrel et al., 2005)].

Optogenetics-assisted circuit mapping and combinatorial
chemogenetic and pharmacological experiments in vivo suggest
that downstream, such actions of orexin neurons may involve
orexin projections to action-selection control regions such as
the nucleus accumbens (Blomeley et al., 2018); and upstream –
inputs from food-seeking control neurons such as hypothalamic
Agrp neurons (Garau et al., 2020). The extent to which orexin
neuropeptide vs. coreleased glutamate contributes to this is
not entirely clear. However, optogenetic stimulation of orexin
cells suggests that, in D2 neurons of accumbens shell, the
postsynaptic excitation induced by orexin axon firing is mediated

predominantly by orexin rather than glutamate transmission
(Blomeley et al., 2018). Furthermore, local infusion of orexin
peptide into the accumbens shell triggers increased place aversion
consistent with the role of accumbal orexin actions in this process
(Blomeley et al., 2018). Considering that there is evidence from
orexin cell recordings that orexin neurons activity increases when
the animal finds itself in a potentially aversive place (Garau
et al., 2020), orexin cells may thus be a part of behavioral
control loop that creates optimal brain states for increased
locomotion and reduced risk-taking in response to sensory
evidence. Interestingly, the same or overlapping dopaminergic
circuits have been also proposed to play a role in sleep/wake
control (Lazarus et al., 2013; Eban-Rothschild et al., 2016;
Chowdhury et al., 2019; Yu et al., 2019).

MCH NEURON DYNAMICS UNDERLYING
AWAKE EXPERIENCES AND
SUBSEQUENT MEMORIES

Based on pioneering electrophysiological recordings from a small
number of MCH neurons in head-fixed rats (Hassani et al.,
2009), for some time it was thought that these cells are only
active during sleep. These activity of MCH cells during sleep
was subsequently linked to sleep-state switching (Jego et al.,
2013), and more recently to memory regulation during REM
sleep (Izawa et al., 2019). However, in 2016, it was discovered
through fiber photometry recordings of MCH cell populations
that these cells are also active during awake behavior (Gonzalez
et al., 2016a), in line with previous reports of sensitization of
locomotion to psychoactive drugs in MCH or MCH receptor
deficient mice (Smith et al., 2005; Tyhon et al., 2006; Pissios
et al., 2008; Whiddon and Palmiter, 2013; Chee et al., 2019).
Mouse MCH neurons appeared to generate large activity bursts
during self-paced awake exploration of novel objects (Gonzalez
et al., 2016a; Blanco-Centurion et al., 2019). In this section, we
review two studies focusing on elucidation of the function of
these awake, context-specific waves of MCH neuronal activity,
carried out using temporally targeted reversible optosilencing of
this activity in behaving mice.

The first study carried out video-controlled closed-loop
optogenetic silencing of MCH cell activity waves associated with
self-paced exploration of novel objects (Kosse and Burdakov,
2019). Importantly, large MCH activity waves were associated
with exploration of novel but not familiar objects, consistent
with novelty representations (Kosse and Burdakov, 2019;
Figures 3A,B). The MCH cell optogenetic silencing, selectively
during the moments of object memory encoding, disrupted
later recognition of the encountered objects, suggesting that
MCH cell activity during novel object exploration is required
for formation and later expression of object recognition memory
(Kosse and Burdakov, 2019; Figures 3C,D). Channelrhodopsin-
assisted circuit mapping in brain slices, and chemogenetic
and pharmacological experiments in vivo, revealed that MCH
neurons are under inhibitory GABAergic control by local LH
GAD65 neurons (Kosse and Burdakov, 2019). Optogenetic
silencing of the LH GAD65 neurons during novel object
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FIGURE 3 | Role of exploration-associated MCH cell activity in object recognition memory. (A) Schematic of MCH-GCaMP recording aligned to self-paced object
exploration. (B) MCH cell activity associated with exploration of novel (but not familiar) objects. (C) Schematic of MCH-ArchT cell silencing selectivity during
self-paced object exploration. (D) No object recognition after MCH cells were silenced upon the earlier object exploration. Source: Kosse and Burdakov (2019).

investigations augmented subsequent object recognition, and
this augmentation was blocked by MCH receptor antagonist
(Kosse and Burdakov, 2019).

These findings suggest that mice fail to recognize objects
unless their MCH cell activity “marks” prior encounters with the
objects, and that a GAD65→MCH LH circuit shapes the size
of the memory-formation-gating MCH cell activity. The object
recognition memory investigated in this study is important for
normal life of mammals (Winters et al., 2008; Broadbent et al.,
2010). Earlier molecular and pharmacological studies linked
MCH neuropeptide action to avoidance memory (Adamantidis
and de Lecea, 2009; Pachoud et al., 2010) but contained no
information about when MCH cell activity influences memory,
nor how memory-gating MCH signals are controlled at the circuit
level. Kosse et al., thus supplied causal evidence for the role of
awake, object-exploration-associated MCH cell activity signals in
object recognition memory formation. Importantly – considering
earlier reports linking MCH cell deficiency to hyperlocomotion
(Shimada et al., 1998; Whiddon and Palmiter, 2013) which may
affect novel object exploration time – the study of Kosse et al.,
monitored and controlled the total time that mice spent with
novel object, indicating that the effects of MCH cell optogenetic
manipulations could not be explained simply by changes in the
duration of sensory exposure to the object.

The second study probing the function of MCH neural
signals during wakefulness was motivated by evidence, from fiber
photometry LH recordings, that MCH neurons are activated
by fear-inducing aversive events, namely electrical foot-shocks
(Concetti et al., 2020). Optogenetic silencing of footshock-
associated, brief MCH cell activation in awake mice produced a
surprising deficiency in subsequent cued fear extinction. After
acquiring fear of footshocks which were associated with auditory
tones (associative fear learning), mice were exposed to fear-
eliciting tones without the footshocks (safety learning), which
normally leads to suppression of fear behavior (i.e., freezing in
response to the tones) known as fear extinction. The optogenetic
disruption of footshock-associated MCH cell activity profoundly
impaired subsequent safety learning, significantly slowing down
fear extinction and augmenting fear relapse (Concetti et al.,
2020; Figure 4). Importantly, the MCH cell silencing in this
study did not disrupt fear learning or related sensory responses,
implying that MCH cell activity differentially controls safety
and fear learning. While it has been early suggested that MCH
neurons can modulate a number of learnt and innate behaviors
as well as synaptic plasticity, no evidence previously existed
that MCH cells are involved in extinction of cued fear behavior
(Shimada et al., 1998; Adamantidis et al., 2005; Adamantidis
and de Lecea, 2009; Guyon et al., 2009; Pachoud et al., 2010;
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FIGURE 4 | Role of MCH neuron activity during fear conditioning in cued fear extinction. (A) MCH-GCaMP population dynamics during auditory fear conditioning
(blue, tone; red, footshock). (B) Effect of MCH-GCaMP cell silencing during conditioning (green squares) on subsequent cued fear extinction, Top row, schematic of
experiment; Bottom row, corresponding fear behavior. Source: Concetti et al. (2020). *p < 0.05; ns, p ≥ 0.05.

Bittencourt, 2011; Conductier et al., 2013; Jego et al., 2013; Noble
et al., 2018, 2019; Izawa et al., 2019; Kosse and Burdakov, 2019).
The study of Concetti et al. (2020) proposed that MCH neurons,
and specifically their activity during early stages of associative
memory formation, normally serve as a neural substrate for
inhibition of overactive fear behavior.

While many details of the two studies differ (Kosse
and Burdakov, 2019; Concetti et al., 2020), their conceptual
conclusions can be considered similar: during early “sensory
experiencing” stages of memory acquisition in awake mice, the
activity of MCH neurons determines whether the memory is
properly behaviorally expressed later on. We do not think that
these memory functions MCH neurons are in contradiction
with a role in MCH neurons in forgetting recently proposed
by Izawa et al. (2019). This is because the studies of Kosse
et al., and Concetti et al., addressed the function of MCH
cell activity waves during specific stages of wakefulness. In
contrast, Izawa et al. (2019) attribute their findings to MCH
cell activity during sleep, and wake and sleep – active MCH

cells may be different subpopulations. In addition, Izawa et al.
(2019) and Concetti et al. (2020) analyzed different aspects of
fear memory, initial cued fear responses and fear extinction,
respectively, and the overlapping aspects of the two paradigms
produced similar results (unaltered initial cued fear responses) in
the two studies.

How the transient awake signals on MCH neurons achieve
these effects on memory is not yet clear. A number of cellular
mechanisms have been suggested for how a transient wave
of neural activity can induce a lasting transformation in the
potential for future memory-related synaptic alteration, e.g.,
the synaptic tagging hypothesis (Redondo and Morris, 2011).
At the anatomical and molecular levels, MCH cell axons and
MCH receptors have been reported brain-wide, in multiple
regions postulated linked to memory processing such as the
hippocampus and cortex (Bittencourt, 2011; Jego et al., 2013),
where MCH peptide signaling has been proposed to alter
synaptic plasticity thus making memories more likely to form
(Adamantidis and de Lecea, 2009; Pachoud et al., 2010).
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In the case of object recognition memory formation (Kosse and
Burdakov, 2019), MCH cell signals may thus open “temporal
windows” of synaptic state alteration during which synaptic
weight changes (the cellular correlate of long-term memories)
are more likely to form. In the case of fear conditioning and
safety learning (Concetti et al., 2020), it is thought that during
the few minutes when a new fear-association is formed the
memory consolidation process is labile (McGaugh, 2000; Dudai
et al., 2015). Therefore, the optogenetic disruption of MCH
cells during fear conditioning might promote over-consolidation
(Pitman, 1989) and strengthen the aversive memory, thus
impairing extinction.

EMERGING CONCEPTS, UNANSWERED
QUESTIONS, AND “AROUSAL”
ARGUMENTS

The studies reviewed above, including some with direct
confirmation of global brain state by EEG/EMG recordings
(Mileykovskiy et al., 2005) make it clear that both orexin and
MCH neurons are active outside sleep. Causal evidence is
beginning to emerge that this awake activity of the LH governs
fast and slow aspects of decision-making, sensorimotor control,
and memory dynamics (Bracey and Burdakov, 2020; Burdakov
and Peleg-Raibstein, 2020). Several key questions remain, three
of which we briefly highlight here.

First, are the awake actions of orexin and MCH
neurons mediated by the neuropeptides they release or by
GABA/glutamate that they also co-release? This has been
addressed, in some cases, by orexin/MCH receptor antagonists,
where the data imply that some memory-modulating effect
of MCH neurons and exploration-guiding effects of orexin
neurons, indeed rely on these neuropeptides (Blomeley et al.,
2018; Kosse and Burdakov, 2019). In many other cases, however,
the answer is not known, for example in the case of rapid control
of movement by orexin neuron dynamics (Karnani et al., 2020).

Second, are “sleep-active” and “wake-active” orexin/MCH
neurons the same or different neural subpopulations? This
question has been technically difficult to answer, because this
requires recordings of neural ensembles across brain states.
However, in the LH, this is now achievable using GRIN
lenses combined with head-mounted miniscopes or 2-photon
microscopy (Blanco-Centurion et al., 2019; Karnani et al.,
2020). For orexin neurons, such data clearly implies that most
of these cells are active during wakefulness (Karnani et al.,
2020). It remains to be determined whether there is a smaller
subpopulation of orexin cells that is active during sleep and
in particular during sleep-state transitions. For MCH neurons,
some studies indicate that a major subset of cells that are active
during REM sleep are also active during awake exploratory
behavior (Blanco-Centurion et al., 2019), but others argue that
REM and wake active MCH cells are separate (Izawa et al.,
2019). This question awaits more thorough investigation. The
results of these investigations would need to be integrated with
knowledge of projection targets of the LH cells, which may be
distinct even within one genetically defined cell type [e.g., for

orexin neurons: (Espana et al., 2005; Harris and Aston-Jones,
2006; Iyer et al., 2018), but see (Gonzalez et al., 2012)], as well
as with co-transmitter and postsynaptic receptor combinations
that may differ at different projection sites (Li and van den
Pol, 2006; Sakurai, 2007; Baimel et al., 2017). Ultimately, it
will be important to know the input-output circuits of all
subpopulations of orexin and MCH neurons. In this regard,
parallels to the noradrenergic neurons of the locus coeruleus
might be interesting: although the projections of these cells
have been originally thought to be diffuse and non-specific,
recent research highlighted considerable subcircuit selectively
and projection-specific postsynaptic effects (Schwarz et al., 2015;
Uematsu et al., 2015; Aston-Jones and Waterhouse, 2016).

The third question, which is invariably raised at conferences
and in article peer-reviews related to this topic, and relates to
the title of this review, is of a more conceptual nature. It can be
summarized as follows: are actions of orexin and MCH during
sleep and wake fundamentally the same, and related to impact
of these cells on “arousal”? For example, when orexin cells are
optogenetically stimulated, do mice run more not because orexin
cells are directly involved in motor control, but because mice
are more awake/aroused? When MCH cells are active during
object investigation, do mice then remember the object better
not because MCH cells directly control fundamental molecular
underpinnings of memory gating, but because MCH cells make
mice more aroused and so better able to “take in” the object?

This question can be contemplated at two levels, by
considering specific experimental observations, or by considering
our definitions of “arousal.” To the best of our knowledge,
there is little evidence that MCH neurons promote arousal, only
that they promote sleep (Verret et al., 2003; Jego et al., 2013;
Konadhode et al., 2013). “Increased arousal” thus seems an
unlikely explanation for memory-acquisition-enhancing effects
of transient MCH cell activity waves reported during novel
awake experiences (Kosse and Burdakov, 2019; Concetti et al.,
2020). There is evidence, however, that orexin neurons promote
most aspects of arousal (Williams and Burdakov, 2008; Kuwaki,
2011; Mahler et al., 2014). However, in order to integrate the
finding of rapid (subsecond) sensorimotor control by orexin
neurons (Karnani et al., 2020) into their broader brain function,
a scientific definition of “arousal” should be considered and
agreed on. To the best of our knowledge, there is currently no
scientific definition of “arousal,” and this could be a key cause of
confusions and arguments in classifying neural roles as arousal or
otherwise. A consensus on the operational definition of arousal in
rodent studies, for example using measures such as pupillometry,
is badly needed.

The classification of neural effects as “arousal effects” requires
a specific temporal or anatomical definition of arousal, which
seems to be largely missing from the current literature. The speed
of orexin cell excitation by external stimuli can be as short as
34 ms, and orexin cell electrical excitation can cause movements
as rapidly as 300 ms (Karnani et al., 2020). Consistent with this,
there is evidence for direct control by orexin neurons of primary
motor neurons in the spinal cord (Yamuy et al., 2004). If this
still means that all actions of orexin neurons can be explained
by calling them “arousal neurons,” then one may argue that
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neurons typically classified as sensorimotor controllers (e.g., in
basal ganglia as well as motor cortex neurons) are all “arousal
neurons.” Alternatively, orexin neurons can be added to the
growing list of motor control neurons in the brain (Svoboda
and Li, 2018). Indeed, there are great similarities between
motor roles of orexin and dopamine systems. For example,
da Silva et al., find that midbrain dopamine neurons mediate
self-initiated locomotion, and have a variety of activity profiles
during action initiation, with some neurons turning off and
some on, i.e., the same as observed for orexin cells (da Silva
et al., 2018; Karnani et al., 2020). Like orexin neurons, the
striatal movement-control neurons activate before self-initiated
actions (Cui et al., 2013). A coherent conceptual progress in
this field may need a modernization of terminology referring

to different timescales at which brain signals are coupled
to behavior.
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