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Abstract: Optical materials doped with several lanthanides are unique in their properties and are
widely used in various fields of science and technology. The study of these systems provides solutions
for noncontact thermometry, bioimaging, sensing technology, and others. In this paper, we report
on the demonstration of YVO4 nanoparticles doped with one, two, and three different rare earth
ions (Tm3+, Er3+, and Nd3+). We discuss the morphology, structural properties, and luminescence
behavior of particles. Luminescence decay kinetics reveal the energy transfer efficiency (up to 78%)
for different ions under the selective excitation of individual ions. Thus, we found that the energy
transition from Tm3+ is more favorable than from Er3+ while we did not observe any significant energy
rearrangement in the samples under the excitation of Nd3+. The observed strong variation of REI
lifetimes makes the suggested nanoparticles promising for luminescent labeling, anticounterfeiting,
development of data storage systems, etc.

Keywords: oxide nanoparticles; luminescence kinetics; rare earth ions; codoped systems

1. Introduction

The combination of different types of rare earth ions (REI) in a single structure (single
crystals, ceramics, glass ceramics, hybrid nanomaterials, etc.) represents a unique optical
system, in which the luminescent properties can be tuned in a wide range by controlling
the energy transfer between ions of different types through adjusting the composition
and structure of the material. Such sophisticated optical systems can find applications in
different fields, including ultrabroadband optical devices [1–3], microthermometry [4–6],
bioimaging [7–10], and the production of light-emitting flexible materials [11–13].

To date, the optical properties of all rare earth ions are well studied, and luminescence
properties of individual ions in different media are thoroughly described. However, the
combination of several REI in one crystalline host can completely change the optical
properties of the materials due to the energy transfer between the ions. Moreover, the
luminescence behavior of these substances strongly depends on the types of REI, their
concentrations, the type of the matrix, and the excitation mechanism. It is noteworthy that
the effect of each of these parameters requires special consideration.

Metal oxides demonstrate several advantages for selection as the host for the REI
doping. First, they are characterized by the stability of the physical and chemical be-
havior over a wide temperature range, biocompatibility, and mechanical hardness. The
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combination of these properties makes them promising candidates for a wide range of ap-
plications in mechanical engineering [14–16], medicine [17,18], sensing technology [19,20],
anticounterfeiting [21,22], and others [23,24].

Many of these applications are based on the kinetic luminescence parameters that
are unique for each specimen containing a different combination of ions. For example,
luminescence coding indicators based on luminescence lifetimes, color spatial distribution,
and intensity ratio between emission bands have been demonstrated to find multiple appli-
cations in different fields, such as bioimaging, deep tissue multiplexing labelling/detection,
high-density data storage, and anticounterfeiting [25–27]. The temperature dependence
of the kinetic parameters of oxide particles doped with REI can be used for luminescence
nanothermometry [28,29].

Recently, we have reported on the synthesis and luminescence properties of YVO4:Tm3+,
Er3+, and Nd3+ particles [30]. We selected these ions because of the absence of the over-
lapping luminescence bands, which makes it possible to study the direct energy transfer
between the ions. In this paper, we demonstrate YVO4 nanoparticles doped not only
with one or three but also with combinations of two different REI. Nanoparticles codoped
with several ions were obtained thanks to adjusting the synthesis procedure—a modified
Pechini method. The luminescence kinetics of the proposed optical system was studied
in detail. Altogether, it provided a demonstration of the highly efficient energy transfer
processes in codoped nanoparticles of YVO4 and a strong variation of REI lifetimes that
is of great importance for luminescent labeling, anticounterfeiting, development of data
storage systems, etc.

2. Materials and Methods

The particles were synthesized with the modified Pechini method that is described in
detail in our previous paper [31]. Water solutions of yttrium and REI nitrates and vanadium
oxide were used as initial reagents. Citric acid was chosen as the chelating agent to prepare
a mixture of citrate complexes. Then, we added ethylene glycol to the solution to form a
polymer gel with all metal ions within a cross-linked network. After this, we annealed the
gel at 550 ◦C to decompose the complexes to the oxides (or complex oxides). It resulted
in the formation of small particles that are characterized by a large number of defects. To
solve this issue, we performed a high temperature (900 ◦C, 1 h) calcination of the mixture
following the addition of KCl (the mass ratio 2:1 to the mass of the oxide particles) to
the products of the previous stage of the reaction. This additional reaction step led to the
formation of weakly agglomerated particles with a high degree of crystallinity. After the
thermal treatment, we removed the potassium chloride with distilled water.

Table 1 demonstrates the composition of the particles that we synthesized for further
experiments. We prepared single-, double-, and triple-doped particles to thoroughly study
the energy transfer between the ions and unravel its mechanism. The concentrations of each
individual REI were selected separately and kept constant in all samples. It is known that
increasing the REI concentration leads to a gradual increase of the luminescence intensity
until concentration quenching starts, which results in a luminescence decrease at a higher
concentration range of REI. This time, we increased the concentrations of the Tm3+ and Er3+

ions in the YVO4 samples to 1.0 and 3.0 at %, respectively, to enhance the luminescence
intensity of these ions relative to the most intense emission band of the Nd3+ ions.

The structure of the samples was characterized with X-ray diffraction (XRD) using
a Bruker “D8 DISCOVER” operating with a CuKα line (1.54056 Å). The crystal unit cell
parameters and the coherent scattering region size were calculated using TOPAS soft-
ware. The morphology of the powders was studied with scanning electron microscopy
(SEM Zeiss Supra 40VP, Zeiss, Oberkochen, Germany); the size distribution of the par-
ticles in aqueous dispersions was analyzed with the static light scattering (SLS) method
(Mastersizer 3000, Malvern Instruments Ltd, Malvern, Worcestershire, UK). The optical
absorption spectra and luminescence properties of the samples were measured with a
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Lambda 1050 spectrophotometer and Horiba Jobin Yvon Fluorolog-3 spectrofluorimeter
with a Xe-arc lamp (450 W power), respectively.

Table 1. Compositions of the crystalline particles.

№ Combinations of Rare Earth Ions
Concentration, at.%

Tm Er Nd

1 YVO4:Nd3+ - - 0.03

2 YVO4:Er3+ - 3.0 -

3 YVO4:Tm3+ 1.0 - -

4 YVO4:Tm3+, Er3+ 1.0 3.0 -

5 YVO4:Tm3+, Nd3+ 1.0 - 0.03

6 YVO4:Er3+, Nd3+ - 3.0 0.03

7 YVO4:Tm3+, Er3+, Nd3+ 1.0 3.0 0.03

3. Results and Discussion
3.1. Structure and Morphology

According to the X-ray diffraction analysis, all synthesized samples consist of an
yttrium vanadate crystalline phase with a tetragonal structure (JCPDS 17-0341). Figure 1a
shows several representative diffraction patterns of single-, double-, and triple-doped
particles. The proper purification of the particles from potassium chloride after heat
treatment in the salt melt is confirmed by the absence of KCl lines located at 28.3 and
40.5 degrees (JCPDS 04-0587). The coherent scattering region of all samples lies in a narrow
range between 60–80 nm as the synthesis conditions were identical. However, the doping
of the oxide crystalline host with the REI affects the unit cell parameters (Figure 1b) as
the ionic radius of Y3+ (0.090 nm) is larger than that of erbium Er3+ (0.089 nm) and Tm3+

(0.088 nm) but smaller than the ionic radius of Nd3+ (0.098 nm). The smallest cell volume
belongs to the triple-doped YVO4 as it contains an increased concentration of substitution
ions with a smaller ionic radius (Er3+ and Tm3+).
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Figure 1. (a) XRD patterns and (b) unit cell volume of the YVO4 samples doped with different rare
earth ions.

Figure 2 demonstrates the morphology and the size distribution of the prepared
particles. According to the SEM images (Figure 2a), the individual particles (with the size
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that rarely exceeds 100 nm) often possess an octahedral shape, which differs from that of
the previously synthesized particles and is due to the higher volume of the salt melt (KCl)
during the second stage of the heat treatment. This is also confirmed by the results of the
SLS (Figure 2b) of the YVO4 powder in the aqueous solution. The experimental results
propose a unimodal distribution of the particles with the average size of ~50 nm.
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Figure 2. (a) SEM image and (b) size distribution of the triple-doped YVO4: Nd3+, Er3+, and Tm3+ particles.

3.2. Luminescence Properties

The direct excitation of REI makes it possible to study the probability of energy transfer
between different rare earth ions in the same host. For this purpose, the specific excitation
wavelength for each REI has been chosen. Figure 3a presents an optical absorption spectrum
of pure YVO4. The broad peak centered around 310 nm is attributed to the direct absorption
of the YVO4 host, namely to the charge transfer from the oxygen ligands to the central
vanadium atom inside the VO4

3− ion [32]. Excitation at this wavelength results in the
simultaneous emission of all doping REI through the energy transfer from the crystalline
host (Figure 3b,c) and significantly complicates the study of the energy transfer between
ions. The excitation spectra were recorded at the most intense NIR emission lines of each
dopant ion, 1064 nm, 857 nm, and 800 nm for Nd3+, Er3+, and Tm3+, respectively. From the
obtained spectra, several lines for the selective excitation of ions of each type, 4I9/2 − 4G5/2
+ 4G7/2 (595 nm) for Nd3+, 4I15/2 − 2H11/2 (526 nm) for Er3+, and 3H4 − 3F2 + 3F3 (692 nm)
for Tm3+, were found.
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Figure 3. (a) Optical absorption spectra of pure YVO4 particles; (b) excitation spectra of the single-
doped YVO4: Nd3+ (0.03 at.%), YVO4: Er3+ (3 at.%), and YVO4: Tm3+ (1 at.%) samples and
(c) triple-doped YVO4: Nd3+ (0.03 at.%), Er3+ (3 at.%), and Tm3+ (1 at.%) samples monitored at
different wavelengths λem = 1064, 857, and 800 nm corresponding to the luminescence emission
bands of Nd, Er, and Tm, respectively. The asterisk (*) indicates the second order of diffraction.

Steady-state emission and luminescence kinetics are discussed individually for each
ion that can act as a donor. Figure 4a shows the emission spectra of all samples containing
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erbium ions. The emission spectrum of the single-doped YVO4: Er3+(3 at.%) sample consists
of 4S3/2 − 4I13/2 (857 nm) and 4I11/2 − 4I15/2 (986 nm) transitions. Codoping YVO4: Er3+

with another ion (Tm3+ or Nd3+) in the structure produces spectra with characteristic lines of
both ions: 3H4 − 3H6 (800 nm) for Tm3+ and 4F3/2 − 4I9/2 (882 nm) for Nd3+. Since selective
erbium excitation was used (λex = 526 nm), this indicates an energy transfer between the
active centres in the double-doped samples. The triple-doped sample demonstrates a
simultaneous energy transfer from erbium to Nd3+ and Tm3+. From the analysis of the
emission spectra for single-, double-, and triple-doped samples, we proposed an energy
transfer scheme, which reflects the occurring processes upon the direct excitation of Er3+

ions (Figure 4b).
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double-, and triple-doped YVO4: Nd3+ (0.03 at.%), Er3+ (3 at.%), and Tm3+ (1 at.%) samples under
excitation with λex = 526 nm.

Figure 5 shows the decay curves of erbium-containing samples monitored at the
erbium 4S3/2 − 4I15/2 transition (λem = 553 nm, λex = 526 nm). It is noteworthy that the
luminescence decay curves started from 50 µs, but for the clear representation of the data,
we shifted some datasets along the x-axis. The experimental data were fitted by a single
exponential function: I = I0·e−

t
τ , where τ is the observed lifetime of the 4S3/2 level. Due

to the energy transfer in the double- and triple-doped samples, the luminescence lifetime
decreases from 7.96 ± 0.13 µs (YVO4:Er3+) to 7.15 ± 0.15 µs (YVO4: Er3+, Tm3+) and
6.64 ± 0.20 µs (YVO4:Nd3+, Er3+, Tm3+). We do not observe a decrease in the lifetime for
the YVO4: Er3+, Nd3+ sample due to the low concentration of Nd3+.
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The energy transfer efficiency (η) for the erbium-containing samples has been calcu-
lated using the following formula: η =

(
1 − τda

τd

)
× 100%, where τda is the donor lifetime

in the presence of the acceptor and τd is the unquenched donor lifetime (Table 2) [33,34]. In
the double-doped Nd3+, Er3+ sample, the energy transfer efficiency is zero due to the low
concentration of neodymium. However, this low concentration in the triple-doped sample
gives a contribution to the energy transfer efficiency as this value in the double-doped Er3+,
Tm3+ sample is lower (η = 10%) than in the triple-doped sample (η = 17%).

Table 2. Values of energy transfer efficiency for one-, two-, and triple-doped systems with the selective
excitation of Er3+ ions.

Combination of Er3+ Ions

Er3+, Tm3+, Nd3+ Er3+, Tm3+ Er3+, Nd3+

η, % 17 10 0

Figure 6a displays the emission spectra of all samples containing thulium ions. The
emission spectrum of the single-doped YVO4:Tm3+ (1 at.%) sample demonstrates a strong
3H4 − 3H6 (800 nm) transition. The introduction of the second ion (Er3+ or Nd3+) in the
structure leads to the appearance of characteristic lines of the corresponding ion, namely
4S3/2 − 4I13/2 (857 nm) and 4I11/2 − 4I15/2 (986 nm) transitions for Er3+ and 4F3/2 − 4I9/2
(882 nm) and 4F3/2 − 4I11/2 (1064 nm) transitions for Nd3+. Since we selectively excite
(λex = 692 nm), this indicates a strong energy transfer between the active ions in the double-
doped samples. Similarly, the triple-doped sample shows emission bands attributed to
all three ions. Based on the analysis of the luminescence spectra for single-, double- and
triple-doped samples, we suggest an energy transfer scheme following the direct excitation
of Tm3+ (Figure 6b).
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In Figure 7, we show the luminescence lifetimes of the YVO4 particles doped with
Tm3+ and other REI monitored at the thulium 3H4 − 3H6 transition (λem = 800 nm) under
direct excitation (λex = 692 nm). Unlikely to the Er3+ lifetime, the addition of a small
fraction of Nd3+ ions leads to a noticeable variation in the 3H4 lifetime (~9%). However,
the presence of Er3+ ions in the double- and triple-doped samples drastically accelerates
the quenching of the transition, and the lifetime reaches almost 23 µs for both cases. This
fact is probably explained by a low energy mismatch of the Tm3+ and Er3+ excited levels,
which results in an efficient Tm3+ − Er3+ energy transfer.
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Figure 7. Luminescence decay curves of one-, two-, and triple-doped samples with the selective
excitation of Tm3+ ions.

Table 3 has the values of energy transfer efficiency for the thulium-containing samples.
In the double-doped Nd3+, Tm3+ nanoparticles, the efficiency reaches 8%. The sample
containing Tm3+ and Er3+ ions showed the highest values of energy transfer efficiency
(η = 78%) among the studied compositions.

Table 3. Values of energy transfer efficiency for the one-, two-, and triple-doped systems with the
selective excitation of Tm3+ ions.

Combination of Tm3+ Ions

Er3+, Tm3+, Nd3+ Er3+, Tm3+ Tm3+, Nd3+

η, % 78 78 8

The emission spectrum of the single-doped YVO4: Nd3+(0.03 at.%) sample displays
peaks assigned to the 4F3/2 − 4I9/2 transition (882 nm). The same emission lines are ob-
served in the double- and triple-doped samples (Figure 8). The low concentration of
neodymium in combination with the low energy transfer efficiency could explain the
absence of erbium and thulium lines in the emission spectra when neodymium is di-
rectly excited.
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4. Conclusions

In this work, we studied the energy transfer in nanocrystalline yttrium vanadate
particles doped with different combinations of three ion types (Er3+, Tm3+, Nd3+). The
nanoparticles were synthesized by the modified Pechini method. The powders are char-
acterized by a high degree of crystallinity with an average size of the CSR in the range
of 60–80 nm with the majority of the particles below 100 nm. The powders have weak
agglomeration and can be transferred into a water solution. Luminescence spectra of
all samples were studied upon the direct excitation of each ion (λex = 526 nm, 692 nm,
and 595 nm for Er3+, Tm3+, and Nd3+, respectively). From the analysis of characteristic
emission lines, we determined the energy transfer between the different ion types in the
double- and triple-doped samples. The luminescence kinetics are presented for the group
of Er-containing samples and the group of Tm-containing samples under direct excitation
into absorption bands of Er3+ and Tm3+, respectively. We found that the thulium ion
displays a more efficient energy transfer than the erbium ion. The efficiency increases
with the appearance of the third doping ion as an additional pathway for the donor’s
energy transfer. The small energy transfer efficiency in binary systems with neodymium
as the second ion are caused by the low concentration of this ion—a small number of ions
causes the same low probability of energy transfer to them, and the high luminescence of
neodymium ions ensures the presence of characteristic emission lines in the luminescence
spectrum even at such low concentrations.

The demonstrated variability of the luminescence spectra and decay lifetimes at
different excitation wavelengths for double- and triple- doped nanoparticles is promising
for nanothermometry and systems of spectral encoding based on the ratio of different
optical parameters. In such a way, nanoparticles of a simple structure, chemical composition,
and morphology demonstrate the advantage in comparison with complicated core−shell
multilayer structures.
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