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Abstract: The genus Castanea includes several tree species that are relevant because of their
geographical extension and their multipurpose character, that includes nut and timber production.
However, commercial exploitation of the trees is hindered by several factors, particularly by their
limited regeneration ability. Regardless of recent advances, there exists a serious limitation for the
propagation of elite genotypes of chestnut due to decline of rooting ability as the tree ages. In the
present review, we summarize the research developed in this genus during the last three decades
concerning the formation of adventitious roots (ARs). Focusing on cuttings and in vitro microshoots,
we gather the information available on several species, particularly C. sativa, C. dentata and the
hybrid C. sativa × C. crenata, and analyze the influence of several factors on the achievements of the
applied protocols, including genotype, auxin treatment, light regime and rooting media. We also pay
attention to the acclimation phase, as well as compile the information available about biochemical
and molecular related aspects. Furthermore, we considerate promising biotechnological approaches
that might enable the improvement of the current protocols.
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1. Introduction

The genus Castanea belongs to the Fagaceae family and includes seven species of deciduous trees
and shrubs [1]. Castanea spp. trees are members of a genus with great interest, due to their geographical
extension, ecological relevance and different human services, that include timber, nut production and
other uses [2], highlighting their multipurpose character. European chestnut (Castanea sativa Mill.) is a
major tree species covering more than 2.5 million hectares, mainly in countries around the Mediterranean
basin [3]. The American chestnut [(Castanea dentata Marsh) Borkh.] suffered an enormous decline in
the 20th century due to the chestnut blight canker disease caused by the fungus Cryphonectria parasitica
[(Murril)Bar], as well as by the ink disease produced by the oomycete Phytophthora cinnamomi (Rands).
European chestnut has also been extensively affected by Phytophthora spp. causing high mortality of
trees in natural stands. Chinese chestnut (C. mollissima Blume) is responsible for more than 80% of
the world chestnuts production, and its cultivation is extensive in China and other Asian countries.
Nonetheless, they produce nuts of poorer quality than European chestnut. The Japanese chestnut
(C. crenata Sieb and Zucc.) is a small tree native of Japan, where it is widely spread. Both Asian
species are ink- and blight canker-resistant, but at different levels. This natural resistance has been
used for more than a century for the generation of hybrid trees that could carry the useful traits of the
menaced species, but at the same time be able to resist the presence of those pathogens [1]. Moreover,
plant improvement, including biotechnological approaches in this genus, have been focused on the
generation of tolerant/resistant trees [4,5]. On the other hand, the Asian species have long suffered
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the effects of the chestnut gall wasp (Dryocosmus kuriphilus), an insect that can cause severe damage
and death of the infested trees. This insect has also become a menace for the European and American
chestnuts, as it has been introduced in their planting areas in the last decades, probably through the
introduction of Asian-origin material for the generation of hybrids. Resistance to chestnut gall wasp
has not been identified so far in C. sativa, but it has in other Castanea species [6].

Vegetative propagation of chestnut is still difficult to achieve because conventional methods
like grafting are time-consuming or unsuccessful due to incompatibility between the scions and the
rootstocks [7]. Although rooting of cuttings is an essential methodology in the clonal propagation
of selected genotypes, practical approaches based on de novo root formation are limited by the
poor rooting ability of these species, since chestnuts are considered difficult-to-root [8,9]. Moreover,
there is an early decline in the rooting potential of cuttings with increasing age of the mother plant.
The maturation-related loss of rooting competence seems to occur rapidly during plant development [10],
but the molecular mechanisms behind this process are not defined. Micropropagation of material that
retains juvenile characteristics (basal shoots, stump sprouts) appears to be the most effective approach
for clonal propagation of elite genotypes that can only be selected during their adult phase [11,12].
However, due to its long history of seedling cultivation and hybridization, the species of Castanea have
produced many local genotypes and great heterozygosity [1], including a genotype-dependent rooting
response. This behavior hinders the establishment of general protocols for the genus, and specific
research is required for every species, and generally for every genotype. With this troublesome
background, efforts have moved towards the optimization of the existing protocols for both juvenile
and mature cuttings. Besides recent progress, commercial vegetative propagation of chestnut species
is still a bottleneck for the forest industry.

In the present review, we analyze the achievements in the formation of adventitious roots (ARs)
in chestnut species and hybrids, with greater emphasis in the European and American species because
most of research related to adventitious rooting (AR) has been done in these species. The production
of ARs in chestnut is an essential step in the propagation of selected genotypes which show interesting
market-related traits, like high-quality nuts or biomass production, or for the multiplication of trees
that show resistance to the specific diseases mentioned. We mainly focus on ARs developed from
stem cuttings after auxin treatment, which generally initiate from cells neighboring vascular tissues,
mostly cambium and parenchyma cells [13]. The origin of spontaneous roots developed in auxin
untreated shoots that were maintained in proliferation medium was also investigated. We also take
into account the biochemical and molecular findings in these species that might pave the way for
biotechnological progresses.

2. Current Knowledge on Adventitious Root Formation

The ability of plants to form ARs is an essential developmental trait in plant biology. It is a
complex physiological and molecular process that allows the generation of roots from tissues other
than the primary root (mainly stems and leaves), whether constitutively or in response to different
types of stress such as wounding and flooding [14]. This somatic developmental plasticity of plants
enables them to adapt to changes in their environment, respond to stressful situations and recover from
traumatic damages. Due to its relevance for vegetative propagation, AR has been the focus of extensive
research in monocot and dicot model species, with recent reviews providing current state-of-the-art
information [14–16]. A significant knowledge of the physiological and molecular basis of the process
has been collected, however several questions still need to be addressed. For instance, its similarity
with primary and lateral root formation, the influence of genetic variability or the extent to which
knowledge in some species can be transferred to others [15–17]. Furthermore, analysis of the AR
formation in woody cuttings lags behind that of model species, as other factors such as maturation and
recalcitrance to regeneration, or functional limitations like the lack of mutant phenotypes and proper
transformation and regeneration protocols hamper the analysis of AR formation in these species [18].
Nonetheless, recent reviews have gathered the available information for cuttings [17–19], pinpointing
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the complex interaction between hormones and their cross-talk (mainly auxins, jasmonic acid and
ethylene), the nutritional/metabolic state and the epigenetics profile. Recalcitrance of tissues in terms
of rooting competence is a major limitation in the clonal propagation of many species, and it is deeply
related to their maturation state [20].

ARs initiate from a variety of somatic cell types exhibiting distinct degrees of differentiation,
plasticity, or competence for root regeneration, depending on the species, the explant type,
the maturation stage or the inductive stimuli, among other factors. The process of AR is divided into
three main phases that seem to be conserved in every species analyzed [15,21,22]. In general terms,
tissues forming ARs go sequentially through three developmental stages: induction, initiation and
expression. Hormonal requirements and morphological changes in each phase are similar in most
species studied so far. During the induction phase specific target cells undergo cellular reprogramming,
acquire rooting competence, and initiate a root developmental program in response to the root
induction stimuli. If the target cells are root-competent (i.e., cambium cells) they can lead directly to
the formation of root initials in the presence of an inductive factor [23]. However, in many woody
species, ARs initiate from cells that show a certain degree of differentiation and from cells that are
not pre-specified for this root developmental pathway. In that case, an early dedifferentiation phase
taking place before [20–22] or at the early stages of the induction phase [23] has been proposed.
Dedifferentiation is the process whereby the responsive cells revert to their previous status [24] or
to a stem cell-like state [25] and, eventually, increase their developmental potential [26]. In this
sense, somatic embryogenesis could be considered a genuine dedifferentiation process [24]. However,
whether the progression of differentiated somatic cells towards a less differentiated state is a real
dedifferentiation or just a transdifferentiation is still a matter of debate [24]. Indeed, some authors
suggest that both dedifferentiation and transdifferentiation are synonymous terms referring to the
enhanced developmental potency of the cells, and that cellular reprogramming might be a more accurate
description [26]. This cell reprogramming might be activated by stress (i.e., wounding), leading cells
to free from their fate restriction [27]. According to the model proposed by Da Costa et al. [23],
wounding is the initial event of the AR process in cuttings, triggering hormonal changes, and the
subsequent activity of the auxin transport machinery would lead to the asymmetric accumulation of this
hormone between neighboring tissues. By these means, the proper signaling cascades area activated
by auxin in the cells where the hormone concentration reach a peak, and these cells switch their genetic
program to the formation of ARs. It is generally accepted that both wounding and exogenous auxin are
required for AR in cuttings [23], and results in chestnut support this idea (see below). The establishment
of a localized auxin maxima suggests a significant role for the auxin transport proteins, that might be
the prevailing constituent governing the cellular origin of the new root. Asymmetric accumulation
of auxin between neighboring tissues would be the required signal to activate cell proliferation [28].
At the initiation phase, root initial cells begin to divide and organize into a dome-shaped structure that
will become the meristemoid. For the correct founding of the polarity of the new organ, a reorientation
of the cell division plane is necessary [18], emphasizing the potential role of microtubules and cell-wall
remodeling enzymes in the development of ARs [19]. During the expression stage, the autonomous
new organ grows across the different tissues of the plant towards the epidermis, and finally emerges
from the stem [22]. It is generally accepted that a transient peak of endogenous auxin levels determines
the end of the induction phase and the beginning of the initiation phase [29]. Whereas low auxin levels
are required during the initiation phase, those levels increase again during the expression phase [29].
Recent works are focusing their attention on the roles played by other hormones, as well as their
intricate interactions with auxin in every phase of the process [13,19].

3. Developmental Phases of Adventitious Root Organogenesis in Chestnut: Histological Analysis

As previously mentioned, the developmental phases of AR have been described in apple
cuttings [22] and similar sequential phases were described in other species [30,31]. In this section we
will mainly focus on the anatomical studies performed during the formation of auxin induced ARs in
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chestnut microshoots. Besides, some information is also provided on the origin of spontaneous roots
developed in auxin untreated shoots.

In C. sativa, juvenile-like microshoots (BS; derived from basal shoots) and adult microshoots
(C, derived from crown branches) were used in the analysis performed by Ballester et al. [32]. As shown
in Figure 1, in auxin treated BS microshoots ARs initiated from cells belonging to the cambium or
neighboring zones, including xylem or phloem parenchyma cells [32,33], as reported in other species.

Figure 1. Histological analysis during the adventitious root formation in juvenile-like C. sativa
microshoots treated with 4.9 mM of indole-3-butyric acid (IBA). (a) Periclinal (a) and anticlinal (b)
mitotic divisions (black arrows) in the cambial zone (ca) after 24 h of IBA treatment. (b,c) Cell activation
and cell division increase in the cambial and the phloem (ph) areas (yellow arrows) after 72 h (c)
of treatment. (d) At day 5, clusters of meristematic cells are observed in the outer phloem (yellow
arrow). (e) Meristemoids (m) and early root primordia (rp) are seen at day 6, which thereafter (f) grow,
and eventually develop into a functional adventitious root with vascular connection to the stem base.

During the induction period, certain cells in the cambium and neighboring areas are more densely
stained and their nuclei and nucleoli become more pronounced (Figure 1a–c) [32]. Similar characteristic
features are also found in other related species, like Quercus robur [34]. These histological traits might
be related to a more intense transcriptomic activity connected to a cellular reprogramming. The specific
cellular origin of the new ARs could be a consequence of the integration of the molecular signaling
cascades activated mainly by wounding and auxin, but also precise positional cues are essential for the
specification of root initials. The differential auxin distribution between the cells of tissues is essential
to modify the developmental program of the target cells that will become root initials and drive the
generation of the new root [17]. The generation of this auxin gradients suggests a significant role for
auxin transport proteins (PIN, AUX) in the process. Periclinal and anticlinal mitotic divisions are
already detected after 24 h of indole-3-butyric acid (IBA) treatment in the cambial zone (Figure 1a).
The number of cell divisions increased from 24 h onwards, not only in the cambium, but also in other
tissues, particularly in the ray parenchyma and phloem region (Figure 1b,c). Meristemoids formed
by small clumps of densely stained isodiametric cells with meristematic characteristics are observed
after 3–4 days of auxin treatment (Figure 1d) as previously reported [32,33]. The patterning of the new
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organ is acquired by an asymmetric division that involves a change in the cell division plane [19,32].
After 6 days, some meristemoids become true root primordia (Figure 1e), that grow through the
surrounding layers of tissue and develop a vascular system connected to that of the stem during
the expression phase (Figure 1f) [32,33,35]. Different stages of root development are observed in the
same section as the ARs formation is an asynchronous process. It has been proposed that asynchrony
might be related to the extent of specific phases, particularly induction [36]. Molecular mechanisms
involved in the emergence of the new ARs have not been explored in chestnut, but it is believed that
they mainly resemble those of the lateral roots in other species. Auxin activity modulates the hydraulic
properties and the walls of the cells surrounding the root primordia by controlling the expression of
its own transporters [37]. Nonetheless, the activity of auxin in this stage must be strictly controlled
in order to preserve the integrity of those surrounding tissues, as seen for lateral roots [38]. Finally,
primordia start their outgrowth from the stems around day 10 after the beginning of the process.
Nonetheless, this outgrowth can be detected sooner in leaves and petioles, probably because the root
primordia need to grow across a lower number of tissue layers [39,40]. Indeed, root induction in leaves
also seems to present a greater level of synchrony in root emergence [40]. Synchronous development
of roots is also of commercial interest, as it helps in the management of plants in breeding programs.

On the other hand, in C non-rooting competent shoots, the progression of cell divisions initiated in
the cambial derivatives, especially on the phloem side, failed to organize properly into a meristemoid
but rather gave rise to a callus structure [32]. Different auxin-derived calli have been analyzed at
the transcriptomic level in Arabidopsis, showing limited overlap in gene expression between the
different types of calli obtained from different tissues and under distinct conditions [26], with some of
them sharing components of root developmental pathways [41]. Thus, the callus generated in mature
chestnut shoots, with the same cellular origin and under identical treatment as root-forming juvenile
shoots, may be expressing similar genetic routes as root-forming shoots. However, other physiological
or epigenetic factors impede the establishment of the root developmental program as those cells do not
acquire the rooting competence. The inability of the mature tissues in chestnut to generate root initials
might be related to their failure in establishing a proper auxin gradient, rather than in the inability to
respond to the hormone. A major shift in the homeostasis of auxin as plants mature has been proposed
previously [42], and the results in chestnut sustain this idea [43].

Although with low frequency, ARs can be developed in BS chestnut shoots maintained for
more than two months in the proliferation medium without the application of exogenous auxin
treatment. The formation of spontaneous roots has been described in cuttings from some woody
species as Populus [23,44]. As shown in Figure 2a,d, shoots have an aged appearance, with thick stems,
apical necrosis symptoms, and senescent leaves. At first glance, these roots seem to originate from the
callus developed at the base of the shoot. Nonetheless, after removing the surrounding callus, it has
been observed that they arise from the stem (Figure 2b,c). The histological analysis was not sequentially
performed, but only when roots emerged from the callus, showing the callus tissue surrounding the
stem base (Figure 2e), as well as the emergent root (Figure 2h).

The analysis revealed that new roots arise from the stem tissue (Figure 2f,g) and they probably
have been initiated from the cambial zone or parenchyma tissue. The vascular tissue of the new root is
connected with the stem vascular tissue (Figure 2g). Therefore, it appears that the AR initiation and
callus formation could share initial genetic pathways as reported by Liu et al. [45] during de novo root
regeneration in leaf explants, but then followed a different development pattern. Indeed, it has been
shown in Eucalyptus that roots can be formed directly from callus [46] suggesting a complex relation
between both types of organs. Our hypothesis is that auxin accumulation at the wounding zone
induces the genetic reprogramming of certain cells in the stem base that somehow become competent
cells. Later, a new auxin gradient is created by other stimuli, like the stress generated by the deficit
of the mineral nutrients in the media, as well as changes in the hormone balance at the base of the
shoots, as those cells acquire the root initials fate and establish the root signaling pathway. Similarly,
the generation of auxin gradients seems to be involved in the development of actinorhizal nodules in
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Casuarina glauca and Discaria trinervis [47,48]. Therefore, an in-depth analysis should be performed to
define this process. In some woody species, ARs are formed spontaneously without auxin treatment,
however this process is not common in chestnut.

Figure 2. Formation of spontaneous roots in juvenile-like Castanea sativa microshoots not treated with
auxin. (a) Representative images of the callus (cl) developed at the base of the stem of microshoots
cultured in the proliferation media for more than two months (a,d). (b,c) Close-up images of the
base of microshoots shown in (a,b), respectively, once the surrounding callus was partly removed.
(e,f) Transverse sections of basal parts of microshoots showing (e) the callus surrounding the stem
(arrow shows the stem epidermis), (f–g) the connection of root vascular tissue with that of the stem and
(h) the emerging root with a lateral root.

4. Biochemical Profiles during AR

4.1. Auxin Content

Auxin is known to be the master regulator of the process of AR [17]. Auxin homeostasis within
the plant is affected by several factors, including synthesis, transport, conjugation and degradation.
Since IBA is the most common compound used for the induction of ARs, it has also been analyzed
to understand its role within the process. It is important to recall that, so far, IBA is believed to act
through its conversion to IAA (indole-3-acetic acid) [49], though some results suggest that in specific
responses, IBA itself displays auxin activity [50].

In C. sativa, the endogenous auxin dynamics in the juvenile-like and adult microshoots treated
with a pulse of 4.9 mM IBA was analyzed previously [32]. The results showed that the IAA content
was higher in non-rooting mature tissues (about 5 times) than in juvenile-like shoots, while the IBA
content was quite similar in both types of shoots. These results contrast with those reported in
Eucalyptus spp. [51–53] and Arabidopsis (reviewed in [16]), in which a poor rooting ability was directly
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correlated to a low auxin content. As shown in Figure 3, similar results to those previously reported [32]
were found when shoots of juvenile-like and mature characteristics were treated with 125 µM IBA for
24 h. The analysis was performed separately in the basal (Figure 3a) and apical sections of the shoots
(Figure 3b), treated or non-treated with auxin.

Figure 3. Endogenous indole-3-acetic acid (IAA) content in micropropagated shoots derived from crown
branches and basal shoots of clone P1 (Castanea sativa) during the first days of rooting. For rooting,
shoots were cultured for 24 h in one third strength Gresshoff and Doy medium supplemented
with 125 µM of indole-3-butyric acid (IBA+) or not (IBA-), before being transferred to the same
medium without auxin. (a,b) IAA content in the (a) basal and (b) apical sections of microshoots.
Asterisks represent p < 0.05 within the same sampling date.

The IAA content was very low in auxin untreated materials (which do not root) regardless of the
analyzed section, and between 5–10 times lower in apical sections than in basal sections in treated
shoots. After auxin treatment, IAA levels were higher in rooting incompetent mature tissues than
in the competent juvenile-like tissues, particularly in the basal sections (Figure 3a). The peak of
IAA detected after 24 h of auxin treatment could be associated with the activation of cell divisions,
but the lack of rooting ability of mature shoots cannot be explained by their total endogenous content.
Gonçalves et al. [54] studied the auxin content in micropropagated shoots derived from an easy-to-root
rootstock of hybrid chestnut (C. sativa × C. crenata). These shoots were subjected to two IBA treatments,
“dipping” and 24 h, with more than a 90% rooting in both cases. As reported in European chestnut,
an increase of IAA levels was detected in response to IBA, with a peak of IAA after 24–48 h of
root induction depending on the treatment. Similarly, a positive relationship between auxin content
and rooting was reported with C. mollissima material [55]. In this study, both the rooting ability of
microshoots and their IAA levels after IBA treatment increased with the number of subcultures.

Even if it seems that an IAA increase during the first hours of rooting induction is a requisite for
obtaining a successful rooting response, the current data cannot explain the difficulties to root exhibited
by other materials in which IAA levels also increased with IBA treatment, as happened with the shoots
derived from crown branches of many adult trees. It must be kept in mind that the auxin profiles shown
previously were obtained from a pool of many tissues at whole-stem level, and may not represent the
IAA content of the cell type or tissues closely related to the rooting process. Techniques that allow for
single-cell resolution, or the use of laser micro-dissection of the tissues involved could help achieve
more accurate results in the quantification of auxins.

4.2. Polyphenols and Polyamines

Polyamines are low molecular weight cations that have long been studied in order to clarify their
role in the rooting process. Their mode of action is not clear, but it is suggested that, among other
processes, they are involved in cellular division and differentiation through diverse mechanisms,
including interaction with kinases and transcription factors [56]. The major polyamines in plants,
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putrescine, spermidine and spermine, were analyzed in juvenile-like and adult chestnut microshoots
after IBA treatment [32]. Mature tissues showed a greater content in polyamines, suggesting a negative
relationship with the induction of ARs [32]. Nonetheless, recent research has shown that exogenous
application of spermidine promoted ARs formation in Malus prunifolia stem cuttings, affecting auxin
and gibberellin homeostasis [57]. Due to the high number of processes in which polyamines seem
to take part, it is difficult to clearly establish their role in AR. Besides, the activity of their catabolic
enzymes and the concomitant generation of reactive oxygen species add another layer of complexity to
their putative role in this developmental process [58].

Polyphenols are believed to enhance rooting by protecting auxin against oxidation or by modulating
its transport, in the case of flavonoids ([59], and references therein). Methyl gallate, more abundant in
juvenile than in adult cuttings of hybrid chestnut, was found to exert a significant protective role on
IAA against oxidation [60]. Phenolic content in juvenile-like and mature shoots of the same genotype
was analyzed in order to identify positive or negative relationships of specific compounds with the
AR process [61]. Differences in the content of certain compounds (ellagic tannins, flavonols) between
juvenile and mature tissues were detected from the beginning of the experiment, but no unambiguous
relationships with the ability to root could be established [61] Furthermore, previous results had
suggested that genotype variability might prevent extrapolation of the results obtained for any of those
compounds [62,63].

Long cuttings of hybrid chestnut were shown to root better than the short ones, and the content of
flavonols and ellagic acid in the leaves was found to be directly related with this trait [64]. With this
same working system, Osterc et al. [65] also found a positive relationship between the content
of rutin in the leaves of the cuttings and their ability to root. Despite these interesting results,
the diversity of polyphenolic compounds makes it difficult to establish accurate relationships with AR
and other processes.

4.3. Auxin-Related Enzymatic Activity

We were only able to find two reports dealing with the analysis of auxin-related enzymatic activity
during AR in chestnut, once again highlighting the lack of reliable knowledge in specific areas of this
process. Nonetheless, these studies might not be conclusive, as the putative existence of isoenzymatic
forms or several closely related genes can render the analysis incomplete.

Peroxidase activity is believed to be related to IAA-oxidase catabolism, and therefore might be a
good marker of auxin metabolism during AR. This activity was measured in hybrid chestnut under
two auxin treatments and in control shoots, but no significant differences were found within the first
48 h after the beginning of the experiment, suggesting the lack of a relationship of this enzyme with
the early events of AR [33]. In C. mollissima, auxin content in shoots was shown to increase with the
number of subcultures from the beginning of the establishment of the plants in vitro, as previously
mentioned [55]. Authors measured different enzymatic activities related to IAA metabolism in the same
material, showing an increase of polyphenol oxidase activity concomitant with the increase of auxin,
but at the same time they found a decrease in the activities of IAA-oxidase and peroxidase-oxidase [55],
negatively linking the activity of the two latter enzymes with formation of ARs. In Arabidopsis, it is
believed that the major auxin oxidation pathways include the activity of the enzyme dioxygenase for
auxin oxidation 1/2 (AtDAO1/2), with the corresponding mutant showing a decrease in the presence
of auxin oxidized metabolites [66]. These oxidative pathways act in a coordinated fashion with
the auxin conjugation routes, regulating active auxin content in the tissues [67]. No DAO activity
has been measured in chestnut, but some auxin-conjugating genes have been analyzed (see below).
More work is needed in this field to clearly link the action of these enzymes with specific processes in
chestnut rooting.
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5. Molecular Aspects of AR in Chestnut

5.1. Genetics

At the genetics level, AR formation in chestnut cuttings is believed to be under moderate
additive genetic control [10], however other factors like maturation or auxin homeostasis are relevant.
Moderate inheritability of AR traits has also been suggested for other woody species, like Populus [68].

Most of the studies have been carried out at the physiological and biochemical levels, and no
complementary molecular and genetic studies have been developed. Most of the efforts in this
sense come from the work developed in our laboratory. Due to the nature of our working system,
with juvenile-like and mature lines of the same genotype, some of the results might also be related to
other developmental processes. The expression of the CsCPE gene, that codes for a glycine-rich small
polypeptide, was analyzed in both types of lines, showing greater expression in mature tissues [69].
Further analysis of the gene expression during the induction and development of somatic embryos in
chestnut and oak [70,71] suggest a role of the gene in the regeneration ability of these recalcitrant species.

Five partial sequences showing differential expression patterns in juvenile-like and mature tissues
in response to auxin were isolated by differential display and designated Cs114F2A, Cs312A0C, Cs914F2G,
Cs410A0C and Cs714F2G [72]. Recent homology searches have shown that three of them belong to
defense-responsive genes (Cs114F2A: oxalate-CoA ligase; Cs312A0C: Metallothionein-like; Cs914F2G:
Detoxification protein 49), while Cs410A0C shows homology with the α/β hydrolase superfamily,
and Cs714F2G is a MYB61-like transcription factor. Cs114F2A showed a higher wound-responsive
induction in rooting competent tissues than in mature tissues, while expression of Cs312A0C was
greatly influenced by auxin in both types of tissue. The α/β hydrolase-like gene showed greater
response to auxin in juvenile-like shoots, but lack of characterization of the activity of this putative
enzyme prevents us from any conclusions. Cs714F2G (MYB-like 61) was induced by wounding and
auxin in both tissues as early as 1 h after treatment. This result is in agreement with findings in
other species, where it has been shown to be expressed at sink tissues [73] such as the wound site in
cuttings (reviewed in [17]). Significant expression of Cs714F2G was detected at 12 h only in juvenile
shoots treated with auxin. Interestingly, MYB61 genes have also been shown to modulate root system
architecture as they have effects on the activity of gibberellins [73,74]. Therefore, further exploration of
the activity of this gene and its relationship with AR is necessary.

Expression analysis of other candidate genes isolated from chestnut was analyzed during the
induction of ARs in juvenile-like and mature shoots. Generally, different expression patterns were
detected in both types of shoots under the same conditions, suggesting that a major shift in gene
expression takes place during maturation. Castanea sativa Scarecrow-like 1(CsSCL-1) gene codes
a transcription factor from the GRAS family and is induced by auxin within the first 24 h after
treatment [75]. Whereas localized expression in the cambium was detected in rooting-competent
shoots, a spread signal through several tissues was observed in mature shoots [76]. Other related
GRAS proteins have been shown to take part in the establishment of meristematic identity in root cells
that will eventually form the ground tissues of the root, governing the asymmetric divisions of the cells
from the quiescent center, giving rise to the new tissues [77]. Altogether, these data suggest a significant
role for this gene in the formation of ARs. Furthermore, the expression in mature shoots confirms that
both callus and AR formation share elements in their genetic pathways [41]. The expression analysis of
a gene from the GH3 family, in which members modulate the availability of free auxin by conjugating
amino acids to IAA [78] was also characterized during the AR in both types of chestnut shoots [43].
As expected, CsGH3-1 was highly induced by auxin, but with different patterns in juvenile-like and
mature shoots. Induction occurred earlier in juvenile shoots, suggesting a more readily gene responsive
machinery for auxin in these shoots, while in mature shoots the induction lasted longer. On the
other hand, the higher expression levels detected in mature than in juvenile-like shoots, suggests a
greater activity of the protein that lowers the available free auxin in mature tissues [43]. In contrast,
levels of the GH3.3 transcripts in cuttings of Arabis alpina were associated with the rooting ability
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of cuttings from different genotypes, but not with the endogenous levels of IAA [79]. Therefore,
as there are more active GH3 genes and their activity must be taken into account, it can be concluded
from the CsGH3-1 expression that, apparently, homeostasis of auxin changes with the maturation
process, affecting AR, among other processes. Indeed, we are currently analyzing the expression of
some proteins related to auxin transport, like PIN proteins. Preliminary results show differential
expression of a PIN-like gene in auxin-treated shoots of the same genotype, but different ontogenetic
state, with greater levels of PIN transcript in juvenile-like tissues (unpublished results). Though these
data must be taken cautiously, they suggest greater activity of polar auxin transport proteins in rooting
competent tissues, which might be involved in the establishment of the proper auxin gradients within
shoot tissues, putatively concentrating auxin maxima in the cambium or neighboring responsive cells.
In Eucalyptus grandis, which is an easy-to-root species, the influx and efflux auxin carrier proteins
where shown to be induced by auxin [52]. The activity of these proteins might be directly related to the
formation of auxin gradients between neighboring tissues, which is necessary for tissues patterning
and morphogenesis [23].

Nonetheless, expression of CsSCL-1 and CsGH3-1 does not seem to relate to wounding signals,
as control shoots did not show significant expression [43,75]. Therefore, other signaling pathways
must integrate the information derived from this stress, which involves activity of reactive oxygen
species and jasmonic acid [14]. In a recent work, we analyzed the expression of an ERF transcription
factor (CsRap2.12 like-1) in the same working system as mentioned above. Results showed a slight
induction of the gene at 6 h after wounding in both control and IBA treated cuttings, while IBA plus
wounding induction was also clearly detected at 12 h by in situ analysis in the cambium zone of
rooting competent tissues [80]. Indeed, at 12 h the expression pattern of this gene coincides with that of
CsSCL-1 [76]. It has been shown that genes from the GRAS and the ERF family can heterodimerize [81],
and therefore it is tempting to speculate that both genes can work together in activating the specific
gene expression cascades for the development of ARs, with CsSCL-1 integrating the auxin signals,
while CsRap2.12 like-1 would integrate the wounding signals. Nonetheless, more research is needed to
support this hypothesis.

Overall, despite the significance of the findings about the activity of the genes mentioned, it is
worth mentioning that some of them belong to multigene families, and the characterization of their
related members could help clarify their specific role in AR.

5.2. Epigenetics

No analyses regarding epigenetic modifications have been carried out so far to analyze AR in
chestnut. Due to the clear effect of maturation on the rooting ability, these analyses might provide
relevant clues concerning the molecular basis of recalcitrance, as it is widely accepted that changes in
gene expression in response to maturation are related to epigenetic changes (cytosine methylation,
histone acetylation,) or the activity of microRNAs. It has been shown in Arabidopsis that the activity
of miRNA156 and miRNA157 is directly linked with the vegetative phase change, through their
effect on the expression of Squamosa Promoter Binding protein/SBP-like (SBP/SPL) transcription
factors [82]. Indeed, overexpression of miRNA156 delayed the transition from the juvenile to the
adult in a transgenic poplar tree [83]. Related work in Eucalyptus has shown the involvement of
miRNA156 in the loss of rooting ability of the trees [84]. Moreover, different degrees of cytosine
methylation of DNA were found between juvenile and mature tissues in chestnut [85]. It is believed
that the methylation state is a stress-sensitive trait, which can be modulated by specific conditions [86].
Therefore, the development of protocols that can adjust the epigenetic state of mature tissues is an
unexplored possibility. These protocols might provide the biotechnological tools that would help
overcome the limitation in vegetative propagation imposed by maturation in these species.
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6. Main Factors Influencing the Rooting Response

Although many facets described for model species can be validated in chestnut, its woody
nature and established recalcitrant behavior impose some limitations to the applicability of these
findings. Identification of the mechanisms underlying the elusive responses of these species will enable
biotechnological tools to be applied, and improve their rooting performance, both in vitro and ex vitro.
In this section we review most of the reports on rooting responses of chestnut materials published in
the last three decades. Studies on AR on chestnut reported before 1990 are summarized in [1,4,87].
Major efforts have been focused in C. sativa, C. dentata and the hybrids C. sativa × C. crenata. The best
results achieved in the occasional reports of AR performed on cuttings are summarized in Table 1.
At optimal conditions established in each of these studies, longer cuttings performed better than
the shorter ones [64,65]. Rooting frequencies affected by both auxin and genotype were reported in
minicuttings of Castanea hybrids [88]. The genetic control on AR has been reported in juvenile chestnut
cuttings of different full-sib families [10], in which both the presence and the number of roots traits
were mainly controlled by non-additive variance.

Table 1. Rooting frequencies (RF) of cuttings of Castanea genus. Cuttings were taken from new shoots
developed from suckers (SS), from stool-bed layering (SB) derived plants or from pruned plants (PS),
treated with indole-3-butyric acid (IBA) and placed in different rooting substrates (RS).

Species Donor Plant Cutting Type IBA
(mM)

Time
(seconds) RS RF

(%) Reference

C. sativa 1-year-old PS 10 180–300 Pl 97.0 [10]

C. dentata
Adult tress Semihardwood SS 49 5 P/V 65.0 [89]
1-yeard old
rootstock

Softwood lateral
branches 49 5 P/V 59.0 [89]

C. sativa ×
C. crenata

6-year-old tree PS 25 2 P/Sa (3:1) 22.7 [64]
SB-derived plant Minicutting 12.3 10 P/Pl (2:1) 33.3 [88]
SB-derived plant Minicutting 49 10 P/Pl (2:1) 40.8 [88]

Ortet 7521 SS 10 180–300 Pl 50.0 [10]
Ortet 103 SS 10 180–300 Pl 87.0 [10]

P, peat; Pl, perlite; V, vermiculite; Sa, sand.

The large amount of rooting research carried out with in vitro microshoots indicates the relevance
of this methodology in the propagation of chestnut (Table 2).

In Vitro systems provide several advantages, including the availability of a greater number of
homogenous shoots as well as the avoidance of environmental interferences. Nonetheless, the root
systems generated might not always be optimal for acclimation and survival ex vitro (see below).
We focus on the analysis of the following factors: genotype, auxin treatments, chronological age of the
mother plant, maturation, ontogenetic stage, light, rooting media, among others.

6.1. Genotype

The genetic variability that exists within and among species of Castanea greatly influences the
rooting performance of the trees. As shown in Table 2, large differences on rooting ability were
observed among genotypes. A genotype-dependent rooting response was even noticed in juvenile
microshoots established in vitro from embryonic axes that were isolated from nuts harvested from
the same hybrid HV mother tree [90]. In BS microshoots of different clones subjected to the same
treatment, there were large differences in their rooting percentages [90,93]. These reports clearly show
the strong effect of genotype on the rooting performance of chestnut microcuttings.



Plants 2020, 9, 1543 12 of 27

Table 2. Rooting frequencies (RF) of chestnut microshoots in response to indole-3-butyric acid (IBA) or
naphthalene acetic acid auxin * (NAA), days of darkness (DK) and rooting media (RM).

Species Clone Explant
Source

Auxin
DK RM

R
(%) Reference(mM) Time

Castanea sativa
(Cs)

P1 C 4.9 60 s 0 GD 1/3 8.6 [90]
P1 BS 4.9 60 s 0 GD 1/3 86.1 [90]
P1 BS 0.05 24 h 0 GD 1/3 30.5 [91]
P1 BS 0.125 24 h 0 GD 1/3 94.4 [91]
P2 C 4.9 60 s 0 GD 1/3 11.4 [90]
P2 BS 4.9 60 s 0 GD 1/3 94.3 [90]
P2 BS 0.025 60 s 0 GD 1/3 81.4 [91]
P2 BS 25 5 d 0 GD 1/3 94.4 [91]
A2 C 4.9 120 s 0 GD 1/3 0.0 [92]
A2 C+S 4.9 120 s 0 GD 1/3 18.9 [92]
A2 BS 4.9 60 s 0 GD 1/3 43.2 [90]
A3 C 4.9 120 s 0 GD 1/3 8.9 [92]
A3 C+S 4.9 120 s 0 GD 1/3 22.8 [92]
L1 BS 0.125 24 h 0 GD 1/3 34.7 [93]
L1 BS 0.125 24 h 0 GD 1/3 + P/Pl/V 91.7 [93]
L2 BS 0.125 24 h 0 GD 1/3 20.4 [93]
L2 BS 0.125 24 h 0 GD 1/3 + P/Pl/V 54.7 [93]
L4 C 0.250 24 h 0 GD 1/3 + P/Pl/V 13.6 [93]

Greek BS 2.7 * 56 d 0 MS 1
2 + V 56.3 [94]

Greek BS 5.4 * 56 d 0 MS 1
2 + V 50.0 [94]

Monte SP 0.015 5 d 5 WPM 1
2 90.0 [95]

Monte C+G 0.015 5 d 5 WPM 1
2 77.0 [95]

Pistol CP 0.015 5 d 5 WPM 1
2 75.0 [39]

Pistol SP 0.02 42 d 0 MS 81.2 [39]

C. dentata
(Cs)

B’ville SS 5 60 s 0 MS 1
2 + AC 71.0 [96]

Iow #2 SP 10 60 s 0 MS 1
2 + AC 73.0 [96]

El#1W SE 10 120 s 0 MS 1
2 + AC 67.0 [97]

El#1W SE 10 120 s 8 MS 1
2 + AC 89.0 [97]

El#1 SE 10 30 s 4 WPM + HA 33.3 [98]
El#1 SE 10 30 s 4 WPM + HA + AC 83.0 [98]

C. crenata (Cc) Tanza SP 0.015 5 d 5 1
2 BW + GG 83.0 [99]

C. mollisima (Cm) Yansh SP 0.015 5 d 5 MS 1
2 ( 1

2 NO3) 73.3 [55]

C. henryi (Ch)
Huali Se 0.025 28 d 0 MS + Pl 23.3 [100]
Huali Se 0.075 28 d 0 MS + Pl 76.7 [100]
Huali Se 0.075 * 28 d 0 MS + Pl 0.0 [100]

Cs × Cc

HV C 4.9 60 s 0 GD 1/3 0.0 [90]
HV BS 4.9 60 s 0 GD 1/3 19.4 [90]

HV-S3 Se 4.9 60 s 0 GD 1/3 33.3 [90]
HV-S1 Se 4.9 60 s 0 GD 1/3 100 [90]

431 C 4.9 120 s 0 GD 1/3 16.9 [92]
431 C+S 4.9 120 s 0 GD 1/3 30.4 [92]
431 C+S+R 4.9 120 s 0 GD 1/3 51.0 [90]
431 BS 4.9 60 s 0 GD 1/3 51.4 [90]

431-S1 Se 4.9 30 s 0 GD 1/3 97.1 [90]
110 BS 0.015 7 d 5 GD 1/3 83.0 [93]
125 BS 0.015 7 d 5 GD 1/3 78.0 [93]

90025 BS 0.015 7 d 5 GD 1/3 25.0 [93]
90025 BS 0.25 24 h 5 GD 1/3 + AC 26.0 [93]
Pr14 BS 0.125 24 h 5 GD 1/3 + P/Pl/V 62.5 [93]
M3 SS 4.9 60 s 0 MS 1

2 + AC 97.0 [33]
M3 SS 0.015 5 d 0 MS 1

2 + AC 93.0 [33]
M3 SS 0.015 5 d 0 MS 1

2 93.0 [101]

Cs × Cm SM904 SS 10 60 s 0 MMN 90.0 [102]

AC, activated charcoal; BS, basal shoos; BW, Sato’s BW medium; C, crown branches; C+G, crown branch scion
grafted in juvenile seedling; C+G+S, cytokinin spray of shoots developed from C grafted scions; CP, cotyledon
petioles; d, day; GD, Gresshoff and Doy medium; GG, gellan gum; h, hour; H, humic acid; MMN, Modified
Melin-Norkrans medium; MS, Murashige and Skoog medium; P, peat; Pl, perlite; R, reculturing; S, cytokinin
spray of new shoots; s, second; Se, seed; Sa, sand; SE, somatic embryos; SP, seedling plantlet; SS, stump sprouts;
V, vermiculite; WPM, Woody plant medium.
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Rooting frequencies seem to be more affected by genotype than by the method of auxin application
since in three different clones (P1, P2 and 90025) these frequencies kept stable in microshoots subjected
to different auxin inductive treatments [90,91,93]. Similarly, rooting percentages of leaves excised from
microshoots exhibited similar rooting percentages as the donor microshoot [40]. However, within the
same application method, it is important to define the appropriate IBA concentration for each genotype,
particularly when roots are induced with high concentrations of IBA [92] as it can seriously affect
shoot tip necrosis. Moreover, other parameters, like mean root number can be affected by the auxin
treatment [33,91]. The genotype effect on rooting performance has been previously documented in
other difficult-to-root species like walnut [103], oak [104,105], American beech [106] and holm oak [107].
In conclusion, besides other factors, genotype is critical in the formation of ARs in woody species.

6.2. Auxin Treatments

Information provided in Table 2 clearly shows that IBA is the preferred auxin for ARs induction
in chestnut, as it has been reported in other woody species [34,108,109]. It has been suggested that IBA
functions as an auxin precursor of IAA, the predominant form of active auxin in plant tissues, but it is
more stable than IAA in culture media [110]. Although IBA is often detected at low levels in many
plants and some evidences suggest that IBA itself lacks auxin activity [111] it has an important role
in auxin homeostasis. It seems that the physiological effects of IBA are likely caused by IBA-to-IAA
conversion. However, many questions regarding IBA metabolism, transport and signaling routes
remain opened [49].

Two methods of auxin application are commonly used to induce ARs in chestnut: a short pulse
of a high concentration of the hormone (sometimes referred as “dipping”), and the incubation of
microshoots with a lower auxin concentration for a longer period (one to several days).

The application of exogenous auxin during the whole rooting period provided also high rooting
percentages in seedlings derived microshoots [100,112]. These results are somehow surprising, as the
continuous exposure to exogenous auxin might inhibit the initiation phase of AR [22]. Similarly,
juvenile microshoots of C. henryi rooted well when they were subjected to the continuous exposure to
7.5 µM IBA, whereas no roots were formed when NAA (naphthalene-acetic acid) was used instead
of IBA [100]. In cuttings of Pinus caribea, IBA treatment also proved to be more effective for rooting
than NAA [113] whereas in Douglas fir stem cuttings specific concentrations of NAA (24.6 mM)
or IBA (7.4 mM) provided similar percentages of rooting [114]. During the root regeneration from
chestnut cotyledons, the presence of either NAA or IBA in the medium produced the highest number
of roots [39].

The dipping method was used to induce roots in both cuttings and microshoots (Tables 1 and 2),
but at different range of IBA concentration and application period. Whereas cuttings were treated with
concentrations of IBA between 12.5–49 mM for 2-10 s, the microshoots were generally dipped into
the IBA solution (5–10 mM IBA) for a longer period (30–120 s). By these means, a significant amount
of hormone enters the plant tissues through the cut surface of the shoots and will eventually enter
the cells by pH trapping or the activity of influx carrier proteins (reviewed in [115]). In microshoots
derived from stump sprouts/basal shoots, which retain juvenile characteristics, rooting frequencies
were highly dependent on the genotype ranging from 19–97% (Table 2). Though this is a useful method,
a stress signaling may be imposed by this auxin concentration, causing high levels of apical necrosis in
microshoots. The presence of necrotic tissues and reduction on rooting has been reported in chestnut
cuttings dipped in high concentration of IBA [89]. By using the incubation method, microshoots were
induced to root with IBA concentrations several orders of magnitude lower (ranging from 2.5–250 µM)
for an extended period of 24 h up to 28 days (Table 2). Hormone is included in the growing media,
and it is absorbed in a slower and sustained fashion, allowing the plant to have a more controlled
management of IBA, which can be directed towards the specific responsive cells when other factors
concur. It has recently been shown that healthier plantlets were obtained with longer IBA treatments
in comparison with the dipping method [91], which might be related to a less stressful situation for
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the shoots that prevents shoot-tip necrosis and helps in the formation of the roots at the wound site.
In the clone P1, the rooting frequency as well as the number of roots was significantly improved
by increasing the IBA concentration [91]. When both types of treatments have been applied on the
same material at optimal auxin concentrations, results do not differ significantly with respect to
rooting rates, though other traits like mean root number might be affected [33,91]. Therefore, though a
genotype-dependent effect in the results for both types of treatments cannot be ruled out, it seems that
optimization of the protocols might reduce such effect. Nonetheless, longer treatments for microshoots
are labor-intensive, and it is a costly process that is not always suitable for commercial purposes.

6.3. Non-Auxin Compounds

Two urea derivatives, N,N′-bis-(2,3-methylenedioxyphenyl)urea (2,3-MDPU) and N,N′-bis-
(3,4-methylenedioxyphenyl)urea (3,4-MDPU), have been shown to induce or facilitate the formation
of ARs in several species [116]. The positive effect of these compounds on AR has been recently
reviewed [117] and their effect on rooting of chestnut microshoots has also been tested [91]. Though their
ability to induce AR was low and only visible when suboptimal auxin concentrations were used,
they significantly improved other rooting-related parameters of the shoots, including the formation of
the ARs at the wounding site, a greater number of lateral roots and reduced shoot tip necrosis of the
shoots, among other factors analyzed [91]. Their mode of action is not clear, but the authors suggested
a direct relation with an improved homeostasis of both auxin and cytokinin in the shoots [91].

Naphthyl-phthalamic acid (NPA) is an auxin transport inhibitor widely used for research
purposes, whose specific mode of action is not yet defined unambiguously [118]. Its use can help
unravel fundamental aspects of the rooting process by blocking the movement of IAA in the tissues.
When NPA was applied alongside IBA to chestnut rooting-competent microshoots or leaf explants,
there was a drastic decrease of rooting rates and a delay of 3–4 days on the emergence of the roots [40].
Furthermore, NPA promotes the appearance of roots along the stem of microshoots and far from the
wounding site, suggesting a potential role for endogenous hormone in the AR process [80]. Therefore,
blocking the auxin movement by NPA is a useful method to analyze other factors involved in AR,
as well as to perform expression analysis to confirm the role of the genes putatively involved in the
formation of ARs [80].

6.4. Ontogenetic Stage

Vegetative propagation of selected genotypes from mature tissues is hindered by the loss of
regenerative competence of tissues, as consequence of the chronological, physiological, and ontogenetic
ageing that takes place during plant development. Rooting competence in response to auxin is a
physiological marker for the ontogenetic state [119] which declines with the transition from the juvenile
to adult phase. Phase change (or maturation) is a developmental step that imposes a major shift in
the expression of many genes, as seen in Vitis vinifera [120], and it is affected by many physiological
and environmental conditions [86]. Molecular reasons underlying this shift are believed to rely on
epigenetic changes and the activity of microRNAs, as already mentioned [108]. In pea, such decline
has been linked to the ontogenetic switch from vegetative to reproductive phase [42].

The juvenile stage is characterized by the high ability to form ARs, among other traits. As shown
in Table 2, seedling-derived microshoots exhibited a high rooting ability at the optimal rooting
treatments [39,90,95,112]. However, some juvenile clones do not root well (HV-S3) [90], indicating the
strong influence of the genetic background on this trait, and thus a breeding program for other traits
should also select good rooting ortets.

In woody species, rooting competence is partially lost with maturation. However, the maturation
process does not occur at the same time on the entire plant, and some meristems located at the
base of the tree retain the ontogenetic juvenile stage [121]. Ontogenetically young shoots that arise
from the base of the trunk, like root suckers, stump sprouts, or epicormic shoots produced from
pre-existing buds, retain juvenile characteristics while maturation occurs in the periphery of the plant
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in ontogenetically older but chronologically younger tissues [122,123]. Taking advantage of this cone of
juvenility, materials that retain a significant degree of juvenility are frequently chosen for propagating
adult trees, when they are available. Most reports dealing with AR in mature chestnuts were developed
with these materials and rooting frequencies in microshoots ranged from 19 to 97% (Table 2) [33,90],
depending on the clone and rooting treatments. Efforts were also made in chestnut to elucidate the
differences in rooting performance in juvenile-like and adult tissues of the same trees, thus avoiding
the effect of genotype [90]. The highest rooting frequency achieved in C microshoots was 13.6% [93].
Within each clone, the capacity for AR production was several times higher (3–40) in BS than in
C microshoots [92,93]. Although mature microshoots rarely form roots, when it does happen the
quality of the root system is very poor with only one or two short and thick roots (Figure 4a). Overall,
regardless of the inductive treatment and genotype, microshoots derived from basal shoots root better
than crown-derived shoots (Figure 4b).

Figure 4. Effect of the ontogenetic stage on the rooting response of Castanea sativa microshoots.
(a) Crown branches-derived microshoots (b) Juvenile-like microshoots derived from basal shoots.

Grafting has long been used as a propagation method in chestnut. The technique is commonly
applied by using juvenile rootstocks, a practice that can improve the rooting rates, while mature scions
can be used to maintain the expression of traits of interest. Furthermore, rootstocks that are resistant to
soil-borne pathogens, like those that are a major threat to chestnut, can be used. Nonetheless, the cost
of this technique is too high for vegetative propagation [5]. Besides, compatibility between scion
and rootstock can also diminish the success of the process. Efforts have also been made to increase
the in vitro performance of ontogenetically old material by grafting crown sections onto juvenile
seedlings [92]. Although the in vitro reactivity was improved, grafting did not affect the rooting
response of shoots in any tested clone. In contrast, other authors reported an increase in the rooting
rates of microshoots from serial grafting of adult sections onto juvenile rootstocks in C. sativa. However,
after the stabilization phase, there was a decrease in the rooting capacity, as well as an increase in shoot
tip necrosis [95]. AR of mature walnut cuttings was greatly improved by grafting and burying [124].
Micrografting (grafting using microshoots) has also been studied for research purposes. It is a matter
of debate what is the real effect of the treatment, if it provides true rejuvenation for the scions or only
a certain degree of reinvigoration. Analysis in C. sativa microshoots showed that no improvement
of the rooting response was achieved by micrografting adult-like material into juvenile-rootstocks,
and no rejuvenation signs could be detected in the early stages after grafting [125,126]. Nonetheless,
when adult and juvenile-like material with the same genotype where used as scion and rootstock,
some reinvigoration/rejuvenation was achieved after several rounds of micropropagation, including a
significant increase in rooting rates [127]. Therefore, genotype compatibility might be a key factor for
optimization of grafting.
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In vitro performance and rooting frequencies of chestnut microshoots derived from mature trees
has been improved by spraying the cuttings with 6-benzylaminopurine (BA) during the forced flushing
period of new shoots (Table 2) [92]. They also reported an increase in rooting rates by reculturing
the explants placed horizontally. By combining ex vitro and in vitro reinvigoration treatments,
rooting rates of mature microshoots (clone 431) were similar to those of BS microshoots (Table 2).
However, satisfactory rooting rates were not generally achieved with mature tissues despite the
efforts in optimizing protocols or using reinvigorating treatments. Besides the genotype influence,
the maturation state of the shoots clearly has an enormous influence on the rooting performance of
the plants.

6.5. Rooting Media

The mineral media most frequently used for the induction of ARs in vitro are Murashige and
Skoog (MS) [128] and Gresshoff and Doy (GD) [129], with macronutrients reduced to one half (1/2) or
one-third (1/3) strength, respectively, and the usual concentration of sugars. It is believed that such
reduction will ease the exit of primordia from the stems as well as help in the growth of new roots,
because full-strength media might inhibit rooting, though the response is a species-dependent and
probably a genotype-dependent issue. Indeed, rooting rates of microshoots of C. sativa and C. dentata
in the presence of full-strength media were satisfactory [98,112]. In addition, better rooting rates
and mean number of roots were achieved in C. henryi microcuttings rooted in full-strength media
than in half-strength media [100]. The quality of rooted plantlets of the clone Maraval (C. sativa ×
C. crenata) was improved by adding ascorbic acid to the rooting medium [130]. Positive results were
achieved in microshoots by using mixtures of liquid medium and inert substrates during the expression
phase [93,100]. The effectiveness of the Modified Melin-Norkrans (MMN) media has been recently
reported on rooting of chestnut microshoots [102].

The use of activated charcoal (AC) is a common strategy for the rooting of cuttings, as it is believed
that it will sequester phenolic compounds that might have a detrimental effect on the process, and at
the same time provides the dark conditions that will limit the oxidative effect of light on auxins.
Low concentrations of AC, ranging from 0.2 to 1%, have been successfully used in the rooting of
chestnut microshoots [33,97]. Depending on the genotype, the rooting frequencies were increased up
to more than two fold in the presence of AC [93,98]. Nonetheless, as IBA was the hormone frequently
used and it is believed to be more stable than IAA in culture media and under light conditions [131],
the mode of action of AC in AR remains to be defined. AC has been shown to have contrasting effects
on in vitro culture, and its ability to retain plant growth regulators or release stimulatory compounds
is not fully characterized [132].

6.6. Light Conditions

Light conditions have also been tested in the analysis of AR in chestnut. A period of darkness,
usually 3 to 7 days, was applied along with the hormonal treatment during the induction of ARs.
In some clones of chestnut, rooting frequencies were enhanced by the darkness period but clonal
differences were found [92]. In C. dentata, IBA-treated microshoots subjected to an eight-day darkness
period rooted better than those subjected to normal photoperiod [97]. The outcome of a dark period
during the induction and initiation phases might be related to auxin stability, as previously said,
or it might be related to an increase in auxin sensitivity in the tissues. Besides, it is also possible
that a darkness period induces the synthesis of endogenous auxin. In a previous work, we showed
that a 24 h-dark treatment strongly induced the expression of CsGH3-1, a highly auxin-responsive
gene, in chestnut microshoots [43]. These results suggest greater synthesis of the hormone or a
greater sensitivity of the tissues under dark conditions. In Petunia hybrida cuttings, it has been shown
that incubation in darkness enhanced the accumulation of endogenous auxin at the stem base [133].
Furthermore, this treatment also accentuates the allocation of carbohydrate resources towards the root
forming zone in the same species [134], improving the energy resources needed for the development of
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the new organ. Further analyses are needed to clarify the effect of a darkness treatment in the auxin
homeostasis of tissues and in the rooting process in chestnut.

Overall results suggest that no single protocol can be defined for chestnut species, but rather
specific adaptations are needed for every species and genotype, as previously suggested [135]. The use
of AC and a period of darkness immediately after dipping, or along with the auxin treatment, apparently
have a positive effect, although their application seems not to have straightforward results.

7. Root System Architecture and Functionality: In Vitro vs. Ex Vitro Rooting

Root system architecture (RSA), the three-dimensional distribution of the different root components
in the soil or growing media, is an essential factor determining the ability of the new roots to explore
the soil and supply nutrients for the plant, as well as to provide support for continuous growth.
Most research data of AR in chestnut quantifies the root system by the number of roots generated and
length of the longest root, which are relevant traits. Nonetheless, a more precise analysis of the RSA is
needed to accurately classify the functionality of the new roots. Analysis of the rooting system can
be difficult because of the dark nature of substrates or root sensitivity to mechanical damage during
manipulation. Secondary roots and root hairs are rarely quantified, mainly because of the lack of
precise tools to develop such analysis. New protocols have been developed recently for this purpose,
including growing chambers with visualization windows (Rhizotron) or the application of different
imaging techniques to phenotype the root (reviewed in [136]). To the best of our knowledge they have
not been applied in chestnut.

Data available clearly suggest that ex vitro rooting provides a much stronger rooting system,
when compared with in vitro rooting. The use of substrate mixtures for the rooting step also increases
the survival rates, though a strong genotype-dependency is found [12]. Gonçalves et al. [33] found
that the quality of ex vitro rooted hybrid chestnut shoots was greater than that of in vitro rooted
ones, with the former showing the presence of lateral roots and root hairs. In the search for protocol
optimization, greater performance of ex vitro rooted plants compared to in vitro rooted plants has
also been shown for American chestnut, where the aeration provided by substrates, like vermiculite,
improved the formation of lateral roots and root hairs [137]. Indeed, the development of lateral roots
in in vitro rooted shoots is rare, and this fact notoriously decreases the subsequent performance of the
shoots. The generation of poor rooting systems might increase the mortality rates in the following
steps of vegetative propagation.

In vitro plants are subjected to a stressful environment that has an enormous impact on their
metabolite profile [138], as well as on different photosynthetic parameters [139], that despite the lack
of a proper rooting system might also affect the acclimation success. Indeed, in vitro plants need to
develop proper cuticles and epicuticular waxes that help them to stabilize their water apparatus [140].
Besides all these factors, it has been a matter of debate to what extent in vitro generated roots are
functional, as the lack of root hairs might render the roots unable to absorb water or nutrients [141].
Fortunately, the plasticity of plants allows them to adapt their rooting system to the new conditions and
after few weeks they seem to adapt properly to the new conditions. On the other hand, ex vitro rooting,
when successful, speeds up the acclimation process and eases the hardening of in vitro generated
plants. It has recently been shown that urea-derivatives can have a positive effect on the development
of lateral roots in chestnut in vitro microshoots, and might be related to a better auxin/cytokinin
homeostasis during AR development [91].

8. Acclimation of In Vitro Rooted Microshoots

Rooted plantlets of chestnut often fail to survive adaptation to ex vitro conditions [12,33,98,139,142].
As rooting and acclimation ability appears to be genotype-dependent [12], the commercial application
of current protocols in Castanea species and hybrids is seriously limited. Acclimation conditions for
chestnut plantlets require fog and mist systems to minimize water loss while most stomata are not
completely functional [89,143]. For this process to be successful, it requires a high relative humidity
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(RH), which is progressively lowered to allow the plants to adapt to the new conditions, enabling them
to develop a functional water balance [33,100], which usually coincides with the production of new
leaves. Irradiance at about 300 µmol m−2 s−1 and CO2 levels of 700 ppm can improve the survival and
growth of the rooted shoots, due to the promotion of the autotrophic behavior [142].

Successful plantlet acclimation depends on the plant material rapidly transitioning from a
heterotrophic to an autotrophic habitat at the same time as roots begin supplying water to leaves
that may not have developed control of water loss until new leaves and functional stomata develop.
For these reasons, efforts to improve chestnut acclimation should focus on the production of functional
roots and shoots, as well as defining an optimal environment. Autotrophy can be attained during
in vitro culture by using bioreactors with liquid medium and forced ventilation [144]. Temporary or
Continuous Immersion Systems (TIS, CIS) were successfully used to proliferate eight ink-resistant
C. sativa × C. crenata genotypes [145,146]. The proportion of rootable shoots (tall, vigorous and with
an actively growing apex) suitable to undergo the rooting process was increased, and subsequent
acclimation produced good plant survival [147]. Protocols developed for rooting of chestnut include
in vitro and ex vitro approaches (Table 3).

Table 3. Survival rates of micropropagated plantlets of the Castanea (C) genus. Root induction was
performed under in vitro or/and ex vitro conditions and thereafter microshoots were transferred to
different conditions and acclimation periods.

Species Acclimation
Period Acclimation Conditions Root Induction Survival

Rate (%) Reference

C. crenata 30 days Vermiculite + BW 1
2 medium

Continuous light
In Vitro 85 [100]

C. dentata
8 weeks Relative humidity (RH): 80%

Fafard’s mix In Vitro 95 [98]

8 weeks RH: 92%; Fafard’s mix In Vitro/
ex vitro 20/87 [138]

C. henryi 90 days
RH: 80%→ 65%

Peat:perlite (2:1)+MN medium (30 days)
Peat: perlite: loess (1:1:1) (60 days)

In Vitro 80 [101]

C. sativa ×
C. crenata

4 weeks RH: 95%→ 50%; Peat:perlite (1:2) In Vitro/
ex vitro 50/100 [33]

42 days RH: 98%→ ambient;
Peat:perlite (1:1) In Vitro 85 [143]

8 weeks RH: 90%; Rockwool cubes (4weeks)
Peat:perlite (3:1)(4weeks) In Vitro 73 [147]

When root induction and expression phases are developed in vitro, a subsequent phase of
hardening is required, while in the ex vitro approach rooting and acclimation may occur at the same
time. When both methods were applied to the same genotypes, survival rates of the latter clearly
outperformed the former [33,137]. This might be linked to a more progressive transition to the
autotrophic metabolism and to the attaining of functionality of the water balance system, together with
a better development of the roots. As outlined in the former section, ex vitro formed roots show a better
architecture, with more lateral roots and root hairs than in vitro roots. For ex vitro rooting, disease–free
soilless materials with suitable aeration and water-holding characteristics, including mixtures of
peat, vermiculite and perlite, can be used, together with other substrates as porous plugs made of
cellulose, rockwool or peat, either mixed with bark and plant-derived bio-degradable polymers or
surrounded by fine netting. The use of fibrous or porous support materials was shown to be beneficial
for difficult-to-root woody plants [148], and in chestnut, they provided good results in hybrids of
European and Asian chestnut [146], as well as in American chestnut [149]. Roots developing in the
plugs were of better quality than those formed on gelled medium, and the plants required much
less handling to transfer them to ex vitro conditions. Transplanting plants along with the support
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material reduces the possibility of root damage and enables automated handling as in plug seedling
production [148].

9. Future Prospects of Biotechnological Approaches on AR

Climate change effects, which include higher mean annual temperatures, prolonged periods of
drought and the normalization of extreme weather episodes (including flooding events), is one of the
greater menaces for humankind in its recent history. Agriculture, besides confronting the challenge
of feeding a constantly increasing world population, is one of the more sensitive human activities to
the changing environment. The need for a better understanding and an improved use of our plant
resources is mandatory if we are to survive as a species. The advancement in our knowledge of AR
will ease the path for optimized protocols in vegetative propagation of interesting species.

Tree species of the genus Castanea have an enormous relevance both at the ecological and the
economical level, but biotechnological tools applied to other trees and crop species have not been
readily improved or applied so far. If we want to preserve the natural variability of this genus and
take better advantage of the possible benefits it might provide, greater efforts, both scientifically and
economically, need to be made.

In this context, micropropagation in photoautotrophic conditions in bioreactors can improve
rooting and acclimation of recalcitrant tree species, as well as reduce propagation costs and
agar-based residues [144,147]. The application of photoautotrophic conditions (high light intensity,
CO2 supplementation, and sugar-free medium) to the multiplication and rooting phase of chestnut
has been reported for some genotypes [150]. Although all the micropropagation processes can be
conducted in this way, the effect is especially remarkable during the rooting process [151]. However,
the parameters influencing photoautotrophic propagation at the proliferation stage, including the
dynamics of CO2 utilization and the overall aeration regime, should be developed more deeply before
being applied on a commercial scale.

The transgenic plants developed in chestnut are mainly focused on the generation of genotypes
that are resistant to the different threats for chestnut, particularly the pathogens P. cinnamomi and
C. parasitica. To our knowledge, no transgenic plants have been generated in order to improve the
rooting performance of chestnut trees. In this sense CRISPR/Cas9, a new genome-editing system,
has gained great popularity within the last years in molecular research, as well as in plants. The protocol
provides for efficient targeted modifications of specific sequences within the genome, thus opening the
possibility to improve quality of the plants, biotic, and abiotic responses and fine-tuning expression of
the genes, etc. [152]. Its application, together with other tools, should pave the way for an improved
fitness of crops and trees.

The availability of complete genomes for this genus should pave the way for a deeper
understanding of the reasons that underlie the genotype differences that are found to be the reason
behind the differential responses to the rooting treatments in the works analyzed here. Chinese chestnut
is on the verge of a significant biotechnological burst due to the completion of the sequencing of its
genome and the development of a transformation protocol [153,154]. Together with the work developed
by the Hardwood Genomics Initiative in chestnut (hardwoodgenomics.org), available information
might be crucial for the development of biotechnological advances that will improve our knowledge
concerning this genus, as well as the development of protocols that might help overcome the difficulties
in its improvement. Furthermore, more molecular analyses are needed in order to develop the
biotechnological approaches that will enable the scientific community to overcome the main limitations
in vegetative propagation of chestnut, as it is clear that biotechnology will ultimately provide the tools
for the improvement in AR demanded by the chestnut production industry. Moreover, the application
of protocols that might modify the epigenetic status of adult tissues is an unexplored possibility with
potential positive results.

Furthermore, the use of bioinformatics approaches is also growing in the plant biotechnological
field, including modeling strategies that use generated data to obtain improved protocols by means of
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neural network or fuzzy logic. These protocols have been successfully applied to improve in vitro
conditions or acclimation processes in other species [155,156]. The application of these approaches in
chestnut could also provide significant advances for the biotechnological exploitation of this genus.

Therefore, though relevant advances have been made, there is an urgent need for more research
in chestnut, particularly at the molecular and genetics level. The knowledge acquire will pave the way
for the understanding of the limitations in vegetative propagation of these species, as well as it will
help improve current protocols that will provide a more efficient exploitation of its economic potential
and allow for the conservation of the genomic variability of the genus.
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