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Transient receptor potential vanilloid 4 (TRPV4) is a non-selective mechanosensitive ion
channel expressed by various macrophage populations. Recent reports have
characterized the role of TRPV4 in shaping the activity and phenotype of macrophages
to influence the innate immune response to pathogen exposure and inflammation. TRPV4
has been studied extensively in the context of inflammation and inflammatory pain.
Although TRPV4 activity has been generally described as pro-inflammatory, emerging
evidence suggests a more complex role where this channel may also contribute to anti-
inflammatory activities. However, detailed understanding of how TRPV4 may influence the
initiation, maintenance, and resolution of inflammatory disease remains limited. This review
highlights recent insights into the cellular processes through which TRPV4 contributes to
pathological conditions and immune processes, with a focus on macrophage biology. The
potential use of high-throughput and omics methods as an unbiased approach for
studying the functional outcomes of TRPV4 activation is also discussed.

Keywords: TRP channels, mechanosensation, macrophage, inflammation, transient receptor potential vanilloid
4 (TRPV4)
INTRODUCTION

Inflammation is an essential defense mechanism generated by the immune system to protect the
body from harmful stimuli or pathogen infection (1). Normally, inflammation is actively resolved to
prevent tissue damage. This tightly regulated process involves the spatially and temporally
controlled production of mediators leading to dilution of chemokine gradients to ensure that
inflammatory responses subside in a timely fashion. Processes which resolve inflammation and
rectify tissue homeostasis include reduction or cessation of tissue infiltration by neutrophils,
apoptosis of spent neutrophils, down-regulation of chemokines and cytokines, macrophage
transformation, and the initiation of healing (2, 3). Disruption of the control mechanisms that
underlie these processes results in prolonged or uncontrolled inflammation, which is associated
with chronic disease including inflammatory arthritis (4), inflammatory bowel disease (5),
pulmonary diseases (6), atherosclerosis (7), foreign body response (8) and fibrosis (9).

The transient receptor potential (TRP) superfamily of ion channels plays important and
emerging roles in inflammatory and immune-mediated diseases (10). One of the best
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characterized members is transient receptor potential vanilloid 4
(TRPV4), which is expressed by immune cells including
macrophages (11–14), neutrophils (15), and dendritic cells.
TRPV4 is a tetrameric ion channel with each subunit
containing 6 transmembrane domains, a pore-forming loop,
and 6 highly conserved ankyrin repeat domains in the
cytoplasmic N-terminus (16). The functional role of TRPV4
and involvement in pathophysiology is most extensively defined
for macrophages (12, 13, 17, 18). TRPV4 is expressed by various
macrophage populations including tissue-resident macrophages
located in the lung, gut, brain, liver, and skin (11–14, 19–21).
Although TRPV4 has long been associated with pro-
inflammatory roles, recent studies propose that TRPV4 activity
can also influence macrophage function to promote the
reduction or resolution of inflammatory damage (12, 13, 22).
This raises a key question: how can a single ion channel regulate
two opposing processes? In this review, we first highlight emerging
evidence for the involvement of TRPV4 as a mechanosensitive
channel in pathological conditions and immune responses, with
a specific focus on macrophages. We then explore how the use of
high-throughput omics approaches could reveal greater insight
into the complex network of cellular pathways associated with
TRPV4 activation.
TRPV4: A POLYMODAL ION CHANNEL
AND KEY EFFECTOR OF RECEPTOR
SIGNALING

TRPV4 was first identified as an osmosensitive channel due to its
activation by hypotonicity (23, 24). It has since been shown to
function as a polymodal non-selective cation channel that can be
activated by a diverse array of stimuli including mechanical stress
(25–28), warm temperature (above 27°C) (29, 30), endogenous
polyunsaturated fatty acids (PUFAs) (31–33) and receptor-
operated signaling (34). TRPV4 integrates cellular responses to
these various stimuli, enabling this channel to influence a broad
range of signaling and associated transcriptional events (11–14,
35–52), as summarized in Figure 1, and previously reviewed in
detail (53).

TRPV4 is activated by hypoosmolarity, shear stress or direct
deflection at cell-substrate contact points. Activation of TRPV4
by cellular indentation or membrane stretch is also commonly
reported (25, 54), although the relative importance and
generality of this mode of gating has recently been questioned
based on electrophysiological studies (27, 28). This suggests that
TRPV4 may only respond directly to specific mechanical cues. It
is also evident that TRPV4 activation by hypotonic conditions
and shear stress can indirectly modulate channel gating via
production of lipid metabolites such as arachidonic acid and
its metabolite 5′,6′-EET. This process requires PLA2 and
cytochrome P450 epoxygenase activity (33, 55), suggesting that
there are parallels between TRPV4 mechanosensitivity and its
function as a receptor-operated channel. For example, G protein-
coupled receptors (GPCRs) can also promote PLA2 and P450
activity to increase production of the same anandamide and
arachidonic acid-derived lipid species. GPCRs, including
Frontiers in Immunology | www.frontiersin.org 2
members of the protease-activated, muscarinic, serotonin, and
histamine receptor families, converge on TRPV4 through lipid
signaling pathways, presumably as a mechanism to amplify
specific signaling and transcriptional events (34). GPCR
signaling can also sensitize and enhance the responsiveness of
TRPV4 to these lipid metabolites by promoting direct
phosphorylation of residues in its cytoplasmic N- and C-
terminal domains by PKA, PKC and Src family tyrosine
kinases (34). TRPV4 is proposed to be a key effector and
‘amplifier’ of sensory afferent nerve signaling. GPCR- and
protein kinase-dependent sensitization of TRPV4 is associated
with increased pain transmission and the peripheral release of
neuropeptides and other mediators that promote neurogenic
inflammation (56).

Recent studies have extended our understanding of how
TRPV4 functions as an effector for receptor signaling and a
broader integrator of mechanical cues in different cell types.
Integrins are ubiquitously expressed transmembrane
mechanoreceptors that are responsible for cell-cell interactions
and cell adhesion (57). In endothelial cells, mechanical strain
activates TRPV4-mediated Ca2+ influx via the b1 integrin-
CD98hc axis, which is hypothesized to occur through a direct,
physical interaction (58, 59). In this model, mechanical strain is
sensed by b1 integrin, which initiates ultra-rapid signal
transduction. The signal is transmitted from the cytoplasmic C
terminus of b1 integrin to the N-terminal cytoplasmic ankyrin
domain of TRPV4 via the transmembrane glycoprotein CD98hc,
resulting in increased channel gating (59) (Figure 1).

Swain et al. have also recently demonstrated that TRPV4 is an
effector protein for other ion channels (60, 61). Shear stress and
mechanical pushing of pancreatic acinar cells indirectly activated
TRPV4 via the fast-inactivating mechanosensitive ion channel
Piezo1 (61). Piezo1 activation initiated a transient Ca2+ influx
followed by a sustained elevation of intracellular Ca2+, an effect
that was inhibited by the TRPV4 antagonist HC-067047 and
mediated by PLA2 (60, 61).

The precise mechanisms involved in the TRPV4-dependent
inflammatory response are not fully understood. However, it is
speculated that changes to the extracellular matrix stiffness
during inflammation can activate TRPV4. Scheraga et al.
reported that TRPV4 is required for expression of dual-
specificity phosphatase 1 (DUSP1) in response to LPS under
pathophysiological matrix stiffness (>8kPa), but not under
subthreshold matrix stiffness (1kPa) (12). DUSP1 is an
inflammatory regulator, which inhibits c-Jun N-terminal
kinases (JNK) and promotes p38 mitogen-activated protein
kinases (MAPK) (12). In addition, calcium influx via TRPV4
also activates calcineurin which promotes nuclear factor of
activated T-cells (NFAT) and nuclear factor kappa B (NF-kB)
expression (62, 63). These studies illustrate an important role for
TRPV4 in LPS-induced macrophage activation. Further detail
outlining the involvement of TRPV4 in phenotypic switch by
macrophages is provided in subsequent sections.

These established and emerging roles of TRPV4 as a key
integrator and amplifier of mechano- and receptor-mediated
signaling have been demonstrated for a range of distinct cell
types including sensory neurons and endothelial cells. This is
January 2022 | Volume 12 | Article 828115
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consistent with the generality of this function and highlights the
associated challenges and opportunities when considering
TRPV4 signaling and function as a potential therapeutic target.
TRPV4-EXPRESSING MACROPHAGES AS
A THERAPEUTIC TARGET FOR
RESOLVING INFLAMMATION

TRPV4 mRNA or protein has been detected in most organs and
tissues (23, 24, 30, 31, 64–70) and is expressed by a broad range of
cell types including neurons, urothelia, epithelia, immune cells,
endothelial cells and aortic and airway smooth muscle (35, 65, 68,
71–73). This widespread expression pattern, coupled with multiple
activating modalities, underlies the diverse roles of TRPV4 in
physiological processes including volume- and osmo-sensing,
thermoregulation, mechanosensation in the vasculature and
Frontiers in Immunology | www.frontiersin.org 3
urinary tract, cell barrier function, bone formation, metabolic
disorders, pain, neurogenic inflammation, and gut motility (23,
29, 34, 53, 74–77). TRPV4 also performs critical pro-fibrotic roles
and can detect and influence changes to the extracellular matrix
(78). TRPV4 antagonists have been pursued and patented for
several therapeutic applications including treatment or prevention
of lung injury, heart failure, ischemic heart disease, and pain (79).
Furthermore, pre-clinical and clinical studies have investigated
TRPV4 inhibition as a therapeutic approach for treatment of
osteoarthritis (80, 81), atherosclerosis (82), and cancer (83–85).
More recently, the use of TRPV4 antagonists for managing
comorbidities associated with SARS-CoV-2 infection such as
lung edema has also been proposed (86). Despite these extensive
efforts to define the importance of TRPV4 in cardiovascular,
pulmonary, and inflammatory diseases, there is currently only
one drug candidate (GSK2798745) approved for phase II clinical
trials (87, 88). This clinical candidate is a small molecule, orally
available inhibitor with low nanomolar potency (87).The apparent
FIGURE 1 | TRPV4 is a polymodal ion channel which can be activated directly or indirectly by a diverse range of stimuli including mechanical force, endogenous
mediators, and pharmacological tools. TRPV4 signals through multiple pathways leading to a range of downstream effects on cellular function. The figure illustrates
published activation pathways and associated outcomes. TRPV4, transient receptor potential vanilloid 4; GPCRs, G protein-coupled receptors; TLR4, toll-like
receptor 4; LPS, lipopolysaccharide; PIP2, phosphatidylinositol biphosphate; AA, arachidonic acid; cPLA2, cytosolic phospholipase A2; P450, cytochrome P450
epoxygenase; EETs, epoxyeicosatrienoic acids; NFAT, nuclear factor of activated T-cells; NF-kB, nuclear factor kappa B. Figure created with BioRender.com.
January 2022 | Volume 12 | Article 828115
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lack of therapeutic advancement may reflect limitations to our
mechanistic understanding of the precise involvement of TRPV4
in inflammatory and protective processes.

In chronic disease, such as arthritis and joint pain, there are
persistent changes to lipid production, osmolarity, increased
presence of GPCR ligands (e.g., immune-derived peptides and
proteases) and exposure to mechanical cues such as those
associated with fibrosis. All these factors have the potential
to promote sustained inflammatory signaling, edema,
sprouting of nerve fibers, and angiogenesis, and most
importantly, influence TRPV4 function (89). Studies using
Frontiers in Immunology | www.frontiersin.org 4
pharmacological tools and trpv4-/- mice have consistently
shown that inhibition or loss of TRPV4 function reduces
inflammatory processes and tissue edema. Accordingly,
TRPV4 is often described as a pro-inflammatory mediator
and a therapeutic target for treating inflammatory disease.
However, most of these studies are acute in nature, and may
not always adequately reflect proposed resolving roles for
TRPV4. Macrophages are of particular interest for targeting
inflammation and associated diseases. These cells orchestrate
both inflammation and resolution, as summarized in Table 1,
and recent evidence supports the dichotomous nature of
TABLE 1 | Summary of factors that are secreted in response to mechanical or pharmacological activation of TRPV4.

Secreted factors Experimental conditions Study models Related conditions or
physiological functions

Ref.

↑ IL-1a, IL-1b, IL-6, IL-8 & CCL2 Stretch (cyclic 30%, 1.25 Hz) M1 (GM-CSF induced) -
hMDM

Lung injury (44)

↑ TNF-a & CCL2 Stretch (cyclic 30%, 1.25 Hz) M2 (M-CSF induced) -
hMDM

Lung injury (44)

↑ IL-1a, IL-6, IL-8 & CCL22 GSK101 (3 nM) or Stretch (cyclic 30%,
1.25 Hz)

NCI-H292 Lung injury (44)

↑ IL-6 & CXCL1 Mechanical ventilation (30 ml/kg TV) Balb/c mice
(bronchoalveolar lavage
fluid)

Lung injury (44)

↓ IL-6, TNF-a & ROS LPS (100 ng/mL) TRPV4 siRNA RAW267.4 Lung injury (62)
↑ NO & ROS 4a-PDD (10 mM) mAM Lung injury (11)
↑ ROS 4a-PDD (10 mM) Endothelial cells Lung injury (36)
↑ IL-6, CXCL1 & CXCL2 LPS (100 ng/mL) trpv4-/- mBMDM Pulmonary infection and

injury in murine pneumonia
model

(12)
clinical strain of Pseudomonas
aeruginosa embedded in agarose beads

trpv4-/- C57BL6 mice
(whole lung lavage fluid)

↑ IL-1b ↓ IL-10 LPS (100 ng/mL) & pathological matrix
stiffness (25kPa)

trpv4-/- mBMDM Pulmonary infection, injury,
and fibrosis

(13)

↓ IL-1a, IL-1b, IL-3, IL-5, IL-6, IL-12p40, IL-12p70, IL-13,
IL- 17a, INF-g, TNF-a, CCL2, CCL3, CCL4, CCL5 & GM-
CSF

LPS (50 mg/kg) + GSK219 (1 mg/kg) C57BL6/J mice (blood
concentration)

Sepsis (45)

↑ IL-6, CCL2, CCL5 & CXCL1 Intracolonic administration of 4a-PDD
(200 mg in 40% ethanol)

Mouse colonic tissue Colitis (35)

↑ IL-8, CCL2, CXCL9 & CXCL10 4a-PDD (100mM) Caco-2 Colitis (35)
↑ IL-8, CCL5 CXCL9 & CXCL10 4a-PDD (100mM) T84 Colitis (35)
↑ CCL2 GSK101 (10nM) or Hypotonic stimuli

(200 mOsm/kg)
Muller glia Acute retinal detachment (46)

↑ Prostaglandin F2a GSK101 (100 nM) Aorta from high-salt diet-
fed mouse

Hypertension (43)

↑ Prostaglandin E2 GSK101 (300 nM) mMM GI motility (14)
↑ ATP GSK101 (100 nM) or Heat (25 -35.8°C) Mouse esophageal

keratinocytes
GERD, wound healing (37,

47)
GSK101 (100 nM) or 5,6-EET (500 nM)
or mechanical stretch (120% lateral
stretch)

RGE1-01 Gastric emptying (48)

GSK101 (0.01 mL, 50 nM) Rat corneal epithelium +
stroma, endothelium,
cornea

Acute ocular hypertension (49)

GSK101 (10 nM – 10 mM) Human bronchial epithelial
cells

COPD (cigarette smoking-
related)

(38)

4a-PDD (3 mM, 10 mM) HET-1A Esophagitis and GERD (39)
GSK101 (100 nM) Mouse cholangiocytes Cholestatic liver disorders (40)
Stretch (400 mm/s) or 4a-PDD (10 mM) Mouse urothelial cells Bladder function (41)
4a-PDD (10 mM) Astrocyte N/A (42)
January
 2022 | Volume 12 | Article 82
mBMDM, mouse bone marrow-derived macrophages; hMDM, human blood monocyte-derived macrophages; mAM, mouse alveolar macrophages; mMM, mouse muscularis
macrophages; GI, gastrointestinal; GERD, gastroesophageal reflux disease; COPD, chronic obstructive pulmonary disease; GSK101, GSK1016790A; GSK219, GSK2193874; 4a-
PDD, 4a-Phorbol 12,13-didecanoate; N/A, not available.
↑ = increased; ↓ = decreased.
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TRPV4 in both homeostatic or protective roles and in
pathophysiological pathways (12, 13). This includes roles in
phagocytosis and cytokine production, both of which can be
influenced by changes to the cellular environment in which the
macrophages are located (11–13, 62).
TRPV4 ACTIVITY INFLUENCES
MACROPHAGE POLARIZATION AND
METABOLISM

i) TRPV4 and Macrophage Polarization
Macrophages are a heterogeneous population of cells with the
capability to change phenotype and perform specific roles in
response to their microenvironment. For many years, the two
main extremes of macrophage phenotype were widely accepted
as M1 (so-called ‘classical’ pro-inflammatory phenotype) and
M2 (‘non-classical’ anti-inflammatory phenotype). In reality,
macrophages are highly versatile and the distinction between
subsets is less clear. Metabolic reprogramming of macrophages is
essential for phenotypic switch and immune responses. The M1
and M2 phenotypes have unique metabolic hallmarks (90–92).
The manipulation of metabolic pathways in macrophages can
alter their functions (93) and targeting of immunometabolism is
a promising approach for blocking inflammatory signaling. For
example, some anti-inflammatory drugs (e.g., dimethyl fumarate,
metformin, methotrexate, and rapamycin) limit inflammation
through targeting metabolic events in immune cells including
macrophages (90).

TRPV4 activation is associated with phenotypic switch by
macrophages (12, 13, 17, 51, 94). Current understanding of
macrophage polarization is based largely on the use of
biochemical cues such as cytokines or LPS to alter cellular
phenotype. However, it is important to consider other
biophysical factors originating from the microenvironment
that may influence phenotype, such as exposure to shear stress
and alterations in extracellular matrix stiffness. Several studies
have explored how physical stimuli can affect macrophage
phenotype, including the involvement of TRPV4 (see Table 1).
Moderate cyclic stretch (7%, 0.8 Hz) applied to human
peripheral blood mononuclear cells over a 7-day period
increased the relative proportion of M2 cells (CD206+),
whereas higher stretch (12%, 0.8 Hz) increased the M1-like
(CCR7+) phenotype (95). In addition, cyclic or static stretch
also triggered production of cytokines, chemokines, and enzymes
by macrophages. This included expression of mRNA for iNOS,
IL-6, MCP-1, and IL-10 (95, 96). Changes in stiffness of the
surrounding extracellular matrix can affect surface protein
expression and the secretion profile of macrophages. Previtera
et al. (97) cultured murine BMDMs on 0.3–230 kPa
polyacrylamide hydrogels and observed that macrophages
grown on high stiffness substrates produced elevated levels of
pro-inflammatory mediators relative to macrophages grown on
softer substrates (97). However, a different study led by Chen
et al. (98) showed that murine BMDMs cultured in
polyacrylamide hydrogels at a low matrix stiffness (2.55 ± 0.32
Frontiers in Immunology | www.frontiersin.org 5
kPa) displayed an M1-like phenotype, with enhanced CD86 cell
surface expression and higher production of ROS, IL-1b and
TNF-a. In contrast, a higher matrix stiffness (34.88 ± 4.22 kPa)
drove the cells toward an M2-like phenotype with higher CD206
expression, and production of IL-4 and TGF-b (98). Direct
comparison of these studies is complicated by the differences
in the experimental design. In addition, although both used
polyacrylamide hydrogels, Previtera et al. (97) pre-treated the gel
with laminin (97), which has been shown to promote expression
of pro-inflammatory factors in microglia (99) and reduce IL-10
secretion by THP-1 cells (100). However, these studies suggest
that mechanosensitive receptors, such as TRPV4 (17), play a
critical role in macrophage phenotypic switch in response to the
biophysical properties of their environment. This is consistent
with other non-TRPV4-related studies demonstrating that
matrix stiffness has a profound influence on macrophage
polarization states (100, 101) and warrants further
investigation, as discussed by other manuscripts within this
special issue.

ii) TRPV4 and Macrophage Metabolism
Beyond expression of specific markers, macrophage phenotypes
can also be differentiated based on their metabolic profiles,
especially those associated with central carbon metabolism.
Pro-inflammatory macrophages utilize glycolysis and the
pentose phosphate pathway (PPP) to generate sufficient energy
to meet higher ATP requirements. Fatty acid synthesis is
increased, as this is required both as an energy production
pathway and for synthesis of pro-inflammatory lipids, such as
prostaglandins. At the same time, oxygen consumption is
reduced, and the tricarboxylic acid (TCA) cycle and oxidative
phosphorylation (OXPHOS) are suppressed. In contrast,
macrophages with a protective phenotype have a normal TCA
cycle and higher fatty acid oxidation rate (93).

Greater understanding of how TRPV4 influences macrophage
phenotype at the metabolic level will provide further insight into
the role of this channel in inflammation and inflammatory
diseases. Although this has not been defined in detail, there is
some evidence to suggest that TRPV4 can regulate central carbon
metabolism, cellular respiration, and lipid metabolism. Several
studies report that TRPV4 activation can increase production of
reactive oxygen species (ROS) and nitric oxide (NO) (11, 36, 102)
and evoke ATP release (37–42). In macrophages, ROS is largely
generated through the NADPH oxidase pathway, while NO is
mainly produced from arginine via the iNOS pathway. Both
require NADPH as a co-factor. The high glycolytic flux of
activated macrophages provides glucose-6-phosphate for the
PPP, which is the main source of NADPH (93). Furthermore,
the TRPV4 activator 4a-PDD reduces mitochondrial
bioenergetics and oxygen consumption in pulmonary arterial
endothelial cells after a 3 h incubation period (36). TRPV4 can
also negatively regulate expression of peroxisome proliferator-
activated receptor g (PPARg) coactivator 1a (PGC1a),
mitochondrial uncoupling protein 1 (UCP1), and cellular
respiration in adipocytes (103). PGC-1a is a transcriptional
coregulator of pPPARg, controlling the UCP1 promoter, which
is involved in mitochondrial biogenesis and oxidative metabolism.
January 2022 | Volume 12 | Article 828115
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PPARg is an important transcription factor of M2 macrophages
and is associated with fatty acid uptake and oxidation.

Pharmacological activation of TRPV4 also triggers secretion
of pro-inflammatory lipid mediators including prostaglandins,
suggesting a potential link between this ion channel and fatty
acid biosynthesis (14, 43). Collectively, the metabolic profile of
TRPV4-activated cells shares some similarities with the profile of
the pro-inflammatory macrophage phenotype including high
glycolysis, low OXPHOS activity and increased synthesis of
pro-inflammatory lipids.
INVESTIGATING PLEIOTROPIC ROLES OF
TRPV4 USING A SYSTEMS BIOLOGY
APPROACH

This approach utilizes high-throughput omics platforms to
interrogate complex biological systems. In contrast to most
targeted studies outlined above, systems biology can
comprehensively characterize molecular profiles at the level of
the genome, transcriptome, proteome, peptidome, metabolome
and lipidome in an unbiased manner (104–109). These
approaches are well suited to the study of TRPV4 function in
macrophages as these cells secrete mediators and their metabolic
activity is highly regulated and linked to the inflammatory state.

i) Metabolic Profiling in Mechanobiology
and Immunology
Metabolomic methods have revealed novel biological pathways
and important metabolites in inflammatory responses and have
identified signature metabolites associated with different
macrophage phenotypes (110–112). This includes the distinct
metabolomic profiles of central carbon metabolism between M1
and M2 macrophages, as outlined above.

There are relatively few studies that examine the role of
TRPV4 at a metabolic level (11, 36–42, 102). Furthermore,
these are limited to targeted pathways including cellular
respiration, NO production, and bioactive lipids, such as
prostaglandins (Table 1). For example, targeted studies of
isolated mouse alveolar macrophages have shown that 4-aPDD
activates TRPV4 to promote Ca2+ influx and subsequent release
of NO and superoxide (11). The combination of NO and
superoxide can produce peroxynitrite, a strong oxidant
involved in pathogen defense and inflammation (113, 114).
Untargeted global profiling of TRPV4-induced macrophage
phenotypes could help to address important questions of how
and why TRPV4 can have both pro- and anti-inflammatory
responses , and further understand the under ly ing
mechanisms involved.

ii) Profiling TRPV4-Mediated Lipid
Synthesis and Metabolism
Macrophages are an important source of bioactive lipid
mediators which are important determinants of the magnitude
and duration of inflammatory signaling. In the onset phase of
acute inflammation, eicosanoid lipid mediators (leukotrienes and
Frontiers in Immunology | www.frontiersin.org 6
prostaglandins) are released to promote inflammation (115,
116). At the resolution phase, cells switch to production of
specialized pro-resolving mediators, such as lipoxins, resolvins,
protectins, and maresins to resolve inflammation (115, 116). The
imbalance of pro-inflammatory and pro-resolving mediators
results in chronic inflammation (115, 116). Although TRPV4
activity can affect lipid metabolism in macrophages, including
prostaglandin E2 (PGE2) production (14), this process has not
been examined in detail and remains poorly characterized. The
release of prostaglandins at the early stages of acute
inflammation is important for a protective response. However,
excessive production can promote chronic inflammation (115,
117, 118).

There is a clear need for more detailed investigation into how
TRPV4 may influence lipid metabolism in the context of
inflammatory disease. A comprehensive and unbiased
lipidomics approach will provide mechanistic insight beyond
that provided by current studies and significantly advance
understanding of how TRPV4-mediated secretion of bioactive
lipid mediators contributes to the initiation and resolution
of inflammation.

iii) Profiling the Protein Interactome
TRPV4 can directly or indirectly interact with a broad range of
proteins (53, 56, 119). Mass spectrometry-based proteomics has
become the core technology for large-scale investigation of
protein-protein interactions with high confidence. Many
purification methods have been developed to enable single
protein complex characterization through to global
interactome profiling (120). Commonly used workflows for
purification of the target protein and its interactors include
antibody-based affinity-purification mass spectrometry (AP-
MS) (121), quantitative immunoprecipitation combined with
knock-down (QUICK) (122), and proximity-ligation
techniques such as BioID (123). The global interactome
profi l ing requires biochemical techniques including
fractionation by size-exclusion chromatography (SEC), ion-
exchange chromatography (IEX), or perturbation co-behavior
approach. The pros and cons of each of these workflows are
covered elsewhere (120). Comprehensive analysis of the protein-
protein interaction network will enable novel insight into the
contribution of TRPV4 to cellular biology beyond what is
possible with currently used methodology. Furthermore, this
approach may facilitate identification of new avenues and targets
to enable therapeutic modulation of TRPV4-dependent
inflammatory signaling.
CONCLUDING REMARKS

This review provides an overview of how TRPV4 influences
macrophage function in pathological conditions and highlights
the dual roles that this channel has in promoting and preventing
inflammation. There is little doubt that TRPV4 is important for
maintaining homeostasis and immune responses. This includes:
1) responses to pathogens and changes in biophysical factors
including mechanical stress and matrix stiffness, 2) mediating
January 2022 | Volume 12 | Article 828115
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inflammatory responses (phagocytosis, cytokine secretion)
and balancing pro- and anti-inflammatory cytokine secretion,
and 3) facilitating cell-cell communication via secreted factors.
However, the underlying mechanisms involved in each role are
not fully understood. In addition, cytokines and bioactive lipids
secreted by macrophages are essential mediators of the
inflammatory response. The importance of TRPV4 for
macrophage polarization and associated production of
cytokines is well documented. In contrast , current
understanding of how TRPV4 regulates synthesis of bioactive
lipids, protein expression, and protein-protein interactions is
limited. This suggests that a focus on this specific research area
using more comprehensive analysis methods is required.
Application of high-throughput omics approaches to
definitively characterize the effects of TRPV4 modulation on
macrophages may reveal novel functions and pathways
important for understanding the precise involvement of
TRPV4 in inflammatory and protective processes. Similar
methods have been widely applied in the immunology field,
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which has helped to further differentiate pro- and anti-
inflammatory macrophage phenotypes (107, 124, 125). This
information is critical for understanding how TRPV4 can
influence both inflammatory and resolving processes and will
contribute to future therapeutic targeting of TRPV4 in
inflammatory diseases.
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