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Background. It has been well accepted that glial cells in the central nervous system (CNS) produce nitric oxide (NO) through
the induction of a nitric oxide synthase isoform (NOS2) only in response to various insults. Recently we described rapid
astroglial, NOS2-dependent, NO production in the neocortex of healthy mice on a time scale relevant to neuronal activity. To
explore a possible role for astroglial NOS2 in normal brain function we investigated a NOS2 knockout mouse (B6;129P2-
Nos2tm1Lau/J, Jackson Laboratory). Previous studies of this mouse strain revealed mainly altered immune responses, but no
compensatory pathways and no CNS abnormalities have been reported. Methodology/Principal Findings. To our surprise,
using NO imaging in brain slices in combination with biochemical methods we uncovered robust NO production by neocortical
astrocytes of the NOS2 mutant. These findings indicate the existence of an alternative pathway that increases basal NOS
activity. In addition, the astroglial mutation instigated modifications of neuronal attributes, shown by changes in the
membrane properties of pyramidal neurons, and revealed in distinct behavioral abnormalities characterized by an increase in
stress-related parameters. Conclusions/Significance. The results strongly indicate the involvement of astrocytic-derived NO
in modifying the activity of neuronal networks. In addition, the findings corroborate data linking NO signaling with stress-
related behavior, and highlight the potential use of this genetic model for studies of stress-susceptibility. Lastly, our results
beg re-examination of previous studies that used this mouse strain to examine the pathophysiology of brain insults, assuming
lack of astrocytic nitrosative reaction.
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INTRODUCTION
Nitric oxide (NO) is produced in the brain by neurons, astroglia and

endothelial cells, and is known to participate in diverse signaling

pathways. Three different isoforms of the enzyme nitric oxide

synthase (NOS) synthesize NO from L-arginine, and their activity

depends on the setting and the cell type involved. For example,

neurons expressing the neuronal NOS isoform (NOS1) are capable

of rapid release of small amounts of NO serving as neurotransmitter

[1,2]. On the other hand, astroglial NO production has been

demonstrated mainly as a reaction to various detrimental stimuli

such as ischemia or inflammation, through the activity of a stress-

induced NOS isoform (NOS2) that can produce large amounts of

NO, but on a much slower time scale [e.g. 3–7]. Using NO imaging

in brain slices we recently demonstrated NOS2-dependent astroglial

NO production, which occurred on a fast time scale (seconds) and

did not involve de-novo protein synthesis [8]. These data raised, for

the first time, the possibility of the involvement of astroglial-derived

NO in physiological brain activity.

To test for a possible role for astroglial, NOS2-dependent NO

in normal brain function, we evaluated a NOS2 knockout mouse

(B6;129P2-Nos2tm1Lau/J, Jackson Laboratory, http://jaxmice.jax.

org/strain/002596rf.html). In this mouse strain, the fragment

containing the calmodulin-binding domain of NOS2 was replaced

by the neomycin resistance gene [9]. Homozygous NOS2 mutant

mice are fertile, and display no developmental defects or

abnormalities of blood composition. Over the past ten years,

more than 100 published studies have used these NOS2 mutants

to explore the role of the enzyme in various organ systems. It has

been reported that these mice have no serum NO response under

conditions of immune challenge, their macrophages do not

produce NO in culture, and they exhibit altered responses to

various systemic infections, though they are not considered

immune-compromised [9–11]. No compensatory pathway has

been identified in this mouse strain untill now.

Only a few studies have explored some aspects of brain function

in these mutants. Almost all these studies used the mutant in

various models for brain pathologies such as ischemia, Alzheimer’s

or Parkinson’s disease, focusing on the role of NOS2 induction in

the long-term outcome of the insult. The mutants were compared

to control mice, assuming they lack astroglial NO production [e.g.

12–16]. The behavior of these mutants received little attention,

probably due to the current conviction that maintains that NOS2

does not participate in normal brain activity.

In the current study we demonstrate robust NO production by

astroglia in the mutants’ neocortex, suggestive of a constitutive

alternative pathway. The data also imply that the mutation lead to

neuronal modifications, and a distinct behavioral phenotype.

Some of these data have been published in an abstract format

(Buskila et al., SfN abst., Atlanta 2006).
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RESULTS

Mutants’ astrocytes exhibit NOS activity
We first examined whether the NOS2 mutation eliminated

astroglial NO production as expected. We incubated cortical

slices from mutant and control mice in the NO indicator

diaminofluorescein–2 diacetate (DAF-2DA) to image NO-pro-

ducing cells. The fluorescence intensity (FI) of this indicator is

expected to roughly correlate with the concentration of NO and

peroxinitrite and hence, with NOS activity [17,18]. The staining

pattern observed under the fluorescent light in slices from control

mice was identical to previously described DAF-2DA fluorescence

in slices from CD1 mice [8]. Briefly, punctate, putative neuronal

staining appeared almost immediately and decayed within 60 to

90 seconds. Putative astroglia staining appeared later, at variable

times from the start of illumination (usually.120 sec), displaying

bright diffuse staining (Fig 1A). In contrast, slices from mutant

mice exhibited widespread cellular fluorescence immediately after

opening the fluorescence shutter. The fluorescence pattern was

mixed, and both punctate and diffuse staining could be observed.

Longer illumination periods led to a rapid increase in the number

of diffusely fluorescent cells resulting in considerable overlap and

making it impossible to differentiate single cell somata (Fig 1A).

The non-selective NOS inhibitor L-NAME (1mM) abolished all

fluorescent responses in slices from both mutant (n = 4 slices, 2

animals) and control (n = 4 slices, 2 animals) mice, corroborating it

was due to NOS activity.

Fig 1B displays FI analysis of identified cells over time,

demonstrating faster and more intense fluorescent response in

slices from mutant compared with control mice. Since FI of single

diffusely-stained cells reached saturation levels in both control and

mutant mice, it can be deduced that in mutant slices, the rapid

increase in FI was caused mainly by a higher number of cells

participating rapidly and simultaneously in NO production.

Previous data suggested that the reason for the delayed

astroglial DAF-2DA fluorescence in CD1 mice is an unidentified

activation step which was triggered by phototoxic neuronal death

[8]. In agreement with this idea, diffuse astroglial staining was

rarely observed in DAF-2DA loaded slices from control mice when

imaged with a confocal microscope. In contrast, cells exhibiting

diffuse fluorescence pattern were readily noticeable and wide-

spread under the confocal microscope in slices from mutant mice

(n = 8 slices, 3 animals, Fig 2A). Thus, the diffuse fluorescent

response in the mutant did not require any preceding event, but

rather the NOS isoform in these cells was probably constitutively

active. In addition, diffuse DAF-2DA fluorescence in mutant slices

was almost fully co-localized with the specific astrocytic marker

SR101 [19] (Fig 2B,C), establishing that the pattern of DAF-2DA

staining has not been altered in the mutant, and the cells

exhibiting diffuse fluorescence are astrocytes.

Whole-cell recordings from diffusely stained cells in slices from

control mice disclosed low membrane resistance (Ri 30.66

23.2 MV, n = 6) and passive membrane properties characteristic

of astroglia. We also recorded from diffusely-stained cells in

mutant slices and examined their electrophysiological properties:

all the recorded cells (n = 6) revealed low input resistance (average

34.1619.4 MV), a linear I-V relationship and lack of action

potential firing upon depolarization (Fig 3). There were no

Figure 1. DAF-2DA fluorescence in mutant mice is faster and stronger. (A) Slices from mutant and control mice were pre-incubated in DAF-2DA
(2 mM) for 10 minutes, and imaged with a fluorescent light source. Example images are displayed at three time points following the start of
illumination (marked above). Arrowheads at 30 s point at punctate staining of putative neurons. Note the larger and steadily increasing number of
diffusely-fluorescing, putative astroglia in slices from the mutant mouse. Scale bar = 25 mm. (B) Summary diagram of diffuse DAF-2DA fluorescent
changes over time. Data are displayed as mean FI6S.E.M from identified single cells (control-26 cells from 4 slices, open circles; mutants–58 cells from
4 slices, closed squares).
doi:10.1371/journal.pone.0000843.g001

Figure 2. Diffusely-stained astrocytes are prevalent in confocal
images from mutant mice. (A) Example of confocal images from DAF-
2DA incubated neocortical slices. Punctate, putative neuronal staining is
dominating in slices from control mice (left), and diffuse fluorescence is
dominating in the mutant’s slice (right). Scale bar = 25 mm. (B) Diffuse
DAF-2DA staining (green) is co-localized with the specific astrocytic
marker SR101 (red). Examples from confocal images of a single cell are
displayed. Scale bar = 10 mm. (C) Merging image of SR101 and DAF-2DA
staining (projection of four 5 mm thick images). Cells which stain with
both dyes appear in yellow. Over 95% of the cells displayed co-
localization (4 slices, 2 animals). Scale bar = 20 mm.
doi:10.1371/journal.pone.0000843.g002
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significant differences between astrocytes from the mutant and

control mice in their electrophysiological properties, and these

were similar to previously published data on astrocytes in CD1

mice [8]. Taken together, these findings indicate that astrocytes in

the mutant mice express an active NOS isoform.

NOS activity in mutant astroglia is ca2+-dependent
To identify the isoform responsible for the augmented fluorescent

response in mutant mice we used specific NOS inhibitors. An

inhibitor of constitutive NOS isoforms, L-NNA (1 mM), abolished all

fluorescent reaction in slices from both mutant (n = 5 slices, 2

animals) and control mice (n = 5 slices, 2 animals). 1400W is

considered today the most selective NOS2 inhibitor, as it inhibits

NOS2 with 5000- and 200-folds greater potency than NOS3 and

NOS1, respectively [20]. Incubating brain slices for 30 minutes in

a ringer solution containing 1400W (3 mM) had no effect on the

punctate, neuronal fluorescence in slices from either mutant or

control mice (Fig. 4, 30 sec). On the other hand, 1400W abolished

the astrocytic diffuse fluorescence in all slices from control (n = 6

slices, 2 animals), but not in slices from mutant mice, where multiple

diffusely-stained astrocytes were clearly visible (Fig 4, 180sec, n = 7

slices, 3 animals). These findings are consistent with the premise that

the NOS2 protein in astroglia of mutant mice has been modified,

and its pharmacological sensitivity to the drug has been altered.

NOS2 activity is considered independent of intracellular Ca2+

concentration. Knowing that the mutation was directed at the

calmodulin-binding domain of the protein, we hypothesized that the

compensatory NOS isoform is Ca2+-dependent, similar to the con-

stitutive isoforms. Indeed, cultured astrocytes from mutant mice

exhibited significantly lower NOS activity compared with cultured

astrocytes from control mice when calcium was omitted from the

medium (27.8628.03 and 106.6655.8 nmole nitrite respectively,

p = 0.01).

Since intracellular Ca2+ elevation in astrocytes occurs, for the most

part, through mobilization from internal stores [21–24] we depleted

the internal Ca2+ stores by incubating the slices for 45 minutes in

thapsigargin (5 mM), an inhibitor of the endoplasmic reticulum

Ca2+-ATPase. The neuronal, punctuate DAF-2DA fluorescence in

either mutant or control slices was not affected by the thapsigargin

pre-incubation (Fig 5A), in agreement with data showing that

neuronal NO production depends mainly on Ca2+ entering through

NMDA channels [25,26]. The diffuse astroglial fluorescence in

control slices was also unaffected by thapsigargin, and multiple cells

could be distinguished in each visual field at time points later than

120 seconds following the start of illumination. In contrast, thapsi-

gargin almost completely blocked the astrocytic fluorescence in slices

from mutant mice (Fig 5B), a result which is consistent with a role for

intracellular calcium stores in mediating NOS activity in these cells.

Basal NOS activity in the mutant is increased
We next used western blot analysis to examine whether the

expression of either of the constitutive NOS isoforms, NOS1 or

NOS3, was increased in the mutant neocortex. To test for expression

of the mutated protein we used antibodies specific against the NOS2

protein N-terminus. We found tight conservation of the total and

relative expression of all three NOS isoforms in the NOS2 mutant,

with protein ratios between mutants and control neocortex

measuring 88616% for NOS1, 106617% for NOS2, and

103617% for NOS3 (p.0.05, n = 6 animals of each strain,

Fig 6A). Immunohistochemistry against NOS1 or NOS3 and glial

fibrillary acidic protein, a classic marker for astroglia, did not reveal

any co-localization (not shown). Thus, no evidence was found for

a compensatory increase in expression of the NOS1 or NOS3

isoforms in astroglia of the mutant mouse. Moreover, the total

protein level of NOS isoforms is unchanged, indicating that the

increase in basal NOS activity seen by NO fluorescent imaging in the

mutants cannot be explained by a change in isoform expression.

The use of DAF-2DA fluorescence for establishing NO concen-

trations is complicated by its reactivity to peroxynitrite [18] and its

dependence on light intensity [27]. Therefore, to compare the

basal NOS activity between the neocortex of mutant and control

Figure 3. Electrophysiological properties of diffusely fluorescent cells
in mutant slices are characteristic of astroglia. (A) IR/DIC image from
a mutant slice displays the recording pipette and the cell’s soma. The
arrowhead points to the location of the pipette tip. Scale bar = 20 mm.
(B) A fluorescent image of the same region as in (A) reveals several
diffusely fluorescent cells. The arrowhead position is the same as in (A).
(C) A series of current pulses at 0.1 nA increments were delivered
through the recording pipette (inset). A plot of the current pulse
intensity (I) vs. the voltage deflection (Vm) reveals linear relationship
characteristic of astroglia.
doi:10.1371/journal.pone.0000843.g003

Figure 4. Mutant astroglial NOS activity is unaffected by NOS2
inhibitor. Example images from slices incubated in the selective NOS2
inhibitor 1400W (3 mM) for at least 30 minutes. At 30 seconds from the
beginning of illumination (left panels), neuronal punctate fluorescence
(arrow heads) was abundant in slices from either mutant or control
mice. At 180 seconds (right panels), astrocytic diffuse fluorescence is
abolished in slices from control mice, but not in mutant slices. Images
were taken with ND4 filter to slow the response and allow for cells’
separation. Scale bar = 20 mm.
doi:10.1371/journal.pone.0000843.g004
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mice, we used an independent method which measures directly the

conversion of radiolabeled L-arginine to L-citrulline [28].

Consistent with the imaging data, we found a 30% increase in

the total NOS activity in brains of mutant mice, compared with

controls (avg. activity 506.8625.9 and 391.2636.8 pmole/

30 min/mg protein respectively, p = 0.01, Fig 6B). The Ca2+-

independent NOS fraction was measured by omitting Ca2+ from

the reaction buffer. This fraction did not differ significantly

between the two mice strains, and in both cases it comprised less

than 10% of the total NOS activity. Taken together, these data

suggest that the NOS2 mutation led to an increase in the basal

levels of Ca2+-dependent NOS activity.

Mutant mice exhibit a behavioral phenotype
We suspected that the alteration in NOS activity in the mutants’

astrocytes may have affected neighboring neurons. Studies using

immunohistochemistry reveal that in the neocortex, only a small

subpopulation of GABAergic interneurons express the isoform

NOS1 [29,30]. In agreement with these data, pyramidal neurons

recorded in DAF-2DA-loaded slices from either mutant or control

mice did not exhibit any fluorescence (Fig. 7). Nevertheless,

pyramidal neurons from mutant mice exhibited significantly

higher input resistance and longer membrane time constant than

neurons from control mice, and were similar in all other electrical

parameters examined (table 1).

Assuming that these single neuron modifications express

a developmental adjustment, we next examined whether more

aspects of neuronal activity have been modified leading to

detectable behavioral changes. NOS2 mutant mice had normal

reflexes and no apparent motor deficit. Testing their basic

exploratory behavior, we found no differences between control

and mutant mice in their general activity, both in the Open-Field

and the Hole-Board tests (Fig 8A,B). In contrast, clear differences

between the groups were observed in stress-related parameters.

For example, grooming during Open Field and Hole Board tests

was almost completely suppressed in mutant compared to control

mice (Fig 8B, p = 0.001), while in the safety of their home cages,

mutant mice displayed normal grooming behavior. With repeated

Hole Board testing grooming increased in both groups, but control

mice increased their grooming periods more than mutant mice

such that the difference between the groups became even more

pronounced (Fig 8B, Open Field, p,0.001; Hole Board,

p,0.001). Furthermore, mutant mice displayed increased freezing

when initially placed in the center of a square-shaped Open Field

(p = 0.002), reared less (p = 0.008), and ventured less into the

center of the field (p = 0.039) than control mice (Fig 8A).

The mice were also tested in the Elevated Plus maze, a standard

test for fear and anxiety. Mutant mice fully avoided the open arms

(p = 0.003), remained longer in the closed arms (p = 0.004), and

exhibited significantly less head-dipping and stretch/attend postures,

behavior which is commonly interpreted as ‘‘risk assessment’’

(p = 0.001). To examine whether increased NOS activity could have

contributed to the development of this heightened anxiety, the

performance of the mutant mice on the Elevated Plus maze was

examined 10 hours following systemic administration of L-NAME

(50 mM/kg). At this time point, the effect of L-NAME on arterial

blood pressure is expected to be over, while brain NOS activity is still

reduced by about 30% [31]. When compared to saline-injected

mutant mice, the L-NAME treated mice spent significantly more

time in the open arms (p = 0.02), less time in the closed arms

(p = 0.008), and increased the frequency of their risk assessment

behavior (p = 0.02). Overall, the performance of L-NAME treated

mutant mice on the Elevated Plus maze was comparable to that of

control mice (Fig 9). Together these data uncover a distinct

behavioral phenotype according to which the NOS2 mutant mice

are more susceptible to stress, a trait likely to be related to an

increased basal NOS activity in their CNS.

DISCUSSION
Genetically engineered mice with interruptions of the specific NOS

genes were developed to help in elucidating the role of NO and the

NOS isoforms [10,11]. However, it has been obvious for some time

now that altered genes might affect many developmental processes,

and compensatory mechanisms may be activated in knockouts. We

demonstrate here intense NO production by astroglia in brains of

homozygous NOS2 mutant mice. The data presented is strongly

indicative of a constitutive, alternative pathway, which resulted in

increased levels of basal NOS activity. In addition, we found that the

astrocytic mutation instigated neuronal modifications: 1) neocortical

pyramidal neurons exhibit mild but significant changes in their

membrane properties, and 2) the mutant mice display a distinct

behavioral phenotype.

Figure 5. Mutant astroglial NOS activity is dependent on Ca2+ release
from internal stores. The slices were incubated for 45 minutes in
thapsigargin (5 mM) to deplete the Ca2+ internal stores. Single cells FI is
plotted over time of illumination, and data are expressed as mean6
SEM. (A) Putative neurons identified by punctate DAF-2DA fluorescence
were not affected by thapsigargin in either mutant (closed squares, 32
cells, 6 slices) or control (open circles, n = 27 cells, 7 slices) mice. (B)
Astroglial diffuse fluorescence displayed normal kinetics in control,
thapsigargin-treated slices (n = 19 cells, 7 slices), but was almost
completely abolished in slices from mutant mice (n = 2 cells, 6 slices).
doi:10.1371/journal.pone.0000843.g005
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The biochemical modifications
While the neuronal DAF-2DA fluorescent response in slices from

mutant and control mice was identical on all parameters of

analysis, several findings clearly discerned the astrocytic response

in mutant from control slices: 1) the fluorescence developed faster

and reached higher intensity in mutant slices due to a large

number of fast-reacting cells, 2) the fluorescence in mutant

astroglia was insensitive to the NOS2 inhibitor 1400W, while this

compound completely abolished it in control slices, and 3)

astroglial fluorescence in the mutant, but not in the control,

depended on release of Ca2+ from internal stores. Although there

were no changes in the expression levels of any of the three NOS

isoforms, NOS activity in neocortex of mutant mice was

considerably increased compared with control neocortex.

The exact nature of the biochemical modifications has not been

clarified here. The imaging experiments indicate that the

compensatory process occurs mainly in astrocytes. The likely

possibility is that the mutated protein is now constitutively

expressed and uses an alternative pathway. Another possibility

for the underlying mechanism is that higher activity of the other

constitutive NOS isoforms is compensating for the reduced activity

of the mutated protein. However, we failed to find evidence for the

expression of the NOS1 or NOS3 isoforms in mutant astroglia to

support this possibility.

Whatever is the nature of the biochemical modifications, their

existence needs to be taken into account when evaluating brain

function in these mutants. It has been well accepted that under

pathological conditions, NOS2 expression in astrocytes increases

Figure 7. Pyramidal neurons do not exhibit DAF-2DA fluorescence. (A) IR/DIC image of a recorded pyramidal neuron (arrow) and the patch pipette.
Scale bar = 25 mm. (B) Fluorescence image of the recording region, revealing fluorescent cells other than the recorded one. The arrow marks the
location of the recorded neurons as in (A). (C) Example traces from the recorded neuron in response to injected current pulses. The firing pattern is
typical of a regular-spiking pyramidal neuron.
doi:10.1371/journal.pone.0000843.g007

Figure 6. NOS proteins are conserved in the mutant neocortex, but NOS activity is increased. (A) Example of western blot analysis from 3 control
and 3 mutant mice neocortex, demonstrating tight conservation of all 3 NOS proteins. (B) The results of NOS radioenzymatic assay reveal an increase
in the total NOS activity in mutant mice neocortex (open bars, p = 0.01). The Ca2+-independent NOS fraction (gray bars) did not differ between the
two mice strains. Data from 3 animals of each strain is displayed as mean6SD.
doi:10.1371/journal.pone.0000843.g006

Table 1. Comparison of electrophysiological properties between pyramidal neurons of mutant and control neocortex.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vm (mV) Ri (MV) tm (ms) Spike Amp (mV) Spike width, 1/2 amp (ms)

Mutant (n = 12) 271.064.3 311.2691.7* 23.3610.2** 72.169.1 1.760.5

Control (n = 13) 270.164.08 237.7690.8 15.764.9 76.168.3 1.460.4

Pyramidal neurons were recorded in layer 5 of the primary somatosensory cortex.
Data is expressed as mean6SD. *-p = 0.028; **-p = 0.013, student t-test.
doi:10.1371/journal.pone.0000843.t001..
..

..
..

..
..

..
..

..
..

..
..

..
..

.
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dramatically over a period of hours and days. Hence, several

groups used this same NOS2 mutant strain to examine the role of

NO in the long-term outcome of brain insults, assuming lack of

astrocytic NO production under these conditions. Most notably,

these mice were found to be more resistant to MPTP

neurotoxicity, a model for Parkinson’s disease [12,13,32]. On

the other hand, the use of these mutants in different models for

Alzheimer’s disease has yielded disparate views about the role of

NO in this neurodegenerative disease [14,33]. The conclusions of

these studies and specifically their mechanistic explanations need

to be re-evaluated in light of these results.

The behavioral phenotype
Both NOS1 and NOS3 knockout mice exhibit distinct behavioral

phenotypes, which are unrelated to other systemic alterations such

as changes in their blood pressure [34,35]. Although used by many

researchers for over 10 years, no description of behavioral

alterations in NOS2 mutants has been published. Our findings

delineate a distinct behavioral phenotype in a NOS2 mutant

mouse. Interestingly, an earlier study reported changes in the sleep

pattern of these mice [36], supporting the finding of CNS

modifications. The association between NO and stress-related

behavior has been well documented, and pharmacological studies

suggest that NO plays an important role in mediating defensive

responses [reviewed in 37]. For example, NO signaling has been

demonstrated to contribute to fear conditioning in the lateral

amygdala [38], CNS injections of NOS inhibitors induce

anxiolytic effects in the Elevated Plus maze [39,40], whereas

flight reactions have been seen after administration of NO donors

[41,42]. Thus, the enhanced stress related behaviors of the NOS2

mutant is consistent with these data and is in accord with

enhanced NOS activity. The unique finding in our study is the

detection of astrocytes as the likely cellular source for the increased

NO in mutant mice, and not neurons as typically assumed.

The cellular source of NO as neuromodulator
The role of NO as a retrograde messenger mediating presynaptic

activity-dependent changes has been investigated intensely. While

the involvement of the NO-cGMP pathway is relatively estab-

lished [e.g. 1,2,43,44], its cellular source remains doubtful. Clearly,

identifying the cells producing NO to participate in modulating

physiological neuronal activity is of great importance for un-

derstanding the mechanisms that control its production and its

biological role.

In the neocortex, NOS1 is expressed only by a somatostatin-

expressing subtype of GABAergic interneurons [29,30]. It was

demonstrated also in spines of hippocampal pyramidal neurons

Figure 8. Mutant mice differed from their controls in stress related
aspects of exploratory behavior. (A) Control mice (n = 16,) were
compared to mutant mice (n = 11, open circles) in the Open-Field test.
The general motor activity was measured as the total distance traveled
during the test. The Freezing was measured as the latency to escape
from the center of the field. Rearing and entries to the center of the
field episodes were counted. (B) Example parameters from the results of
the Hole-Board test are displayed. The motor activity is measured as the
total distance traveled during the test. Grooming episodes are counted
(control-n = 6, gray closed squares controls; mutants-n = 9, open circles).
For all tests, data is displayed as mean6S.E.M. Significant difference
between the groups on a specific day are marked: *-p#0.05; **-p#0.01;
***-p#0.001.
doi:10.1371/journal.pone.0000843.g008

Figure 9. Mutant mice exhibit increased in stress-related parameters on the Elevated Plus maze. Control mice (n = 13, dark gray bars) were
compared to mutant mice (n = 10, light gray bars) on the Elevated Plus maze. The time spent in the open or closed arms was measured. Risk
assessment designates the combined number of stretch/attend postures and head dipping episodes. Systemic injection with the NOS inhibitor L-
NAME (50 mg/kg i.p., n = 10) 10 hours prior to testing improved the performance of mutant mice on the Elevated Plus maze, resulting in significant
differences between them and saline-injected animals (n = 11). Control animals were injected with saline only (n = 11), and their motor behavior was
not significantly different from non-injected animals.
doi:10.1371/journal.pone.0000843.g009
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[45,46], but not in the neocortex. NOS3 is found mostly in the

vascular endothelium, and its expression by neurons has been

controversial [47,48]. Our own imaging data are in agreement

with this neuronal NOS distribution: while pyramidal neurons in

the hippocampus display DAF-2DA fluorescence [personal obser-

vation,49], neocortical pyramidal neurons do not. It has been also

proposed recently that NO released from endothelial cells

participates in modulating nerve cells [50]. The glial option has

been largely ignored as the data existing emphasized the expression

of astroglial NOS2 only through gene induction following various

damage-causing stimuli. Yet, a recent study using spinal-cord slice

preparation demonstrated that synaptic potentiation of the pre-

synaptic afferents was mediated by NO released from glial cells, via

mGluR1 activation [51]. The NOS2 mutant provides additional

evidence, though indirect, for the involvement of astroglial-derived

NO in modifying the activity of large neuronal networks as expressed

by the intricate stress related behavior.

In recent years it has become increasingly apparent that astrocytes

maintain dynamic reciprocal communication with neurons, and may

contribute to the regulation of neuronal activity. As part of this con-

cept, the synaptic structure is viewed as the ‘tri-partite synapse’, in

which astrocytes play an active role in modulating synaptic trans-

mission [52–54]. We speculate that the biochemical compensatory

changes in the NOS2 mutant brain described here reflect an essential

role for astrocytic NO production, and that astrocytic-produced NO

participates in neuronal modulation in the normal brain.

MATERIALS AND METHODS

Animals
Homozygous mice for the Nos2tm1Lau targeted mutation (NOS2-

deficient mice, B6;129P2-Nos2tm1Lau/J) and their wild-type control

(B6;129PF2/J) were obtained from Jackson Laboratories (Bar

Harbor, ME). Animals were healthy, and handled routinely under

standard conditions of temperature, humidity and a 12 h light/

dark cycle, with free access to food and water. All experiments

were approved by the Ben-Gurion university committee for the

ethical care and use of animals in experiments.

Imaging and recording in slices
Mice (14–21 days old) were deeply anesthetized with pentobarbi-

tal, decapitated, and their brains quickly removed into cold (5uC)

physiological solution. Selective astrocytic labeling with SR101

(50 mM in ACSF, Sigma) was done by pressure injection into the

neocortex using a picospritzer (General Valve corp.) about

2 minutes prior to decapitation. Neocortical slices (300–400 mm

thick) were cut with a vibratome (Campden Instruments, London)

and kept in a holding chamber at 36uC for at least 1 hour before

any treatment [55], continuously bubbled by 95%O2-5%CO2.

The bathing and superfusing solution contained (in mM): 124

NaCl, 3.5 KCl, 2 MgSO4, 1.25 Na2HPO4, 2 CaCl2, 26 NaHCO3,

10 dextrose, and was saturated with 95%O2-5%CO2 (pH 7.4). For

NO-imaging experiments, the slices were incubated in Diamino-

fluorescein–2 Diacetate (DAF-2DA, 2 mM, Calbiochem, La Jolla,

CA) for 10 minutes, and then transferred to a slice chamber

mounted on an upright fluorescent microscope equipped with IR/

DIC optics (Nikon physiostation EC-600), where they were kept at

30–32uC and constantly perfused. Illumination was done with

a fluorescent light source (100W mercury lamp), via a Nikon filter

(excitation wavelength 450–490 nm, emission wavelength 520 nm),

using 606 water immersion objective. Imaging was done using

a black and white CCD camera with integrating frame grabber

control unit (CCD-300IFG, Dage-MTI, USA), integrating 16 frames

for each image. Confocal imaging was done from live slices using

a C1si spectral confocal system. The perfusion chamber was

mounted on a Nikon FN1 upright microscope equipped with a 1.0

NA water-dipping objective. DAF-2DA images were acquired using

the 488 nm line of a 65 mW Argon laser, and SR101 was imaged

with a 543 nm HeNe laser.

Fluorescence intensity (FI) was measured off-line using J-image

software (Wayne Rasband, NIH). Two types of analysis were carried

out. We measured FI of single cells in focus by defining the area of

analysis when cells’ somata were clearly separable. Otherwise, we

measured the FI of the whole visual field. The background was

subtracted in both cases.

Whole-cell recordings were performed from neurons and glia

with patch pipettes (3–5 MV), containing (in mM): 125 K-

gluconate, 2 MgCl2; 10 HEPES; 10 EGTA; 5 NaCl; 2 Na2ATP,

pH 7.2, 280 mOsm. Voltages were recorded using patch-clamp

amplifier (AxoPatch 2B, Axon Instruments), digitally sampled at

10 kHz and analyzed off-line using LabView-based software.

Series resistance was typically ,15 MV.

The following drugs were added to the incubating solution at

various time intervals before imaging, and the same concentration

was maintained in the superfusing solution during imaging,

unless noted otherwise: Nw-Nitro-L-arginine (L-NNA); L–N6-

(1–iminoethyl) lysine, 2HCl (L-NIL); N-nitro-L-arginine methyl

ester (L-NAME); Thapsigargin, all purchased from Sigma-Aldrich,

Israel, and N-[[3 (aminomethyl) phenyl]methyl]ethanimidamide

dihydrochloride (1400W) was purchased from Tocris (Bristol,

UK).

Western Blot Analysis
The neocortex was dissected immediately following decapitation,

homogenized in ice-cold lysis buffer, and centrifuged at

14,000 rpm for 15 min. The supernatant was collected and

assayed for total protein concentration using the Bradford method

[56]. Samples containing 50 mg proteins were loaded and the

protein size was separated in 7.5% SDS polyacrylamide gel

electrophoresis (150 V) along with a set of molecular-weight

markers (Bio-Rad, UK). Blots were electrotransferred onto

nitrocellulose membrane, blocked with blocking buffer, and then

incubated overnight with specific primary polyclonal antibodies

against NOS1 (1:200–1:500), NOS2 (1:200–1:1000) and NOS3

(1:200), all of them purchased from Santa Cruz Biotechnology,

CA. Positive controls from macrophages were used for NOS2.

Blots were exposed to horseradish peroxidase-conjugated anti-

rabbit IgG secondary antibody (1:7,500, Santa Cruz Biotechnol-

ogy), and immunoreactivity was visualized using ChemiImager

technology, following manufacturer’s instructions (Alpha Innotech

Corporation, San Leandro, CA).

NOS activity assays
NOS catalytic activity was assayed by measuring both the Ca2+-

dependent and the Ca2+-independent conversion of [3H]arginine

to [3H]citrulline as described by Przedborski et al. [28], using

NOS activity assay kit (Cayman chemicals, Ann Arbor, MI). In

brief, brains of 21 days old mice were quickly removed and the

neocortex was homogenized in 1 ml buffer containing 25 mM

Tris-HCL (pH 7.4), 1mM EDTA and 1mM EGTA. Samples were

incubated at room temperature for 30 min in the presence of

[3H]-arginine (1 mCi/ml; Amersham, UK) and cofactors. The

reaction was terminated by the addition of stop buffer containing

50 mM HEPES (pH 5.5) and 5 mM EDTA. To determine the

relative fraction of calcium-independent NOS activity, calcium

was omitted from the reaction mixture in some samples and

EGTA (1 mM) was added. [3H]-citrulline was quantified by liquid
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scintillation counting of the eluate, and the counts per minute for

all samples were averaged and corrected with respect to the

background radioactivity. NOS activity was expressed as pmol

[3H] L-citrulline/30 min/mg protein.

To compare NOS activity between cultured astrocytes from

mutant and control mice, nitrite concentrations were determined

using an assay kit based on the reaction of nitrite with 2,3-

diaminonaphthalene to form the fluorescent product, 1-(H)-

naphthotriazole (Calbiochem, Cat. No. 482655), following standard

instructions. The reading was performed with wavelength of

365 nm excitation, and 450 nm emission.

Behavioral testing
Control and mutant adult male mice were transferred to the lab

prior to testing, and remained there throughout the testing period.

The animals were neither handled nor habituated to the

behavioral apparatus before the initial test session. Tests were

carried out during the light period (12:00–16:00). Mouse behavior

was recorded from a centrally placed video camera located 0.5 m

away from the apparatus under dim light. A hole-board was used

to examine explorative behavior. Each animal was placed in the

center of the board and its behavior videotaped for 5 minutes, and

the test was repeated for three successive days. Head dipping and

grooming episodes, as well as distant travel on the board were

recorded off the videotapes. For the Open-Field test, each mouse

was placed in the center of the field and its latency to escape to any

corner was recorded. The behavior was videotaped for 10 min-

utes, and the following parameters were recorded: the field was

divided into 25 squares (20 cm620 cm each) and the total (center

and peripheral) squares crossed, the distance traveled, the number

of entries into the center of the field, and the number of rearing

and grooming episodes. The test was repeated over a total of three

consecutive days. An Elevated Plus maze with two open and two

closed arms (each 30 cm long65 cm wide) was used for a single

10-minutes exposure. The time spent in the open arms and

duration of grooming were recorded off the videotapes as well as

the number of partial (2 legs) and full (4 legs) entries into the open

arms, the number of stretch/attend postures, and the head dipping

over the side of the open arms (the combined last two parameters

were interpreted as ‘‘risk assessment’’ behavior). Two-way analysis

of variance (ANOVA) with repeated measure was used to examine

group differences over days (when tested), with a significance level

of 0.05.
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