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Objective: Hearing loss is the most common initial symptom in patients with sporadic
vestibular schwannomas (SVS). Hearing preservation is an important goal of both
conservative and surgical therapy. However, the mechanism of SVS-associated hearing
loss remains unclear. Thus, we performed this systematic review to summarize the current
understanding of hearing loss in the SVS and distill a testable hypothesis to further
illuminate its underlying mechanism.

Methods: A systematic review querying four databases (PubMed, Medline, Embase, and
Web of Science) was performed to identify studies evaluating hearing loss in patients with
SVS and exploring the potential mechanisms of hearing impairment.

Results: A total of 50 articles were eligible and included in this review. After analysis, the
retrieved studies could be categorized into four types: (1) 29 studies explore the
relationship between hearing loss and the growth pattern of the tumor (e.g., tumor size/
volume, growth rate, tumor location, etc.); (2) ten studies investigate the potential role of
cochlear dysfunction in hearing deterioration, including structural abnormality, protein
elevation in perilymph, and cochlear malfunctioning; (3) two studies looked into SVS-
induced impairment of auditory pathway and cortex; (4) in the rest nine studies,
researchers explored the molecular mechanism underlying hearing loss in SVS, which
involves molecular and genetic alterations, inflammatory response, growth factors, and
other tumor-associated secretions.

Conclusions:Multiple factors may contribute to the hearing impairment in SVS, including
the growth pattern of tumor, cochlear dysfunction, impairment of auditory pathway and
cortex, genetic and molecular changes. However, our current understanding is still limited,
and future studies are needed to explore this multifactorial hypothesis and dig deeper into
its underlying mechanism.

Keywords: hearing loss, vestibular schwannomas, acoustic neuromas, molecular mechanism, tumor growth
pattern, cochlear dysfunction, systematic review
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INTRODUCTION

Vestibular schwannomas (VS) are benign tumors originating
from Schwann cells of cranial nerve VIII and represent the most
common tumors in the cerebellopontine angle (CPA). With the
technical advantages in diagnostic techniques and the extension
of human life span, the incidence rate of VS has increased
steadily from 3 to 34 cases per million every year over the past
40 years (1). Sporadic vestibular schwannomas (SVS) are most
common (90%) and develop unilaterally (2). The primary
symptoms of SVS are subtle and featured by hearing and
balance dysfunction. With occult development, the tumor may
affect adjacent nerves, nearby vessels, and brainstem leading to
severe neurological manifestations (e.g., facial paralysis, facial
numbness, choking, dysphagia, hydrocephalus, etc.) (3).

Hearing loss is the initial symptom of SVS and its incidence
exceeds more than 90% at the presentation (4). In most patients,
the impairment is typically sensorineural in the ear ipsilateral to
the tumor, and hearing deteriorates gradually (4). However, in
some cases, hearing loss presents in the unaffected ear and
worsens suddenly (5, 6). In a recent retrospective study
involving 661 SVS patients, the researchers noticed that there
might exist a long-term risk of hearing loss in the contralateral
ear (5). After surgical and radiation therapy, hearing dysfunction
is more prevalent. Hearing preservation, especially in small and
medium size tumors, is one of the primary targets in the SVS
treatment (7, 8).

Generally, the etiology of hearing loss in SVS can be mainly
classified as iatrogenic and tumorigenic. The iatrogenic hearing
impairment is directly associated with adopted surgery and
radiotherapy. Regarding tumorigenic hearing loss, the
underlying mechanism is still unclear. It has been reported
that hearing damage was related to multiple factors, including
the growth pattern of tumors (e.g., size, growth rate, location,
etc.), pathological alteration in the inner ear, aberrant
inflammatory response, gene mutation, aberrant DNA
methylation, etc. (9–13). But the existing data remains
controversial. In this review, we focused on the tumorigenic
hearing loss in SVS patients and systematically reviewed the
literature in the past 20 years to have a landscape view in its
current understanding and distill a testable hypothesis to further
illuminate its mechanism.
Abbreviations: 3D, three dimensional; ABR, auditory brainstem response; AEP,
auditory evoked potential; BEV, bevacizumab; CEA, carcinoembryonic antigen;
CI, cochlear implants; CM ratio, signal intensity ratio between the affected cochlea
and medullar on the FLAIR images; CPA, cerebellopontine angle; DNA,
deoxyribonucleic acid; DPOAEs, distortion products of otoacoustic emissions;
DRs, dead regions; FGF2, fibroblast growth factor 2; FLAIR, fluid-attenuated
inversion recovery; IAC, internal auditory canal; ICaP, intracanalicular pressure;
IL-1ß, Interleukin-1ß; MMP-14, matrix metalloprotease 14; MRI, magnetic
resonance imaging; NLRP3, NLR family pyrin domain containing 3; PDGFA,
platelet derived growth factor alpha; PEX5L, peroxisomal biogenesis factor 5-like;
PSMAL, prostate-specific membrane antigen-like; PTA, pure tone average;
RAD54B, RAD54 homolog B; RNA, ribonucleic acid; SDS, Speech
discrimination score; SRT, speech reception thresholds; SVS, sporadic vestibular
schwannoma; TEN tests, the threshold-equalizing noise test; TFIAC, tumor filling
the inner auditory canal; TNFa, Tumor necrosis factor alpha; VEGF, vascular
endothelial growth factor; VS, vestibular schwannoma.
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METHODS

A systematic search of the published literature was conducted in
the Medline, PubMed, Web of Science, and Embase databases for
articles regarding hearing loss in SVS between January 2000 and
Dec 2020. And a comprehensive search term was developed
using Boolean keywords: “acoustic neuroma(s)”, “vestibular
schwannoma(s)”, “hearing loss”, “hearing impairment”,
“hypoacusis” and “transitory deafness”. After removing the
duplicates via Endnote X9 software (Clarivate Analytics®), two
reviewers independently evaluated these references via the titles,
abstracts, and full-texts to screen for eligible reports based on
predetermined inclusion and exclusion criteria.

To rule out the confounding variables from surgery and
radiotherapy, the included clinical study must contain either
wait-and-scan or presurgical data. The other inclusion criteria
involve: 1) the original reports on the hearing loss in SVS; 2) the
studies published between Jan 2000 and Dec 2020; 3) English
literature. The exclusion criteria involve 1) case reports or series
with the number of patients less than ten; 2) other types of the
literature including reviews, book chapters, conference abstracts,
editorial notes, letters, etc.; 3) the studies reporting
neurofibromatosis type 2, bilateral VS and neoplasms other
than VS; 4) the studies investigating the hearing level after
surgery and radiation; 5) the studies in which the treatment
outcome is served as main findings; 6) unavailable full-texts and
non-English literature. If any disagreement occurred about the
eligibility of the literature, it would be resolved by consensus after
thoroughly discussing with a third researcher.
RESULTS

In total, 4,434 articles were retrieved, including 1,103 studies
from Medline, 1,540 studies from Embase, 748 studies from
Pubmed, and 1,043 studies fromWeb of Science. After removing
2,238 duplicates, 2,196 studies were identified for further
selection via their titles, abstracts, and full-texts, and the
references list of eligible studies was reviewed subsequently for
additional studies. Finally, 50 studies were selected according to
the inclusion and exclusion criteria and were involved in the
systematic analysis (Figure 1). Among them, 29 studies
investigated the relation of tumor growth pattern (e.g., size,
anatomical location, growth rate, etc., Tables 1–3) with
hearing, and ten studies focused on cochlear dysfunction
(Table 4), and two studies looked into the impairment of
auditory pathway and cortex, with the rest nine papers
exploring its molecular and genetic changes (Table 5).
DISCUSSION

The incidence of SVS increases dramatically in recent years
because of the advantages of modern imaging examination,
especially magnetic resonance imaging (MRI). Hearing loss is
present in more than 90% of patients, but its underlying
August 2021 | Volume 11 | Article 687201
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mechanism remains unclear. In this study, we systematically
searched the literature on this topic in the past 20 years, and 50
studies were eligibly included. Based on our primary findings,
the retrieved studies could be categorized into four types: (1) the
studies explored the relationship between hearing loss and the
growth pattern of the tumor (e.g., tumor volume, growth rate,
tumor location, etc.); (2) the studies looked into the pathological
changes of the inner ear (e.g., structural abnormality, elevated
protein levels in perilymph, functional alterations, etc.) and their
potential association with hearing loss; (3) the studies evaluated
tumor-induced impairment of auditory pathway and cortex,
which might lead to progressive hearing deterioration; (4) the
studies investigated the underlying molecular and genetic
mechanism of SVS-associated hearing loss.

Tumor Growth Pattern
In theory, hearing loss in SVS may be caused by dysfunction of
the cochlear nerve. This retrocochlear mechanism was supported
by multiple levels of evidence, including the retrocochlear
changes on the measurement of auditory brainstem response
(ABR), pathologic data demonstrating atrophy and destruction
of the cochlear nerve, morphological and functional alterations
in the auditory pathway, etc. Among these, the growth pattern of
tumors, including tumor size/volume, tumor growth, anatomical
Frontiers in Oncology | www.frontiersin.org 3
location, pressure and tumor filling within the internal auditory
canal (IAC), etc., serves as the primary focus in the studies
regarding hearing loss in SVS. In this review, we retrieved 29
studies on this topic. Among them, 14 papers reported the
association between tumor size/volume and hearing loss
(Table 1), 15 papers focused on tumor growth (Table 2), seven
papers looked into the anatomical location of the tumor
(Table 3) with another four papers regarding the pressure and
tumor filling within IAC. However, the current reports are
conflicting and the association between hearing loss and the
SVS growth pattern is unclear.

Tumor Size/Volume
The hypothesized pathogenesis of hearing loss in SVS involves
mechanical compression of cochlear nerves and brainstem.
Intuitively, the larger tumor may lead to severer compression,
which will affect their blood supply and lead to neurosensory
hearing deficits by subsequent ischemic changes. However, in
this systematic review, the majority of the retrieved studies (8/14,
57.1%) suggest the degree of hearing loss do not correlate with
tumor size/volume (16–23). At the beginning of this millennium,
Sakamoto et al. found no correlation between hearing loss speed
and tumor size at the initial diagnosis (16). However, the sample
size of this study was small and it involved only 31 patients.
FIGURE 1 | Study selection and characteristics.
August 2021 | Volume 11 | Article 687201
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TABLE 1 | The summarization of literature regarding the association between tumor size/volume of SVS and hearing loss.

Main outcomes

KOOS stage

trend of correlation between tumor size and audiographic configuration, with small-sized (<1 cm)
or in normal and rising types, medium-sized (1.0-2.5 cm) tumor in mid- and high-frequency

aring loss, and large-sized (>2.5 cm) tumor in flat and deafness types.

ge T4 hearing loss was greater at 250 and 500 Hz and smaller at 2,000 and 8,000 Hz. But there
s no difference in the loss of PTA. Additionally, SDS was smaller in Stage T4.

correlation was found between tumor volume and annual hearing loss speed.
e hearing loss at diagnosis and during observation was not related diagnostic tumor size, tumor
uced expansion of the internal auditory canal or tumor sublocation (fundus, central or porus).

correlation was found between the extension of tumor to the IAC, tumor size and hearing loss.

ere was no correlation between the amount of change in hearing and the size of the tumor.

racanalicular diameter, intracanalicular length and tumor size did not correlate with PTA.

diometry results did not correlate with tumor size.

small SVS, hearing status at baseline did not correlate with the initial site and tumor size.

reasing tumor size is not directly associated with hearing loss.

rement

mor volume, tumor stage, coronal diameter, and the distance between the lateral tumor end and
fundus correlated significantly with hearing functions.

ximal anteroposterior and mediolateral dimensions correlated with hearing loss. Total tumor
lume calculated via 3D volumetric and ABC/2 methods correlated with hearing loss.

aring impairment was related significantly to the initial tumor volume (≥0.1 ml).

rger initial tumor volume was associated with poorer hearing at baseline and it was also
sociated with the development of non-serviceable hearing during observation.

ports a trend correlation between hearing loss and tumor size/volume; red, the study reports no correlation
re; PTA, pure tone average; SVS, sporadic vestibular schwannoma.
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Authors year Country No. Patients
(M/F)

Tumor size/volume

One dimensional measurement

Day, A. S. 2008 (14) Taiwan 44 (22/22) Small size (<1.0 cm), medium size
(1.0-2.5 cm), large size (>2.5 cm)

A
tu
he

Tringali, S. 2008 (15) France 734 (319/415) KOOS stage T1-4 St
w

Sakamoto, T. 2001 (16) Japan 31 (9/22) Mean tumor size 16.9 mm N
Caye-Thomasen, P. 2007 (17) Denmark 156 (95/61) IAC tumor size (<0.5 cm, 0.6-1.0 cm,

>1.0 cm)
Th
in

Tutar, H. 2013 (18) Turkey 76 (43/33) Small (<20 mm) and large tumor
(>20 mm)

N

Fayad, J. N. 2014 (19) USA 114 (57/57) Mean tumor size 10.5 mm Th

Teggi, R. 2014 (20) Italy 64 (22/42) KOSS stage T1-4 In

Lee, S. H. 2015 (21) Korea 114 (46/68) IAC and extrameatal tumor (<1.0 cm,
1.1-2.5 cm, 2.6-4.0 cm, >4.1 cm)

Au

Cazzador, D. 2017 (22) Italy 81 (41/40) Mean tumor size 6.7 mm In

West, N. 2018 (23) Denmark 124 (58/66) Extrameatal tumors (<1.0 cm, 1.1-
2.0 cm, 2.1-3.0 cm, 3.1-4.0 cm,
>4.0 cm)

In

Three-dimensional measu

Gerganov, V. 2009 (9) Germany 99 (48/51) KOOS stage T1-4 Tu
th

Bathla, G. 2016 (24) USA 41 (15/26) Mean tumor volume 5.5 ml M
vo

Joo, J. 2017 (25) Korea 97 (37/60) Mean tumor volume 1.14 ml H

Patel, N.S. 2020 (26) USA 213 (91/122) Median tumor volume 0.12 ml La
as

The color code: green, the study reports a significant correlation between hearing loss and tumor size/volume; yellow, the study re
between hearing loss and tumor size/volume. 3D, three dimensional; IAC, internal auditory canal; SDS, speech discrimination sco
/

m

a
a

o

d

o

t

c

e

a

e

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


TABLE 2 | The summarization of literature regarding the association between tumor growth rate and hearing loss.

Main outcomes

ear)

rated in the stable tumors but did much faster in the growing tumors (>1 mm/year)

ent was related significantly to tumor growth (≥0.10 ml/year).

between the annual hearing loss and annual tumor growth rate was recognized.
ere not correlated with PTA at the initial diagnosis.

ors (> 1 mm/year) tended to cause progressive hearing loss, but this was not
ificant.

ion (>2 mm/year) was not correlated with hearing deterioration with time.

ze (mm)

cant risk of hearing loss in the growth tumors (> 1 mm).

ore in the growing tumors.

associated with tumor growth in intracanalicular tumors.

ration in the growing tumors was significantly higher, whereas the rate of SDS
ot significant. There was no significant difference in hearing loss progression
s with intrameatal growth only and tumors with extrameatal growth.

hearing deterioration was not significant between the stable and growing tumor.
lyses showed that the PTA deterioration rate did indeed correlate positively with the
rate.

ration occurs in some intracanalicular SVS, regardless of tumor growth.

orrelation was found between increase in volume and change in hearing function.

th tumor growth were not significantly more likely to develop non-serviceable hearing
rvation.

ration presents in non-growing SVS.

is exaggerated in the affected ear despite no vestibular schwannoma growth.

uous correlation between hearing loss and tumor growth; red, the study reports no correlation
imination score; SVS, sporadic vestibular schwannomas.
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Authors year Country No. Patients
(M/F)

Follow-up* (months) Tumor size/volume*

Tumor growth assessed by growth rate (mm/y

Hajioff, D. 2008 (27) UK 72 (32/40) 121 (80-271 m) 9.8 (3-24.4 mm) Hearing deterio

Joo, J. 2017 (25) Korea 97 (37/60) 47 (13-122 m) Mean tumor volume
1.14 ± 2.89ml

Hearing impairm

Sakamoto, T. 2001 (16) Japan 31 (9/22) 33 (6-92 m) 16.9 (3.0-28.8 mm) The association
However, they

Prasad, S. C. 2018 (28) Italy 154 (N.A.) 78 ± 30 m KOOS stage T1-2 The growing tu
statistically sign

Younes, E. 2017 (29) Lebanon 53 (25/28) 32 (12-60 m) IAC SVS: 6.2 mm IAC SVS evolut

Tumor growth assessed by the change of tumor si

Walsh, R. M. 2000 (30) Canada 25 (10/15) 44 (12-194 m) 8.5 ± 3.7 mm There is a signi

Fayad, J. N. 2014 (19) USA 114 (57/57) 77 ± 61 m 10.5 (2-28 mm) PTA declined m

Van Linge, A. 2016 (31) Netherlands 155 (80/75) 40 (9-140 m) IAC and CPA tumors Hearing loss is

Kirchmann, M. 2017 (10) Denmark 156 (95/61) 114(12-300 m) IAC tumors at the
diagnosis

The PTA deteri
decrease was n
between tumor

Caye-Thomasen, P. 2007
(17)

Denmark 156 (95/61) 55 m IAC tumors (<0.5 cm,
0.6-1.0 cm, >1.0 cm)

The difference i
Correlation ana
absolute growt

Pennings, R. J. 2011 (32) Canada 47 (19/28) 43 (8-84 m) IAC tumors Hearing deterio

van de Langenberg, R.
2011 (33)

Netherlands 36 (17/19) 20 (12-67 m) 0.33 (0.05-1.64 ml) No significant c

Patel, N.S. 2020 (26) USA 213 (91/122) 36 m Median tumor volume
0.12 ml

The patients wi
during the obse

No growing tumors

Graamans, K. 2003 (34) Netherlands 49 (24/25) 84 (12-168 m) IAC: 9.8 (3-16 mm)
CPA: 11.1 (6-20 mm)

Hearing deterio

Patel, N. B. 2015 (35) USA 15 (4/11) 12-72 m IAC: 3-14 mm. CPA:
3-15 mm.

Hearing decline

*The item is expressed as median/mean (range) or mean ± standard deviation.
The color code: green, the study reports a significant correlation between hearing loss and tumor growth; yellow, the study reports a trend or ambig
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The researchers also admitted that it was difficult to estimate
tumor diameter in relation to the hearing loss speed because the
tumor size of SVS varied along with their observation in each
individual (16). Similarly, in a later study involving 156
participants, the researchers looked into the small
intracanalicular SVS (the mean largest intrameatal diameter
~6.0 mm). They concluded that the hearing loss at diagnosis
and during the observation was not related to tumor size (17).
Based on the maximum extrameatal diameter in the axial plane
of MRI, Tutar et al. distinguished two SVS groups by maximal
diameter with one group <20 mm and the other one >20 mm,
and they found that there was no significant correlation between
the tumor size and the hearing levels in the pure tone audiometry
(PTA), speech discrimination scores (SDS), and speech reception
thresholds (SRT) (18). Additionally, Lee et al. and West et al.
further grouped SVS according to the extrameatal diameter
(from small SVS <1 cm to giant tumor >4 cm) and found no
significant correlation between hearing function and tumor
grade (21, 23).

In contrast, six studies supported the correlation between
hearing loss and tumor size/volume (9, 14, 15, 24–26). In a pilot
study with a small sample size (n = 44), Day et al. reported a
trend correlation between tumor size and audiometric
configuration with small tumor (<1 cm) in normal and rising
types, medium tumor (1.0-2.5 cm) in mid- and high-frequency
hearing loss, and large tumor (>2.5 cm) in flat and deafness types
(14). At the same time, Tringali et al. performed a large
prospective study involving 734 patients with KOOS stage T1-
4 SVS and observed that hearing loss in stage T4 tumors was
greater at 250 and 500 Hz but smaller at 2,000 and 8,000 Hz of
PTA in comparison with smaller SDS (15). In the following year,
Gerganov et al. analyzed radiological images and preoperative
hearing levels of 99 SVS patients, and they adopted a volumetric
method and found the hearing level was significantly correlated
with the tumor stage and tumor volume (9). Via employing
similar volumetric imaging parameters, Bathla et al. revealed that
the anteroposterior, mediolateral dimensions, and the tumor
volume correlated with both PTA and SDS in small SVS
(mean tumor volume ~5.5 ml) (24). A similar correlation was
replicated in another two volumetric analyses in smaller SVS
(25, 26).

To answer whether tumor size/volume affects hearing
function in SVS, the reasonable solution is performing a meta-
analysis. However, various un-unified parameters regarding the
hearing function and tumor size in those researches make meta-
analysis difficult. Thus, we summarized the key information of
the literature in Table 1. The methodology in tumor size/volume
evaluation seems to affect the correlation outcomes. Generally,
there are two ways to assess tumor size/volume in the retrieved
papers, including one-dimension measurement and three-
dimension volumetric analysis. In the studies adopting the
traditional one-dimensional measurement or simply applying
tumor grade, there were only two trend findings on the
association between tumor size and hearing function (14, 15).
Notably, in all four volumetric analyses, the researchers reached
a positive conclusion. Apparently, in comparison with the direct
measurement of the maximum diameter in one or multiple axes,
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TABLE 5 | The summarization of literature regarding the molecular and genetic change in SVS-associated hearing loss.

Authors Year Country No. Patients Main outcomes

NF2 and other genetic alterations

Lassaletta, L. (46) 2006 Spain 22 Aberrant methylation of tumor-related genes might contribute to SVS development and TP73
methylation was associated with hearing loss.

Lassaletta, L. (47) 2007 Spain 21 Patients with negative cyclin D1 expression had longer duration of deafness (p = 0.02) and
higher 2,000-Hz hearing thresholds (p = 0.04) than cyclin D1+ patients.

Stankovic, K. M. (48) 2009 USA 13 Four genes (PEX5L, RAD54B, PSMAL, and CEA) were possible determinants of HL
associated with SVS, and PEX5L, RAD54B, and PSMAL had low expression and CEA was
overexpressed in SVS patients with poor hearing.

Lassaletta, L. (11) 2013 Spain 51 Patients with NF2 mutations had lower PTA thresholds compared with those without
NF2 mutations.

Inflammation

Dilwali, S. (49) 2015 USA 13 Secreted factors from SVS caused cochlear damage. TNFa was identified as an ototoxic
molecule but FGF2 as an otoprotective molecule in SVS secretions.

Sagers, J. E. (12) 2019 USA 30 NLRP3 inflammasome with IL-1ß was preferentially associated with poor hearing in
SVS patients.

Growth factors and other secreted factors

Dilwali, S. (50) 2013 USA 35 Secretion of FGF2 was higher in good hearing versus poor hearing of SVS based on cytokine
array analysis. FGF2 might be otoprotective in SVS.

Dilwali, S. (49) 2015 USA 13 Secreted factors from SVS caused cochlear damage. TNFa was identified as an ototoxic
molecule but FGF2 as an otoprotective molecule in SVS secretions.

Soares, V. Y. (51) 2016 USA 6 Human SVS cells from patients with poor hearing produced extracellular vehicles that could
damage cultured murine cochlear sensory cells and neurons.

Ren, Y. (52) 2020 USA 23 The expression and activity of MMP-14 in the plasma and tumor secretions correlated with
the degree of hearing loss in SVS patients. MMP-14 at physiologic concentrations impaired
spiral ganglion neuronal fibers and synapses in cochlear explant cultures.
Frontiers in Oncology | ww
w.frontiersin.o
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CEA, carcinoembryonic antigen; FGF2, fibroblast growth factor 2; HL, hearing loss; IL-1ß, interleukin-1ß; MMP 14, matrix metalloprotease 14; NLRP3, NLR family pyrin domain containing 3;
PEX5L, peroxisomal biogenesis factor 5-like; PSMAL, prostate-specific membrane antigen-like; PTA, pure tone average; RAD54B, RAD54 homolog B; SVS, sporadic vestibular schwannoma;
TNFa, tumor necrosis factor alpha.
TABLE 4 | The summarization of literature regarding cochlear dysfunction in SVS-associated hearing loss.

Authors Year Country No. Patients Main outcomes

Structural abnormality of cochlea

Mahmud, M. R. (13) 2003 USA 11 SVS appeared to cause hearing loss by inducing degenerative changes in the inner ear.

Roosli, C. (37) 2012 USA 32 There was significant degeneration of cochlear structures in affected ears with SVS.

Eliezer, M. (38) 2019 France 23 The volume of the utricle in patients with obstructive SVS moderately correlated with the
degree of hearing loss.

Karch-Georges, A. (39) 2019 France 183 Saccular dilation, an MR sign of endolymphatic hydrops, was correlated to hearing loss.

The change of perilymph

Yamazaki, M. (40) 2009 Japan 28 A weak but positive correlation was observed between post-contrast cochlear signal intensity
on 3D-FLAIR images and the degree of hearing impairment.

Lee, I. H. (41) 2010 Korea 34 There was no significant correlation between the signal intensity ratios of the labyrinth and the
degree of hearing loss.

Kim, D. Y. (42) 2014 Korea 102 The relative signal intensity of the cochlea to the corresponding brainstem correlated with the
audiometric findings in patients with IAC SVS but not in patients with CPA SVS.

Functional alteration

Gouveris, H. T. (43) 2007 Germany 39 Amplitudes of the DPOAEs began to decrease even at the early stages of hearing loss in SVS
patients, which suggested a cochlear origin of early HL in these patients

Ferri, G. G. (44) 2009 Italy 183 The results confirmed that sensorineural hearing loss due to SVS could be of sensory and
neural origin. DPOAEs remained just a complementary auditory test.

Byun, H. (45) 2019 Korea 23 Cochlear DRs were detected in hearing losses associated with unilateral SVS using the
TEN tests.
CPA, Cerebellopontine angle; DPOAEs, distortion products of otoacoustic emissions; DRs, dead regions; HL, hearing loss; IAC, intracanalicular or internal auditory canal; SVS, sporadic
vestibular schwannomas; TEN tests, the threshold-equalizing noise test.
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the volumetric analysis of the tumor is more accurate in the
assessment of tumor size. Thus, the potential relationship between
the tumor size/volume and hearing function may exist in SVS, but
further studies with a larger sample size and a more accurate
volumetric method are needed to illuminate this hypothesis.
Tumor Growth
Tumor growth is another important physical feature of SVS. In a
meta-analysis involving more than 4,000 patients, the average
growth rate of newly diagnosed SVS is estimated to be 0.99–1.11
mm/year or 0.1–0.15 ml/year (53). The rate was even higher in a
growing tumor and could be around 3 mm/year (53). However,
whether tumor growth contributes to hearing deterioration is
still in debate.

First of all, hearing loss could aggregate in the non-growth
SVS. Graamans and his colleagues performed a retrospective
investigation and analyzed the course of PTA and SDS along
with the conservative treatment of non-growing tumors. They
found that PTA revealed a significant increase in thresholds at
almost all frequencies with a prominent decrease in speech
discrimination in static SVS (34). Similar findings were
reported by Patel et al. in 2015, which suggested tumor growth
was not a requirement of hearing deterioration (35).

To further explore whether the hearing loss would aggregate
in the growing tumors, the researchers performed the analysis in
small or IAC tumors. In their rationale, tumor growth within the
internal auditory canal would increase pressure on the auditory
nerve and lead to hearing dysfunction. Unlike CPA tumors, the
space in the IAC is extremely limited, and a tiny increase of
tumor volume may result in a dramatic change of pressure.
Under this logic, small SVS, especially within IAC, serve as a
better subset to explore hearing loss and tumor growth.
However, the current results remain controversial.

In the studies applying linear tumor growth rate, Walsh et al.
and Hajioff et al. divided SVS patients into growth (>1 mm/year)
and no-growth (≤1 mm/year) groups to analyze the difference in
the change of mean PTA and SDS, and they found that there was
a significant risk of hearing impairment in the growth tumors
(27, 30). Additionally, Sakamoto et al. calculated annual tumor
growth and annual hearing loss rate (based on PTA, dB/year)
and recognized a correlation between the two parameters.
However, they were not associated with PTA at the initial
diagnosis (16). Prasad et al. further distinguished the fast growth
group (≥3 mm/year) and analyzed hearing deterioration among
the no-growth, slow growth (1-3 mm/year), and fast growth
groups. He observed that the growing tumors tended to cause
progressive hearing, but the findings were not statistically
significant (28). Another study evaluated the tumor growth of
97 SVS patients and compared the relationship between the tumor
growth rate and hearing outcome via univariate and multivariate
analysis. They concluded that hearing impairment was related
significantly to rapid tumor growth (≥0.10 cm3/year) (25).
Conversely, Younes et al. used 2 mm/year to identify the
growing tumor, but no significant association was spotted
between tumor growth and hearing loss (29).
Frontiers in Oncology | www.frontiersin.org 8
In the rest studies, researchers applied linear or volumetric
changes of the tumor size to assess the tumor growth. In 2007,
Caye-Thomasen et al. analyzed the spontaneous course of
hearing in 156 patients with IAC SVS. The correlation analysis
showed that the PTA deterioration rate correlated positively with
the absolute growth rate (17). With longer observation, the same
research group also indicated the PTA deterioration in the
growing tumors was significantly higher (10). Similarly, Fayad
et al. observed a significant decline of the PTA at 0.5, 1, 2, 3 kHz
in the growing tumors (tumor increase >2 mm, mean PTA
decrease = 28.8 dB) than those that did not (mean PTA decrease =
16.5 dB), but there was no correlation between the amount of
change in hearing and the size of the tumor. Additionally, the
annual hearing decreasing rate, which was calculated based on the
PTA, was reported to be significantly higher in the growing SVS
(31). In contrast, a retrospective case series involving 47 IAC SVS
patients exhibited no significant difference in hearing loss among
growing, stable, and shrinking tumors (32). In the rest two
negative reports, the volumetric analysis was applied to assess
the change in the tumor size accurately, but still, the correlation
between hearing deterioration and tumor growth was not
significant (26, 33).

Tumor Location
Tumor location is also a key physical property of SVS and its
association with hearing loss has been discussed widely.
Generally, SVS can be classified as IAC tumors when they are
only intracanalicular and as CPA ones when the tumors extend
extracanalicularly and locate mainly in CPA. In this review, we
found four studies comparing the difference in hearing loss between
IAC and CPA SVS. In a retrospective study involving 72 patients,
the researchers spotted that hearing deteriorated more significantly
in CPA tumors (27). Besides, Linge et al. observed that the IAC SVS
patients presented a lower PTA at the frequency of 0.5, 1, 2, and
4 kHz than the tumors located in CPA (31). In comparison,
Lee et al. observed that there was no significant association
between hearing function (e.g., PTA, SDS, tinnitogram findings,
and ABR) and tumor sites (e.g., IAC alone, IAC+CPA, IAC+CPA
+brainstem compression) (21). Similarly, another prospective study
involving intracanalicular and extracanalicular SVS (tumor size
<10mm) demonstrated that hearing status at baseline did not
correlate with the initial site of the tumor (22). Thus, the results
regarding hearing loss in IAC and CPA SVS are still in debate. As
we knew, few SVS originate extracanalicularly alone, which makes it
difficult to compare the hearing function between the tumor
originated purely in IAC and CPA. Additionally, CPA mass
usually has a much larger tumor size than IAC mass, which
suggests tumor size would be another confounding factor during
the analysis. Thus, we should interpret the two positive reports
carefully. The association between hearing function and tumor site
(CPA vs. IAC) needs more solid evidence to support.

Generally, SVS usually arises from the glial-Schwann cell
junction within IAC, and current literature fails to establish the
association between the origin of tumor and hearing. For the IAC
SVS, researchers proposed that the tumors could be categorized
into three subgroups, including fundus tumors (no cerebrospinal
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fluid [CSF] between the tumor and cochlea), central tumors (CSF
observed in both ends of IAC) and pours tumors (CSF only
between tumor and cochlea) (17). However, there was no
difference in hearing deterioration at diagnosis and observation
among these three subgroups (17). Likewise, another two studies
found no significant differences in hearing loss among SVS
grouped by subsite in the IAC (32, 36).

Pressure and Tumor Filling Within IAC
Although the association between hearing and SVS subsite
within IAC was weak, some research groups measured the
pressure in the IAC and tried to correlate it with hearing
outcomes. Badie et al. performed a pilot study and measured
the preoperative intracanalicular pressure (ICaP) in 15 patients
undergoing resection of SVS. Their findings suggested that ICaP
directly correlated with the amount of tumor within IAC and a
trendy inverse correlation between ICaP and hearing function
(54). To further validate this correlation, they involved more
patients and enriched the studies with preoperative auditory
evoked potential (AEP) recordings. This time, the correlation
between ICaP and hearing deterioration reached a significant
conclusion, and they also spotted that the wave V latency of
preoperative AEP recordings was associated with the change in
ICaP, which suggested the pressure caused by tumor filling in the
IAC might contribute to the hearing loss in SVS (55).

The measurement of ICaP is invasive and can be performed
only during the surgery, which limits its application. Thus, some
researchers turned to evaluate the extent of the tumor filling
within IAC. This parameter directly correlates with ICaP and can
be evaluated in MRI scans without invasive operation, which
seems to be a promising alternative to ICaP. As noted in a recent
report, Zhou et al. proposed a new MRI grading biomarker based
on the percentage of tumor filling the inner auditory canal
(TFIAC) to predict the hearing loss in SVS and defined the
four grades accordingly with low TFIAC (<25%) in Grade I and
high TFIAC in Grade IV (>75%). They found that the patients in
TFIAC grade III experienced more significant hearing
deterioration than Grade I patients, and TFIAC grade IV
patients also had a higher rate of non-serviceable hearing (56).
Besides, in another MRI study aiming to identify practical
predictors of hearing loss in the conservatively managed SVS,
the researchers considered the fundal cap as a candidate. It was
measured as the maximal distance between the lateral most
aspect of the tumor to the fundus or the lateral most aspect of
the internal auditory canal, and its size was correlated with the
word recognition score over time (57). It is valuable for future
studies with larger sample size and longer observation to verify
the association between hearing loss and tumor filling
within IAC.

Cochlear Dysfunction
Cochlear dysfunction is another leading cause of hearing loss in
SVS. The cochlea is a subtle auditory organ located in the core of
temporal bone. In this review, we found ten studies investigating
this topic, including four reports on the structural abnormality of
Frontiers in Oncology | www.frontiersin.org 9
the cochlea (13, 37–39), three reports on the pathological
changes in perilymph (40–42) and three reports regarding the
functional evaluation of cochlea (43–45) (Table 4).

First of all, SVS may lead to structural abnormality of the
cochlea and affect hearing function. Histologically, degeneration
and loss of spiral ganglion cells are the prominent pathologic
finding in the cochlea ipsilateral to the tumor (13, 58, 59).
Autopsy analysis of 11 SVS patients indicated a significant
decrease in spiral ganglion cells, loss of inner and outer hair
cells, degeneration of the stria vascularis, and the spiral ligament
in the tumor ear with poor hearing (13). Later, Roosli et al.
confirmed these pathological findings and further detected a high
rate of precipitates in the endo- and peri-lymphatic spaces (43%)
with endolymphatic hydrops in 25% of SVS patients (37).
However, due to the limitation of the autopsy samples, the
correlation analysis between the cochlea degeneration and
hearing loss rarely works. Recently, endolymphatic hydrops,
which could be detected in MRI scans, was correlated with
poor hearing in SVS (60). Eliezer et al. analyzed T2-weighted
MRI scans in 23 patients with obstructive SVS, which revealed a
moderate correlation between hearing loss and the volume of the
vestibular endolymphatic space and utricle (38). Using the same
MRI sequence, another research group performed the study in
183 SVS patients and noticed that saccular dilation was common
in SVS (28% unilaterally and 15.7% bilaterally), and a significant
association was found between saccular dilation and progressive
sensorineural hearing loss (39).

Other than the structural abnormality of the cochlea, several
studies observed elevated levels of protein in the perilymph of
SVS, which exhibited a high fluid-attenuated inversion recovery
(FLAIR) signal or a decreased signal on T2-weighted MRI scans
(60–62). In one small cohort study involving 28 SVS patients,
Yamazaki et al. calculated the signal intensity ratio between the
affected cochlea and medullar on the FLAIR images (CM ratio).
Notably, the CM ratio was higher in the tumor ear, and this
elevation was positively correlated with the degree of hearing loss
(40). Later, a similar correlation was replicated in a study with a
larger sample size in the IAC tumors (42). In contrast, another
MRI investigation regarding 3D FLAIR imaging in SVS failed to
exhibit the correlation between hearing function and intensity
ratio of the labyrinth in the tumor ears, despite significant signal
changes observed in the cochlea (41). Thus, further investigations
are needed to validate the association between hearing levels and
the change of perilymph in SVS patients.

In the functional assessment of cochlea, there is evidence that
supports the cochlear origin of hearing loss in SVS. In a study
applying the distortion products of otoacoustic emissions
(DPOAEs), DPOAEs amplitudes in the tumor ear were
decreased compared with the contralateral ear at multiple
frequencies in SVS patients with early hearing loss (43). The
DPOAEs are evoked OAEs, which is to test the functional
integrity of the cochlea’s outer hair cells. Alterations in the test
suggested the cochlea was involved in SVS inducing hearing loss.
With more participants, Ferri et al. classified the SVS patients
according to DPOAEs and auditory measurement. In most SVS
(~75%), DPOAEs were “compatible” with hearing levels (44).
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Additionally, Byun et al. applied non-invasive threshold-
equalizing noise (TEN) tests to evaluate the cochlear dead
region, and more non-functional regions were detected in the
tumor ear, which was associated with hearing loss (45).

Impairment of Auditory Pathway
and Cortex
Besides the direct mechanical insults caused by tumors and
secondary cochlear dysfunction, the rest sections of auditory
pathway in brain can also be affected by SVS. Based on diffusion-
weighted MR imaging, Rueckriegel et al. first visualized the
different sections of the auditory pathway between the inferior
colliculus and the auditory cortex in SVS patients by applying
probabilistic tractography. Moreover, they observed a significant
volume decrease in the lateral and diencephalic sections of the
auditory pathway on the contralateral hemisphere (63). In the
same year, another group of researchers performed voxel-based
morphometry to evaluate the volume changes of gray matter in
42 SVS patients compared with 24 healthy controls (64). They
observed that the gray matter volume of SVS patients increased
significantly in the somatosensory and motor systems while
decreased in the auditory and visual cortex. Notably, the GM
volume decreases in the primary auditory cortex, including the
superior temporal gyrus and Heschl’s gyrus, and it correlated
with hearing impairment, which suggested SVS could have a
profound effect on brain plasticity and contributed to hearing
loss (64).

Molecular and Genetic Changes
However, some patients develop audiometric threshold shifts
despite the lack of tumor growth. Besides, Stankovic et al. found
that patients with abnormal baseline in the ipsilateral hearing
demonstrated a higher likelihood of developing moderate hearing
loss in the ears contralateral to the lesion (48). Therefore, additional
intrinsic biological differences should exist among SVS patients,
which leads to different degrees of hearing dysfunction. Recently,
several pathogenic mechanisms have been identified to contribute
to SVS-associated hearing loss, including genetic alteration, growth
factors, inflammatory response, etc. (Table 5).

NF2 and Other Generic Alteration
In 1993, the NF2 gene was first identified in the patient with
neurofibromatosis type 2 and was regarded as the classic gene
involving the tumorigenesis of SVS (65). To date, more than 200
genetic alterations have been found in the NF2 gene, including
single-base substitutions, insertions, missense, deletions, DNA
Methylation, etc. (66). The product of the NF2 gene is merlin,
which is known for its tumor-suppressing properties.
Physiologically, merlin can bind to DCAF1 and suppress cell
proliferation via inhibiting E3 ubiquitin ligase CRL4 (67). In the
majority of SVS, merlin is inactivated and favors tumor
development. Interestingly, one study found that NF2 gene
mutation was associated with hearing loss in SVS patients (11).
In this research, Lassaletta et al. analyzed DNA in 51 surgical
samples after the removal of unilateral SVS, and they observed
that the NF2 mutations had lower mean corrected PTA
thresholds compared with those without the mutations, which
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was thought to be due to NF2-related growth pattern (11).
However, the relationship between the NF2 gene and the
hearing function in SVS still needs more verification.

Besides the NF2 gene, another six genes, including TP73,
PEX5L, RAD54B, PSMAL, CEA, and CCND1, were associated
with hearing deterioration in SVS (46–48). Lassaletta et al.
investigated the methylation status of 16 tumor-related genes
in SVS patients, and the incidence of TP73 methylation was 9%.
Compared with the unmethylated patients, the corrected PTA
was significantly higher in the methylated patients (43 dB vs. 19
dB, p=0.04) (46). Additionally, they also exhibited that Cyclin D1
was expressed in more than half of SVS, and the negative Cyclin
D1 expression was associated with a longer duration of deafness
and higher 2,000-Hz hearing PTA thresholds (47). In another
study regarding the whole-genome expression profiling of SVS,
elevated expression of CEA and decreased expression of PEX5L,
PSMAL, and RAD54B were associated with poor hearing (48).
Together with the potential link between CEA and peroxisome,
the altered expression of PEX5L, which was thought to modulate
the import of peroxisomal protein, suggested the peroxisomal
dysfunction might contribute to hearing loss in SVS. The other
two genes (RAD54B and PSMAL) may have indirect roles and
cause the inner ear degeneration (48).

Inflammatory Response
Previous studies suggested the maladaptive activation of
inflammation contributed to the SVS pathogenesis. Specifically, in
the histological examination, prominent immune infiltration could
be observed in the majority of SVS, which involved microglia/
macrophage, lymphocytes, neutrophils, etc. (68) Further,
cyclooxygenase 2, a key enzyme participating in prostaglandin
synthesis and major modulator of the inflammation, is strongly
expressed in the SVS tissue specimen and was associated with tumor
proliferation rate (69). However, the association between
inflammation and hearing deterioration has been rarely explored,
and there are only two papers regarding this topic. In the ex vivo
model of murine cochlear explant, the extent of cochlear explant
damage caused by tumor secretions correlated with the
corresponding hearing function in the SVS subjects. Further
analysis of tumor secretions identified tumor necrosis factor-alpha
(TNFa) as the ototoxic molecule, and its neutralization in SVS
secretions could partially reverse hair cell loss, which highlighted the
role of TNFa in the cochlear origin of hearing loss (49). Recently,
Stankovic et al. exhibited the over-expression of multiple critical
genes associated with the inflammasome in SVS, and the two
associated proteins (NLRP3 and IL-1ß) were preferentially present
in tumors with poor hearing (12).

Growth Factors and Other Secreted Vesicles
Other than inflammatory cytokines, growth factors and other
tumor-associated secretions have been identified in SVS-
associated hearing loss. Among growth factors, platelet derived
growth factor alpha (PDGFA), and fibroblast growth factor 2
(FGF2) were reported to be associated with hearing levels among
SVS (49, 50, 70). In a correlation study between cDNA
microarray expression and SVS clinical features, PDGFA,
originally identified as mitogenic factors for smooth muscle
August 2021 | Volume 11 | Article 687201

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Gan et al. Hearing Loss in Vestibular Schwannomas
cells, was inversely correlated with hearing loss (70). Dilwali et al.
performed a comparative screening of molecular biomarkers in
SVS and observed that SVS with good hearing secretes a higher
level of FGF2 (50). Furthermore they validated the otoprotective
role of FGF2 in cochlear explants (49). In addition, vascular
endothelial growth factor (VEGF) was another potential factor
associated with poor hearing in SVS. In neurofibromatosis type
2, VEGF was elevated and reported to contribute to tumor
growth and hearing loss (71). In clinical and experimental
research, anti-VEGF treatment could improve hearing function
via normalizing the tumor vasculature, improving vessel
perfusion, and delivery of oxygenation (71, 72). In sporadic
SVS, the majority of tumors expressed VEGF and its receptors,
which correlated with tumor growth, disease recurrence, and
preoperative irradiation (73). However, there is no study focused
on the association between hearing and VEGF, which needs to
investigate in future studies.

Additionally, extracellular vesicles and matrix metalloprotease
14 (MMP-14) in tumor-associated secretions were found to induce
hearing loss in SVS. Soares et al. observed that Human VS cells
could secret extracellular vesicles and transfer tumor-derived RNAs
to cochlear cells. These extracellular vesicles from VS associated
with poor hearing induced the apoptosis of spiral ganglion cells and
destroyed the cultured cochlear explants (51). Recently the
expression and activity of MMP-14 in the plasma and tumor
secretions were observed to be correlated with the degree of
hearing loss in VS. Moreover, in an ex vivo model of cochlear
explant cultures, MMP-14 induced the damage of spiral ganglion
neuronal fibers and synapses at physiologic concentrations (52).

Current Treatment Options
The classic treatments for SVS are microsurgery and radiotherapy,
which can introduce direct injury to the cochlea nerves and lead to
a profound ipsilateral hearing decrease. To minimize the
iatrogenic hearing impairment and facilitate hearing
rehabilitation, new techniques (such as detailed presurgical
planning, neuromonitoring of the cochlear nerve, cochlear
implantation, fractionated stereotactic radiotherapy, etc.) are
proposed to favor hearing preservation (7, 74–77). While the
intraoperative monitoring of facial nerve has become a standard
technique in the surgery of SVS, some clinicians tried
intraoperative brainstem auditory evoked response and cochlear
compound action potentials to identify the location of cochlear
nerves andmonitor its functional status (76, 78). Current literature
supports its therapeutic value on hearing preservation in small-
medium-sized tumors, but its role in the large SVS remains to be
determined (76, 77, 79). Cochlear implants (CI), as the most
successful neural prosthesis, also play an important role in the
hearing rehabilitation for SVS patients after surgery. CI can be
placed either simultaneously with the resection of SVS or in a
delayed manner, but the timing of this procedure seems not to
influence overall hearing outcomes (80–82). A recent systematic
including 29 studies with 93 patients indicated that servable
hearing with CI is feasible after VS surgery if the cochlear nerve
is anatomically preserved (82). Among those patients, 83.9% used
the CI device daily and 54.8% achieved open-set speech (82).
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For the SVS patients in the observation, the treatment options
for hearing loss are still limited. Carlson et al. implanted
conventional CI arrays in nine patients with intracochlear and
intralabyrinthine VS, and seven patients achieved good open-set
word recognition after 21 months of clinical follow-up. However,
in this study, the authors intentionally left VS in situ to ensure
the integrity of the cochlear nerve, which caused additional
concerns about tumor progression and limited its clinical
applications (83). Thus, despite that CI may provide new
options for hearing restoration in SVS, it can only serve as a
backup if the patients have no other options (84). In contrast,
there is emerging evidence that supports the otoprotective effect
of Bevacizumab (BEV). As an inhibitor of the VEGF pathway,
BEV was initially reported to improve hearing in patients with
NF2 and contribute to tumor shrinkage at the same time (71, 85).
In a recent case report, Karajannis et al. administrated a low dose
of Bevacizumab (2.5 mg/kg every 4 weeks) in an adult female
patient with progressive SVS (86). Notably, after continuous
therapy for 33 months, the tumor exhibited a 67.8% shrinkage in
comparison with the pretreatment baseline and the patient
maintained normal hearing in the ipsilateral ear (86).
Therefore, BEV may be a novel and effective treatment
alternative for SVS patients with hearing loss, and it would be
valuable for future research to validate its therapeutic effect.
CONCLUSIONS

Overall, multiple factors seem to be associated with hearing
impairment in SVS. The growth pattern of tumor, cochlear
dysfunction, impairment of auditory pathway and cortex,
genetic and molecular alteration contribute to hearing
deterioration. First of all, the growth pattern of the tumor may
play a role in the pathogenesis of hearing loss. Larger tumor size,
faster tumor growth, and more tumor extension within IAC
possibly aggregate the mechanical compression of the cochlear
nerve and brain stem, which impairs the transmission and
processing of auditory signals. Secondly, SVS may also result in
cochlear damage, characterized by structural abnormality and
high protein levels in the perilymph, which subsequently have a
negative influence on the pickup of auditory stimulus and
generation of nervous impulses. Thirdly, the growth pattern of
SVS, cochlear dysfunction, and long-term hearing dysfunction
may impair and reframe the auditory pathway and cortex, which
aggregate hearing loss. Fourthly, genetic alteration in SVS (e.g.,
DNA mutations, abnormal methylation, etc.) can lead to
dysregulation of multiple genes (e.g., NF2, TP73, etc.), which
promote cell proliferation, impair DNA repair, cause
peroxisomal dysfunction, etc. Besides, the tumor cells in SVS
can secret extracellular vesicles, proinflammatory cytokines, and
growth factors, which exert harmful effects via paracrine pathways
in both cochlea and brain.

Based on our findings, we proposed multi-level hypotheses
that genetical and molecular changes in SVS might influence the
various cellular activity (e.g., cell proliferation, peroxisomal
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dysfunction, DNA repair, angiogenesis, etc.) and subsequently
promote the secretion of ototoxic factor and tumorigenesis
with distinct tumor growth pattern, which might impair the
auditory related structures (e.g., cochlea, cochlear nerves,
auditory pathway, cortex, etc.) via either directly mechanical
Frontiers in Oncology | www.frontiersin.org 12
compression or cytotoxicity via a paracrine pathway (Figure 2).
However, our current understanding of this topic is still
limited, and future clinical and experimental studies should
further test this multifactorial hypothesis and dig deeper into
its underlying mechanism.
FIGURE 2 | Hypothesized mechanism regarding hearing loss in sporadic vestibular schwannoma. Multiple factors may contribute to the hearing impairment in SVS,
including the growth pattern of tumor, cochlear dysfunction, impairment of auditory pathway and cortex, genetic and molecular changes. Based on our findings,
we proposed a multi-level hypothesis that genetic and molecular changes in SVS might influence the various cellular activity (e.g., cell proliferation, peroxisomal
dysfunction, DNA repair, angiogenesis, etc.) and subsequently promote the secretion of ototoxic factor and tumorigenesis with distinct tumor growth pattern, which
might impair the auditory related structures (e.g., cochlea, cochlear nerves, auditory pathway, cortex, etc.) via either directly mechanical compression or cytotoxicity
via a paracrine pathway. Color code: red, the factors contribute to hearing loss; green, the factors are associated with good hearing.
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