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a b s t r a c t

The genomic era has revolutionized research on secondary metabolites and bioinformatics methods have
in recent years revived the antibiotic discovery process after decades with only few new active molecules
being identified. New computational tools are driven by genomics and metabolomics analysis, and en-
ables rapid identification of novel secondary metabolites. To translate this increased discovery rate into
industrial exploitation, it is necessary to integrate secondary metabolite pathways in the metabolic
engineering process. In this review, we will describe the novel advances in discovery of secondary
metabolites produced by filamentous fungi, highlight the utilization of genome-scale metabolic models
(GEMs) in the design of fungal cell factories for the production of secondary metabolites and review
strategies for optimizing secondary metabolite production through the construction of high yielding
platform cell factories.
© 2017 Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Microbial secondary metabolites are widely exploited for their
biological activities to ensure the well-being of humans. Secondary
metabolites are used as antibiotics, other medicinals, toxins, pes-
ticides, and animal and plant growth factors [1]. Although the
antibiotic effects of certain molds have been reported earlier, it was
nications Co., Ltd.

er B.V. on behalf of KeAi Commun
Flemings' persistence in the usability of the antimicrobial activity of
penicillin, which initiated what is known as the golden era of
antibiotic discovery [2]. Despite the fungal origin of penicillin,
produced by several members of the Penicillium genus [3], most
research on secondary metabolites has focused on bacteria, mainly
soil isolates of actinomycetes with the majority of compounds
originating from the Streptomyces genus [4]. Some of the pioneer-
ing work that paved theway for antibiotic discovery was conducted
by Nobel laureate SelmanWaksman, who's systematic screening of
Streptomyces isolates, led to the identification of several antibiotics,
including streptomycin and neomycin which have found extensive
applications in the treatment of infectious diseases. However, to
ications Co. This is an open access article under the CC BY-NC-ND license (http://
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ensure translation of these findings for commercial production it
was necessary with further product optimization and fermentation
characterization of microbial physiology, and this resulted in the
birth of industrial microbiology as a discipline, with Arnold Demain
as one of the founding fathers.

Today we know that although most living organisms can pro-
duce secondary metabolites, the ability to produce them is un-
evenly distributed. Among all known microbial antibiotics and
similar bioactive compounds (altogether 22,500), 45% are from
actinomycetes, 38% are from fungi and 17% are from unicellular
bacteria [4]. Among this wealth of compounds, only about a hun-
dred are in practical use for human therapy, with themajority being
derived from actinomycetes [4]. However, it is worth mentioning
that in addition to penicillin, several other fungal secondary me-
tabolites have successfully reached the pharmaceutical market,
including cholesterol lowering statins [5], the antifungal griseo-
fulvin [6] and the immunosuppressant mycophenolic acid [7].

Biosynthesis of secondary metabolites takes place from a
limited number of precursor metabolites from the primary meta-
bolism (Fig. 1). In fungi, these precursors are mainly short chain
carboxylic acids (e.g. acetyl-CoA) or amino acids, which are linked
together by backbone enzymes such as polyketide synthases
(PKSs), non-ribosomal peptide synthetases (NRPSs), dimethylallyl
tryptophan synthetases (DMATSs) or terpene cyclases (TCs). The
resulting oligomers are then subject to chemical modification by
tailoring enzymes which are often controlled under common
transcriptional regulation as the backbone enzyme [8]. A hallmark
trait of the genes involved in a secondary metabolite pathway is
that they, in most record cases, physically cluster in the chromo-
some in biosynthetic gene clusters (BGCs) [9].

The characteristic clustering of genes as well as the conserved
motifs of backbone genes can be exploited for computational
detection of BGCs from sequence data. Tools like SMURF [10],
antiSMASH [11], PRISM [12] and SMIPS/CASSIS [13] utilize these
features to reliably and with a high accuracy detect BGCs of known
compound classes in fungi. Other algorithms detects BGCs without
relying on specific motifs or the presence of backbone genes, which
enables identification of BGCs beyond PKS, NRPS, DMATS and TCs
[14e17]. Tools and implementations of BGCmining algorithms have
been extensively reviewed [18e23].

A limitation of secondary metabolite production is the low
yields that are naturally achieved in most microbes, partly since
many secondary metabolites are favored under suboptimal growth
Glucose

Pyruvate Acetyl-CoA

Pyruvate

TCA cycle

M
it
oc
ho
nd
ri
on

PPP
NADPH

NADP+

Central metabolis

AAs

ATP

ET
C

ADP

NADPH
ATP

NADPH
ATP

Fig. 1. Biosynthesis of secondary metabolites from precursors of the central carbon metaboli
Acid. AAs: Amino Acids.
conditions [8,24] and because their biosynthesis compete with
essential pathways of metabolism, involved in growth related
processes (Fig. 1). Applying metabolic engineering to circumvent
these limitations can be greatly assisted by utilization of the
mathematical representation of metabolism in genome-scale
metabolic models (GEMs), which concepts and applications have
been reviewed elswhere [25e27]. These models, however, often
neglect secondary metabolite biosynthesis, hence their potential in
studying secondary metabolism has not been fully tapped. Addi-
tionally, with the efficient gene editing tool CRISPR-Cas9 being
developed for a number of fungal model organisms [28e30], a great
potential exists for implementing the necessary genetic modifica-
tions for the development of improved secondary metabolite pro-
ducers. In this review, wewill describe methods for linking BGCs to
compounds and show how metabolic modeling can aid in trans-
lating the improved secondary metabolite discovery rate into
metabolic engineering strategies for the development of fungal
platform strains for the production of secondary metabolites.

2. Linking BGCs to compounds

In order to industrially exploit secondary metabolites for pro-
duction, it is a major advantage to know the genetic basis of the
biosynthesis. This allows for employing metabolic engineering
strategies for optimizing the production performance of an or-
ganism and making the process economically feasible [31]. Among
the known secondary metabolites, the vast majority have not had
their biosynthetic mechanisms elucidated or linked to a BGC, and
are commonly referred to as orphan compounds. Understanding
the genetic foundation of secondary metabolite biosynthesis
further allows for redesigning the pathways to produce novel
compounds [32], as previously shown by widening the product
portfolio of b-lactam antibiotics from the penicillin pathway of
Penicillium chrysogenum [33]. Genome sequencing combined with
genome mining, strongly facilitates the process of connecting BGCs
to compounds (Fig. 2) and a number of computational tools have
been developed to specifically address this challenge either from a
targeted or untargeted approach, or by using metabolomics.

2.1. Targeted approaches

A simple approach, for identifying the BGC of a target compound
is to compare the number of similar BGCs between two or more
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Fig. 2. Work flow for the integration of secondary metabolite pathways in genome-scale metabolic models (GEMs) based on genomics and metabolomics data. In the top layer, the
genome sequence is being mined for the identification of biosynthetic gene clusters (BGCs), metabolomics analysis of culture extract is used for identification of produced secondary
metabolites, while GEMs can be reconstructed from an annotated genome. In the second layer, detected BGCs are connected to detected compounds using e.g. by mass spectrometry
data. This allows for experimental characterization of the pathways, which then can be implemented in the GEMs and analyzed for improved production performance.
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species producing the compound, to narrow down the number of
candidate BGCs, which could be responsible for the biosynthesis.
Combining this with retro-biosynthetic analysis, which aims at
deducing which enzymes and precursors that are likely responsible
for the biosynthesis of a given compound, has proved effective in
the identification of the genomic loci responsible for production of
several secondary metabolites in fungi [34e36]. Similarly, for an
orphan compound, a high similarity to another compound which
has been connected to a BGC, can be used for homology search of a
similar BGC in the target genome [37].

In some cases, BGCs contain a resistance gene encoding a variant
of the enzyme targeted by the pathway product, which is not
susceptible to inhibition [38e40]. This feature was utilized to
identify the BGC responsible for mycophenolic acid production in
P. brevicompactum, by searching for a resistance gene of the
mycophenolic acid target, IMP dehydrogenase [41]. Later the
pathway product of the inp BGC in Aspergillus nidulans was pre-
dicted to be a proteasome inhibitor, based on the presence of a gene
encoding a proteasome subunit in the BGC. The inp BGC was pre-
viously shown to be silent [42], but targeted promoter exchange of
gene cluster members enabled the expression and isolation of the
proteasome inhibitor fellutamide B [43], and these results implied
that resistance-gene-guided genome mining can be broadly
applied in fungi, as previously demonstrated in bacteria [44].
2.2. Untargeted approaches

Untargeted approaches can be used to assess the entire
biosynthetic potential in one or more genomes, by correlating all
detected BGCs to databases which links BGCs and compounds.
Databases containing fungal BGCs include clustermine360 [45],
(297 BGCs), IMG-ABC [46] (2489 BGCs) andMIBiG [47] (1393 BGCs).
Recent efforts to increase the number of fungal BGCs in the MIBiG
database used text mining to add an additional 197 fungal BGCs to
the database [48]. However, reflecting the literature, the number of
fungal BGCs in the databases comprises only a fraction of the total
number of BGCs, which are mainly of bacterial origin. Assessing the
similarity between BGCs and grouping them into gene cluster
families e.g. with the scope of mapping newly sequenced BGCs to
database entries is not straight forward due to the large size of
BGCs, inaccurate definition of boundaries, re-arrangements, and
potential presence of non-relevant genes. Some approaches for
grouping BGCs have used conserved motifs such as KS and C
domain similarity of PKSs and NRPSs [49], number of shared PFAM
domains between BGCs [16] or a combination of three different
similarity metrics [50]. None of these algorithms, however, were
originally developed for comparing BGCs of fungal origin.

Employing mining of BGCs to study the shared and unique
features between species, has only been exploited to a limited
extent in fungi [15,51e54]. These studies however, have mainly
concerned few species. In contrast, a number of studies have con-
cerned the comparison of BGCs between hundreds of bacterial
species [16,50,55e57], which have led to a characterization of the
diversity of BGCs in prokaryotes. Future work should compare
secondary metabolism at genus or phylum level in fungi in order to
identify global features of secondary metabolism as well as facili-
tate the discovery of novel compounds.
2.3. Metabolomics approaches

Metabolomics can be utilized to connect mass spectrometry
(MS) detected compounds to their corresponding BGCs in a
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sequenced genome. This approach was first developed using pep-
tidogenomics [58], where tandem MS was used to capture an
amino acid sequence tag, from the fragmentation of a given peptide
natural product. The sequence tag represents part of a complete
peptide, and can be deduced based on the mass shift pattern, and
subsequently screened against predicted substrate specificities of
NRPSs, obtained from tools such as antiSMASH [59] and
NP.searcher [60]. Later Pep2Path [61] was developed to automatize
the detection of BGCs responsible for the amino acid sequence tags
based on a Bayesian probabilistic scoring algorithm. MS-guided
discovery of secondary metabolites has been further extended to
glycosylated compounds [62], as well as specific tools for non-
ribosomal peptides (NRPs) [63] and ribosomally synthesized and
posttranslationally modified peptides (RiPPs) [64].

Recently a pipeline for directly connecting BGCs to a database of
known secondary metabolites was published [65]. The pipeline
combines three different tools; PRISM [12] for BGC mining and
prediction of substrates of PKSs, NRPSs and PKS-NRPSs; GRAPE [65]
which automates the process of retro-biosynthesis of polyketides
(PKs), NRPs and their hybrids; and GARLIC [65] which compares the
substrate predicted by PRISM with the building blocks predicted
from the retro-biosynthesis by GRAPE, and hence can assess
whether the activity of a backbone enzyme could be responsible for
the synthesis of a given compound. The authors tested the pipeline
by identifying 16,831 PKS, NRPS and PKS-NRPS BGCs from public
data using PRISM, which they compared against a database of
48,222 compounds. Based on known BGC metabolite relationships
in the databases, a cut-off was determined which enabled the
estimation that 15% of the BGCs had no corresponding product in
the compound database. For validation, a BGC from Nocardiopsis
potens, without a match in the compound database, was targeted
and identified through metabolite profiling. The produced com-
pound was structure elucidated by NMR and indeed proved to be a
novel secondary metabolite [65].

3. Genome-scale metabolic modeling of secondary
metabolism

With the increasing number of fungal genomes being sequenced
[66] and mining strategies for BGC identification being widely
accessible [20], the number of characterized biosynthetic pathways
and newly discovered antibiotics will likely increase rapidly in the
future. To be able to optimize the production of these new com-
pounds, GEMs are useful tools which can aid in the design of
metabolic engineering strategies from a global view of metabolism
(Fig. 2). The foundation of a GEM is the functional annotation of the
genes, and connecting these to the biochemical reactions catalyzed
by the corresponding enzymes, provides a comprehensive sum-
mary of the metabolic capabilities of an organism [67,68]. Appli-
cations of GEMs are manifold, but commonly include topological
network analysis and integration of omics data, or prediction of
phenotypic traits through simulations of metabolism e.g. with the
goal of designing metabolic engineering strategies [69].

The use of GEMs to predict phenotypic characters of microbes
has been successfully demonstrated a number of times [70e73],
and these models serves as a core element of the systems biology
toolbox. Despite their widespread usage, only a limited number of
studies have applied GEMs for investigating the dynamics of sec-
ondary metabolite production in fungi, while more work has
focused on prokaryotic secondary metabolite producers. In recent
years, secondary metabolism has been studied in GEMs of several
actinomycetes [74], including Streptomcyes coelicolor [75e77],
Saccharopolyspora erythraea [78], Streptomyces lividans [79] and
Streptomyces tsukubaensis [80], and the first analysis of secondary
metabolism in a GEM was conducted with the metabolic network
of the antibiotic producer S. coelicolor A3(2) [75]. This S. coelicolor
GEM, included two full pathways of secondary metabolites, the PK
antibiotic actinorhodin and the NRP, calcium-dependent antibiotic,
for which precursor supply was simulated [75]. Later, the network
topology of an A. nidulans GEM was utilized to calculate the
metabolic fluxes based on 13C labeled glucose upon over-
expression of xylulose-5-phosphate phosphoketolases (XPKs) [81].
The analysis suggested that induction of XPKs increase the carbon
flux towards acetyl-CoA, the precursor for PK biosynthesis. In a
follow-up study, the overexpression of XPKs was combined with
the heterologous expression of the PKS 6-methylsalicylic acid (6-
MSA) synthase, to investigate the effects on 6-MSA yields. Tran-
scriptome analysis combined with flux and physiological data
allowed the proposal of an interaction model describing how the
competition between biomass and 6-MSA from the tightly regu-
lated acetyl-CoA node could explain why increased 6-MSA yields
were not observed [82]. Exactly the tight regulation and high
connectivity of acetyl-CoA in fungal metabolism [83] is likely an
important factor why achieving high yields of PKs has proven
challenging. Moreover, since secondary metabolite production is
highly regulated at multiple different levels, i.e. transcriptional
and through epigenetics [8], it is difficult to simulate this part of
metabolism using GEMs which does not take these levels of reg-
ulations into account.

Production of penicillin by thefilamentous fungus P. chrysogenum,
is one of themost successful stories of biotechnology, where Classical
Strain Improvement (CSI) has been used to increase product titers
and productivity by at least three orders of magnitude during 60
years of strain development [84]. Agren et al. (2013) [68] recon-
structed a GEMof the CSI developed penicillin over-producing strain,
P. chrysogenum Wisconsin54-1255, and used flux balance analysis
combined with transcriptome analysis to study metabolic bottle-
necks and the influence of co-factor availability onyields of penicillin.
Although no experimental validation was performed, the authors
suggested increasing NADPH availability as well as modifying
different precursor supplying pathways as potential metabolic en-
gineering strategies for increasing the penicillin production [68].
More recently Praube et al. (2015) applied elementary flux mode
(EFM) analysis on the production of penicillin in a metabolic core
model, derived from the same P. chrysogenum GEM. EFM analysis
allows for the decomposition of the metabolic network into func-
tional units and represent each a minimal set of reactions that can
function at a steady state [85]. A total of 66 EFMs were identified in
the network with the glyoxylate shunt being redundant in the
highest yielding EFMs, hence it was proposed that disrupting this
pathway could result in higher yields of penicillin [86].

An important difference between fungi and bacteria is that
bacteria tend to reach higher product yields, which has been
speculated to be partly because of the increased complexity, due to
the compartmentalization, of metabolism in fungi [87]. In a case
study on the production of higher alcohols, Matsuda et al. [88]
conducted model simulations of the central metabolism of
Escherichia coli and Saccharomyces cerevisiae. The results suggested
that a superior production performance of E. coli could be attrib-
uted to a higher degree of metabolic flexibility compared with
S. cerevisiae, as indicated by the variety of flux distributions taken
by the metabolic networks. The production capability in
S. cerevisiae was improved in silico, by introducing E. coli reactions
in the yeast network [88]. Since secondary metabolite precursors
revolve heavily around central metabolism and in particular acetyl-
CoA, from which many higher alcohols are derived, a similar en-
gineering strategy might also be used for the improvement of
secondary metabolite production.
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4. Development of platform cell factories

In many cases, native producers of secondary metabolites are
not well suited as industrial cell factories, which depend on fea-
tures like growth rate, morphology, substrate utilization, by-
product formation and product formation. Hence, development of
a dedicated plug-and-play platform cell factory for the heterolo-
gous production of secondary metabolites is an appealing thought
from an industrial point of view. Heterologous expression of fungal
secondary metabolite pathways has been successfully achieved in
bacteria, yeast and filamentous fungi [18], and each host offer a
different set of advantages and disadvantages. Independent of
choice, a number of metabolic features influence the production
levels of secondary metabolites and the development of a platform
strain should consider these, which are described below.

A potential host for expression of fungal secondary metabolites
is the yeast S. cerevisiae, which is well-characterized and genetically
tractable [89]. In addition, it serves as a minimal fungal host due to
its limited native secondary metabolism minimizing interference
or competition from other secondary metabolite pathways. Exactly
the competition within secondary metabolism has been indicated
to be a key determinant on production levels of secondary me-
tabolites. Salo et al. [90] compared secondary metabolite produc-
tion in the penicillin over-producer P. chrysogenum DS17690, with a
derived strain, DS68530, which lost its penicillin gene clusters.
They observed that while the derived strain DS68530, had lost the
ability to produce penicillin, the production of other NRPs like
roquefortines/meleagrin and chrysogines were increased. The
explanation was speculated to be caused by a re-direction of ni-
trogen metabolism toward other NRPs [90]. Similar observations
have been reported in bacterial secondary metabolite producing
Streptomyces species, where the knock-out of the main secondary
metabolite producing BGCs resulted in increased titers of native
and heterologous secondary metabolites [91,92].

Precursor and co-factor availability are important limitations for
the production of secondary metabolites. Acetyl-CoA is a key
compound in secondary metabolism and serves as the precursor of
PKs, often through the carboxylated form malonyl-CoA, as well as
terpenes synthesized from isoprene units from the mevalonate
pathway. Additionally, acetyl-CoA is a highly connected metabolite
in the primary metabolism where it is involved in the biosynthesis
of fatty acids and sterols, protein acetylation, energy generation and
is compartmentalized in fungi [83,87]. A number of studies have
attempted to increase acetyl-CoA pools for the production of
chemicals in yeast including fatty acids [93], butanol [94], sesqui-
terpenes [95] and PKs [96].

The model PK 6-MSA, is synthesized from one acetyl-CoA and
three malonyl-CoA and have been heterologously produced in
S. cerevisiae through a 6-MSA synthase from P. patulum and a
PPTase [97]. In an attempt to improve 6-MSA production in such a
strain by increasing precursor availability, acc1, which corre-
sponding enzyme catalyzes the conversion of acetyl-CoA to
malonyl-CoA, was overexpressed from a constitutive promoter and
resulted in a 60% increase in 6-MSA titers [96]. Another study aimed
at preventing the deactivation of Acc1 by AMP-activated serine/
threonine protein kinase (Snf1) upon glucose depletion in a 6-MSA
producing S. cerevisiae strain. The authors introduced an amino acid
substitution in Acc1, preventing phosphorylation and hence deac-
tivation, which resulted in a 2.8-fold increase in 6-MSA titers
compared to the wild type Acc1 strain [98].

A more comprehensive evaluation of metabolic engineering
targets to increase acetyl-CoA availability for PK production was
conducted by Cardenas and Da Silva [99], in S. cerevisiae producing
the plant PK triacetic acid lactone (TAL). Bypassing the native ATP-
dependent conversion of pyruvate to acetyl-CoA, with a bacterial
NADPH generating pyruvate dehydrogenase (PDHm), resulted in
increased TAL titers. The authors further implemented a driving
force for NADPH through acetyl-CoA generation, by eliminating
NADPH formation via a zwf1 deletion in the pentose phosphate
pathway. The resulting strain showed 4.8-fold increased TAL titers.
To increase the cytosolic acetyl-CoA pool, a systematic deletion of
reactions involved in transport of pyruvate and acetyl-CoA into the
mitochondria, was used to identify four gene deletions
(Dpor2Dmpc2Dpda1Dyat2) which when combined and introduced
in the Dzwf1:PDHm strain, resulted in a 6.4 fold increase in TAL
titers, corresponding to 35% of the theoretical yield [99]. Although
the above described studies strongly revolve around engineering
acetyl-CoA metabolism, the supply of other precursors, including
amino acids and co-factors are equally important to consider [100].

Another method to improve secondary metabolite biosynthesis
is promoter exchange to construct an inducible pathway. The native
promoter acvA in A. nidulans, which express the rate limiting
enzyme of the penicillin pathway, was exchanged by an inducible
alcohol dehydrogenase 1 promoter and resulted in a 30-fold in-
crease in penicillin yields [101]. More recently Chiang et al. [102]
developed a system for the heterologous expression of entire
BGCs under control of regulatable promoters, and demonstrated
the use of this to express several A. terreus BGCs in A. nidulans [102].

Since many secondary metabolites are toxic to the host, resis-
tance mechanisms are needed to cope with production. Native
producers have often evolved specific transporters to secrete [103]
or compartmentalize toxic compounds in vesicles [104] or confer
self-protection by producing resistant copies of the target enzyme
of the pathway product (as described above). In the case of heter-
ologous production, resistance mechanisms need to be considered
apart from expression of the biosynthetic genes. This was illus-
trated in the heterologous expression of a putative efflux pump,
mlcE, from the compactin BGC in P. citrinum, whichwas shown to be
a specific transporter, and increased the resistance of S. cerevisiae
towards natural and semi-synthetic statins [105].

Combining the above strategies to engineer a secondary
metabolite deficient fungal platform strain, exhibiting high pre-
cursor supply, for heterologous expression of inducible BGCs, which
confers resistance to potential toxic compounds, could serve as a
high yielding platform for future production of secondary metab-
olites. Moreover, such a strain would be useful in the study of lowly
expressed or cryptic biosynthetic pathways.

5. Perspectives

Bioinformatics tools enable accurate identification of known
and novel BGC classes, and can be utilized in combination with
algorithms parsing metabolomics data for connecting BGCs to
compounds. Despite the bias in data availability and computational
tools towards bacteria, fungi constitute a rich reservoir of phar-
maceutically relevant secondary metabolites. Therefore, it is
important that future work focus on testing the applicability of
developed tools on fungal data, and that the development of novel
algorithms, consider the differences that exists between bacteria
and fungi.

As a consequence of these bioinformatics tools, and the devel-
opment of efficient genetic engineering in fungi such as CRISPR-
Cas9 [28], it is expected that pathways will be elucidated at a
higher pace in the years to come. To maximally profit from this
advancement, GEMs will be important assets for better under-
standing secondary metabolite production and develop metabolic
engineering strategies for optimization. Integration of omics data
such as transcriptomics to identify which BGCs are being expressed
under certain conditions or predict metabolic engineering targets
[77,106], can further aid in understanding how expression of BGCs
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associated with secondary metabolites of interest is controlled.
A major challenge ahead is, however, that the majority of BGCs

are silent under standard laboratory conditions, and efficient pro-
cedures to activate these latent pathways is therefore important in
order to obtain better description of the secondary metabolome of
an organism [107e109]. This will in turn provide researchers with a
greater knowledge base for the selection of computationally iden-
tified fungal BGCs which could be of interest for industrial exploi-
tation. Here breakthroughs in synthetic biology, where it is now
possible to synthesize whole BGCs in a tailored fashion, e.g. with
controllable promoters in front of each of the genes, may address
this challenge, as it will hereby be possible to transfer all BGCs
identified through genome sequencing to a suitable production
host. The benefits of optimizing the metabolism of such a produc-
tion host, such that it is ensured that metabolism is engineered to
efficiently produce all the required precursor metabolites and co-
factors, will hereby become even larger and further accelerate
advancement of the field. The yeast S. cerevisiae can be an optimal
host as it does not produce secondary metabolites endogenously
and therefore have few enzymes that may react with pathway in-
termediates. However, this host may be limited by activities for
proper activation of many of the complex enzymes engaged with
secondary metabolite production, and establishment of clean hosts
where all endogenous BGCs have been removed may therefore be
an attractive alternative.
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