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2Unité mixte de Recherche 1162, Génomique fonctionnelle des Tumeurs solides, Institut National de la Santé et de la Recherche
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Practice points

• Hepatocellular adenoma (HCA) is a benign liver tumor occurring in young women and promoted by oral
contraception.

• Malignant transformation and hemorrhage are the main complications of HCA.
• Different molecular subtypes have been described: HNF1A-inactivated HCA, inflammatory HCA,

β-catenin-mutated HCA exon 3, β-catenin-mutated HCA exon 37 or 8, sonic hedgehog HCA and unclassified HCA.
• Malignant transformation of HCA is more frequent in males and in β-catenin mutated HCA exon 3.
• Tumor size and sonic hedgehog HCA are risk factors in tumor bleeding.

Hepatocellularadenomas are rare benign liver tumors usually developing in young women using oral con-
traception. The two main complications are hemorrhage (10–20%) and malignant transformation into
hepatocellular carcinoma (<5%). A molecular classification has been recently updated in six major sub-
groups, linked to risk factors, histology, imaging and clinical features: adenomas inactivated for HNF1A,
inflammatory adenomas, β-catenin-activated adenomas mutated in exon 3, β-catenin-activated adenomas
mutated in exon 7–8, sonic hedgehog adenomas, and unclassified adenomas. Indeed, β-catenin-mutated
adenomas in exon 3 are associated with malignant transformation, and sonic hedgehog adenomas with
bleeding. This new nosology of hepatocellular adenomas will help to stratify patients according to risk of
complications and will guide therapeutics in the future.
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Hepatocellular adenomas (HCAs) are rare benign liver tumors derived from monoclonal proliferation of hepa-
tocytes [1–3]. HCAs are less frequent than other benign liver tumors (liver angiomas, focal nodular hyperplasia
[FNH]), with an incidence estimated, in the 1970s, at around 0.001–0.005% of women using oral contracep-
tion [3,4]. In contrast to HCA, FNH involves polyclonal proliferation of hepatocytes and cannot be considered a
tumor per se. HCA develops mainly in young women (median age: 38 years), with a female/male ratio of 8:1 [5].
The principal risk factors are hormonal exposure (estrogens and androgens) and, more rarely, glycogen storage
diseases and vascular hepatic disorders [1].

Estrogen exposure is mainly due to long-term use of oral contraception (at least 2 years), but also pregnancy [6].
The association between HCA occurrence and estrogen was identified in the seventies, when women began to
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widely use estroprogestatives as oral contraception [1,3,7]. The incidence of HCA is higher in western than in eastern
countries, possibly linked to the less frequent use of oral contraception in Asian populations. Androgen intake for
recreative (body building) or therapeutic purposes (Fanconi anemia) has also been associated with development
of HCA [8,9]. Regression of HCA has been described after estrogen and androgen withdrawal [9,10]. Glycogenesis
type IA is an orphan disease defined by a germline-inactivating mutation of glucose-6 phosphatase. Symptoms are
neonatal hypoglycemia and growth delay [11]. Patients with this disease have a high risk of developing multiple
HCA during follow-up (almost 50% at adulthood) [11]. Vascular liver diseases such as Budd–Chiari syndrome,
congenital absence of a portal vein, and Fallot tetralogy promote development of malignant liver tumors such as
hepatocellular carcinoma (HCC), and benign liver tumors such as focal nodular hyperplasia and HCA [12].

HCA is multiple in 30–40% of cases, and liver adenomatosis is defined by the presence of 10 or more adeno-
mas [13,14]. The two main complications are symptomatic hemorrhage (15–20%) and malignant transformation
into HCC (<5%, probably overestimated in surgical series) [15–19]. Differential diagnosis between HCA and very
well-differentiated HCC may be difficult, especially in men, even for expert pathologists [19].

A molecular classification of HCA has been proposed based on dysregulation of signaling pathways, due to
mutations in oncogenes and tumor suppressor genes occurring in tumor hepatocytes [20]. Five major subgroups
have been described: H-HCA defined by inactivating mutations of hepatocyte nuclear factor 1A (HNF1A),
inflammatory HCA (IHCA), β-catenin-mutated HCA exon 3, β-catenin-mutated HCA exon 7–8, and recently, a
new subgroup characterized by activation of sonic hedgehog signaling due to focal deletions that fuse the promoter
of INHBE with GLI1 [21,22].

The different subgroups are associated with differing risk factors for HCA, pathological and immunohisto-
chemical features, and risk of complications [20]. This classification could be used in clinical practice to propose
preventative action against risk factors in HCA development, in distinguishing HCA from other benign liver
tumors, and in determining therapeutic strategies [23].

Molecular classification of HCA
HNF1A-inactivated HCA
HNF1A-inactivated HCA (HHCA) represents 35–45% of all HCA and is characterized by biallelic inactivating
mutations of HNF1A (Table 1) [24].HNF1A encodes a transcription factor involved in hepatocyte differentiation
and metabolism control, including lipids (stimulation of aberrant fatty acid synthesis) and glucose (repression of
gluconeogenesis, activation of glycolysis) [25,26].

Germline HNF1A mutations were initially described in an autosomal dominant diabetes termed ‘maturity onset
diabetes of the young, Type 3’ (MODY 3) by Yamagata et al. [27]. But, unlike MODY 3 diabetes, where only one
allele of HNF1A is inactivated in all cells linked to germline mutations, in HHCA there is a complete inactivation
of both alleles in tumor cells [24]. Among all HHCA, 90% are due to a somatic mutation of both alleles in tumor
hepatocytes and 10% are due to a germline mutation of one allele, with additional somatic inactivated mutation of
the other allele, according to the Knudson model of tumor suppressor genes described in retinoblastomas [24,28–29].

Moreover, in HHCA, no additional genetic alterations have been identified; consequently, biallelic-inactivating
mutations of HNF1A are exclusive of CTNNB1, IL6ST, FRK, JAK1, GNAS and STAT3 mutations. At the cellular
level, we observed an overload of fatty acids linked to increased synthesis induced by HNF1A inactivation in the
tumor.

On a pathological level and in imaging, marked diffuse homogenous steatosis was present in HHCA, without
cytological abnormalities or inflammatory infiltrates [30].

Using immunochemistry, we diagnosed HHCA when confronted with loss of expression of FABP1 in tumor
hepatocytes, which were highly expressed in adjacent nontumor liver (Figure 1) [31].

On MRI, HHCA shows a diffuse signal dropout on an opposed phase T1-weighted chemical shift sequence and
a fat-suppressed sequence compared with in-phase images due to the presence of fat in the lesion. The signal on T2-
weighted images is more variable, usually slightly hyperintense on no-fat-suppressed images, and iso/hypointense
on fat-suppressed images. After contrast medium injection, moderate enhancement is frequently observed in the
arterial phase, but disappears during delayed phases (‘pseudo-washout’ due to fat content) (Figure 2). Hence,
noninvasive diagnosis of this molecular subgroup is possible using MRI [32–34].
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Table 1. Molecular classification of hepatocellular adenomas.
HCA
classification

Frequency Mutations Pathway
disregulated

Risk factors Clinical features Histological
features

Immunohistochemical
markers

Imaging (MRI) Complications

H-HCA 30–35% HNF1A
biallelic in-
activation

Disturbance in
metabolic
profile

HNF1A
germline
mutations
OC

Women: familial
adenomatosis
(HNF1A
germline)

Tumor, diffuse
steatosis

Decreased FABP1
expression in the
tumor

T1 chemical
shift sequence:
signal dropout
on opposed
Phase l

No risk of
malignant
transformation
if HHCA �5 cm

I-HCA 30–35% IL6ST (65%)
FRK (10%)
STAT3 (5%)
GNAS (5%)
JAK1 (2%)

IL6/JAK/STAT OC
High alcohol
consump-
tion
Obesity

Inflammatory
syndrome

Inflammatory
infiltrates
Dystrophic
arteries
Sinusoidal
dilatation

Tumor overexpression
of SAA/CRP

Hyperintense
signal on T2,
arterial
enhancement
persisting in
delayed phases

–

�-catenin
HCA exon 3

7% Exon 3
CTNNB1
mutation

Strong
�-catenin
activation

Androgen
Liver
vascular
disease

Male
Only one tumor
Young patient

Cellular atypia
Pseudo-
glandular
formation
Cholestasis

Nuclear �-catenin
Increased glutamine
synthase expression

– High risk of
malignant
transformation
in HCC

�-catenin
HCA exon
7–8

3% Exon 7–8
CTNNB1
mutation

Weak
�-catenin
activation

OC Only one tumor
Young patient

– Faint glutamine
synthase expression

– –

Sonic
hedgehog
HCA

4% INBHE/GLI1
fusion

Sonic
hedgehog
activation

OC
Obesity

– Hemorrhage – – Bleeding

Unclassified
HCA

7% – – – – – – – –

A total of 50% of CTNNB1-mutated HCA (either in exon 3 or in exon 7/8) are also inflammatory.
CRP: C reactive protein; HCA: Hepatocellular adenoma; HCC: Hepatocellular carcinoma; HHCA: HNF1A-inactivated hepatocellular adenoma; HNF1A: Hepatocyte nuclear factor 1A; IHCA:
Inflammatory hepatocellular adenoma; OC: Oral contraception; SAA: Serum amyloid A.

Inflammatory HCA
IHCA represents 40–50% of all adenomas and is characterized by constitutive uncontrolled activation of the
inflammatory IL6/JAK/STAT pathway (17) (Table 1) [30]. IHCA is linked to several mutations, separate from one
another, in various oncogenes that belong to this pathway: IL6ST (65%), FRK (10%), STAT3 (5%), GNAS (5%)
and JAK1 (2%) [35–37]. These HCAs are frequently associated with obesity, metabolic syndrome and high alcohol
consumption [38].

On histological examination, IHCAs are characterized by inflammatory infiltrates, dystrophic vessels and sinu-
soidal dilatations [39].

In immunochemistry, inflammatory markers have been described as satisfactory tools for diagnosis of this HCA
subtype in routine examinations. SAA and CRP, two proteins of the acute phase of inflammation, are overexpressed
in the cytoplasm of tumor hepatocytes (Figure 1) [31]. A minority of FNH might also harbor focal positivity of
SAA [40].

On MRI, IHCA is characterized by marked hyperintensity on T2-weighted sequences, with occasional and more
severe hyperintensity in the outer part of the lesions (‘atoll sign’ due to sinusoidal dilatation areas), together with
strong arterial enhancement persistent in the portal venous and delayed phases (Figure 3) [32,33]. A combination of
these two MRI findings enables noninvasive diagnosis of IHCA with sensitivity between 85 and 88% and specificity
between 88 and 100% [32,33].

β-catenin-mutated HCA exon 3
The Wnt/β-catenin pathway is responsible for liver zonation, liver embryogenesis, amino acid metabolism and
hepatic regeneration [41,42]. Moreover, the Wnt/β-catenin pathway is a key pathway activated in several malignancies,
including colorectal cancer, hepatocellular carcinoma, breast cancer and medulloblastoma [42].

A total of 10–15% of HCA harbor an activating mutation of β-catenin on exon 3, responsible for uncontrolled
activation of the pathway (Table 1) [20,43].

In an inactivated state, β-catenin (encoded by CTNNB1) is phosphorylated by the APC/GSK3B/AXIN1
complex, which leads to degradation of β-catenin by the proteasome. In the case of activating mutations of
CTNNB1, phosphorylation of β-catenin is impaired and, instead of being degraded in proteasomes, β-catenin
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Figure 1. Biopsy samples of hepatocellular adenomas. β-catenin exon-3-mutated hepatocellular adenoma: thick
trabeculae with mild nuclear atypia and pseudo-gland (arrow) are frequently observed (A). Strong diffuse staining for
glutamine synthase (B), as well as nuclear translocation of β-catenin (C), when present, enable diagnosis.
Inflammatory hepatocellular adenoma with sinusoidal dilatations, inflammatory foci and isolated arteries (arrow) (D).
No glutamine synthase expression is observed (E). Immunostaining with amyloid A (SAA) shows strong cytoplasmic
staining; normal adjacent liver in the upper part is negative for SAA (F). HNF1A-inactivated adenoma with tumor
steatosis (G). Glutamine synthase (H) is negative or weak (similar to adjacent nontumor liver with perivenular
staining, arrow). In contrast to the adjacent nontumor liver (I, arrows), HNF1a-inactivated adenoma characteristically
lacks L-FABP staining in the tumor (I).
SAA: Serum amyloid A.

translocates into the nucleus and acts as a co-transcription factor to foster its oncogenic effect [42]. This explains the
localization of β-catenin in the nucleus observed in β-catenin-mutated HCA.

CTNNB1-activating mutations in exon 3 are completely exclusive of HNF1A mutations and CTNNB1-activating
mutations in exons 7 and 8, whereas 50% of β-catenin-mutated HCA on exon 3 also show activation of the
inflammatory pathway [21]. Consequently, in clinical practice, activation of the Wnt/β-catenin pathway should be
sought when confronted with inflammatory HCA [21].

On a pathological level, we observed cellular atypia, pseudoglandular formations and cholestasis (Figure 1) [30].
On immunochemistry, β-catenin-mutated HCA exon 3 is defined by nuclear translocation of β-catenin and over-

expression of glutamine synthase, a target gene of the pathway (Figures 1 & 4) [31]. However, nuclear translocation
of β-catenin could be lacking in HCA with CTNNB1 exon 3. Moreover, some cases of HCA with CTNNB1 exon
3 have patchy positive glutamine synthase, and S45 CTNNB1 mutations frequently harbor diffused heterogeneous
glutamine synthase. Consequently, β-catenin and glutamine synthase immunostaining are sometimes difficult to
interpret, especially on tumor biopsy [40,44]. Despite the high specificity of these two markers, sensitivity may be
insufficient (75–85%) for diagnosis of β-catenin exon 3 mutations, and molecular biology may be required for
definitive diagnosis in difficult cases [45].

These HCA are more frequent in men, and risk of malignant transformation in HCC attains 40%, an incidence
higher than for other molecular subtypes of HCA [20,31,46]. In HCC derived from HCA, the CTNNB1 exon 3
mutation is the earliest genetic alteration, whereas mutations in the promoter of telomerase reverse transcriptase
seem to be involved in the final step of transition between HCA and HCC [36,47]. Consequently, identification
of this subtype of HCA is highly relevant in clinical practice and can be performed only by molecular analysis or
immunohistochemistry, since no specific radiological features have yet been described.
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Figure 2. Imaging features of HNF1A inactivated hepatocellular adenoma. Large HNF1A-inactivated hepatocellular
adenoma (HCA) in a 26-year-old woman. In chemical shift T1-weighted sequence, HCA has moderate hyperintensity
in-phase (A), with a marked signal dropout on opposed-phase images (B). The lesion is hypointense in both T1 (C) and
T2 (D) fat-suppressed sequences due to the lipid content. After contrast medium injection, there is only slight arterial
enhancement (E), but the lesion remains hypointense compared with the normal liver on portal venous phase (F).

β-catenin-mutated HCA exons 7 and 8
A total of 10% of HCAs have a mutation of CTNNB1 located on exon 7 or 8 (Table 1) [45]. These β-catenin
mutations are characterized by mild activation of the Wnt/β-catenin pathway, and are exclusive of mutations
of β-catenin on exon 3. Half of HCAs with β-catenin-mutated HCA exons 7 and 8 also have an inflammatory
phenotype and share the features of each subgroup [36,45]. At histology and immunochemistry, there are no specific
markers (no nuclear translocation of β-catenin and only slightly increased glutamine synthase expression) [45].
Moreover, this subtype has not been associated with higher risk of malignant transformation; consequently, its
identification in clinical practice does not seem useful at this time [36].

Sonic hedgehog HCA
Recently, a new subgroup has been identified, representing 4% of all HCA and defined by activation of the sonic
hedgehog pathway due to fusion of the promoter of INHBE with GLI1 (Table 1) [21]. The sonic hedgehog pathway
is involved in lipid metabolism and in regeneration in the liver. In a quiescent state, receptor PTCH is inhibited by
SMO, and this inhibition is released when the hedgehog ligand binds to PTCH. It induces translocation into the
nucleus of transcription factor GLI1, which controls expression of a network of genes [48].
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Figure 3. Imaging features of inflammatory hepatocellular adenoma. Two large inflammatory hepatocellular
adenomas in a 33-year-old woman. Note: typical MRI appearance with marked hyperintensity on T2-weighted images
(A), together with hypointensity on T1-weighted fat-suppressed images (B). After contrast medium injection, there is
strong heterogeneous arterial enhancement of the two lesions (C) that persists in the portal venous phase (D).

Sonic hedgehog HCA was characterized by overexpression of GLI1 due to its fusion with the 5′ end of INHBE,
a highly expressed gene located upstream of GLI1 [21]. This new subgroup is associated with obesity, and with both
histological hemorrhage and symptomatic bleeding [21,22]. However, sonic hedgehog HCA does not currently have
any specific immunohistochemical markers or radiological features useful for routine identification [21].

Unclassified HCA
Fewer than 10% of HCA remain unclassified (Table 1) [22].

Translation into clinical practice
Identification of new risk factors
The principal risk factor in HCA development is estrogen exposure, with long-term use of oral contraception, but
also female sex and pregnancy [2].

Androgen intake, glycogen storage disease, hepatic vascular disease, McCune–Albright disease (characterized by
fibrous bone dysplasia, ‘café au lait’ skin macula and pituitary and thyroid adenomas due to somatic postzygotic
mosaic GNAS mutation) and an HNF1A germline mutation with MODY 3 diabetes are also involved in HCA
occurrence [2,12,37].

Several cases of familial liver adenomatosis have been described worldwide, consistently linked to the presence
of an HNF1A germline mutation, and sometimes to MODY 3 diabetes.

Thus, detection of liver adenomatosis with HNF1A-mutated HCA in a patient requires family screening to
search for familial adenomatosis, MODY 3 diabetes, and the HNF1A germline mutation [28].

Liver adenomatosis may also be associated with glycogen storage disease. To our knowledge, this disease has
never been associated with HNF1A-inactivated HCA [49].

Furthermore, specific genetic diseases are associated with a specific subtype of HCA: MODY3 with HHCA,
McCune–Albright syndrome with IHCA and type 1 glycogen storage disease with IHCA, β-mutated HCA (exon
3 or exon 7/8) or unclassified HCA [49].

Otherwise, obesity and high alcohol intake are risk factors in inflammatory and sonic hedgehog HCA (25) [31].
Interestingly, tumor size may decrease in up to a third of patients in case of weight reduction due to diet or bariatric
surgery [50].

Several cases of regression of HCA after withdrawal of estrogens or androgens have been observed, suggesting
the fundamental role of hormones in HCA development [9,10]. Strikingly, regression of HCA and HCC mutated
for CTNNB1 in exon 3 has been observed after androgen withdrawal [9].

Hepat. Oncol. (2018) 5(1) future science group
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Figure 4. Surgical samples of sonic hedgehog hepatocellular adenoma and β-catenin exon-3-mutated
hepatocellular adenoma. Sonic hedgehog hepatocellular adenoma: macroscopic view of a large liver nodule with
hemorrhagic areas (A). Low magnification demonstrating a sharply limited hepatocellular nodule with hemorrhagic
areas (B) and (C). β-catenin exon-3-mutated HCA with cellular atypia: microscopic examination shows a
well-differentiated hepatocellular tumor with cellular atypia (large, hyperchromatic nuclei and bi-nucleated cells) (D).
Glutamine synthase is strongly expressed in the tumor (E).
HCA: Hepatocellular adenoma; NT: Nontumor; T: Tumor.

Identification of risk factors helps to define both preventive measures and screening programs:

• Oral contraception and androgen intake must be discontinued;
• Weight reduction is a key point in IHCA and sonic hedgehog HCA. Reduction in size has been described after

weight loss following bariatric surgery;
• Screening for the HNF1A germline mutation and familial adenomatosis in HNF1A-inactivated adenomatosis is

recommended;
• Screening of HCA in glycogenosis (50% of patients with glycogenesis type IA have adenomatosis at adulthood,

sometimes associated with malignant transformation) should be performed.

Diagnosis
Currently, HCA is frequently discovered following abdominal pain, or incidentally at imaging [31,51]. More rarely,
HCA is also revealed by hemorrhage or malignant transformation. Liver enzymes are normal in almost half of the
cases, and tumor markers (AFP, ACE and CA19–9) are negative [31,51]. In the subgroup of IHCA, GGT, alkaline
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Figure 5. Algorithm for the treatment of hepatocellular adenoma based on molecular classification. We propose an
algorithm for treatment of HCA based on our knowledge of molecular classification.
HCA: Hepatocellular adenoma; OC: Oral contraception; shHCA: Sonic hedgehog hepatocellular adenoma.

phosphatase and CRP are frequently elevated [21]. Occasionally, IHCA is associated with a paraneoplastic syndrome,
including an inflammatory syndrome and anemia that regress after surgical removal of the tumors [52].

The diagnosis of HCA relies mainly on histological analysis, but differential diagnosis with focal nodular
hyperplasia or well-differentiated hepatocellular carcinoma may sometimes be complicated, even for expert pathol-
ogists [53].

In clinical practice, molecular classification is currently used by pathologists, and four key immunohistochemical
markers (SAA, FABP1, glutamine synthase and β-catenin) are useful to determine the most important subgroups of
HCA and exclude the diagnosis of focal nodular hyperplasia (Table 1 & Figure 1). These markers can be used both
on surgical specimens and on liver biopsy [54–58]. Several groups in Belgium, the UK, the USA, The Netherlands,
Japan, and China have shown that the different molecular subgroups of HCA are observed worldwide. However,
the proportion of each molecular subtype may vary, with less frequent HNF1A-inactivated HCA in Japan than in
other countries [55–59].

However, we should stress that immunohistochemistry is unable to detect β-catenin-mutated HCA on exons
7–8 and sonic hedgehog HCA [21]. Interestingly, a subset of patients harbors multiple HCAs. In 70% of these
patients, HCA belong to the same molecular subclasses. When confronted with different molecular subclasses in
the same patient, CTNNB1 exon 3 mutation was primarily observed in the largest nodule [21].

Imaging may also be a useful tool for classifying HCA, and MRI characteristics are highly relevant for diagnosing
HHCA and IHCA (Figures 2 & 3) [32–34]. However, typical imaging of IHCA at MRI did not exclude the presence
of a concomitant β-catenin mutation on exon 3, associated with high risk of malignant transformation.

Therapeutic management according to risk stratification
Use of molecular classification for therapeutic strategies appears relevant, since the risk of complications depends
on the HCA subtype (Figure 5).

CTNNB1-mutated HCA in exon 3 has a higher risk of malignant transformation, while sonic hedgehog HCA
frequently shows symptomatic bleeding or tumor histological bleeding [21,46]. The risk of hemorrhaging is directly
linked to tumor size and to the molecular subgroup; in the literature, a cut-off of 5 cm in size was associated with
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risk of bleeding, but this remains subject to debate [16,18,21,51]. Male sex and β-catenin-mutated HCA in exon 3
have been significantly associated with higher risk of malignant transformation [51].

One of the initial treatments consisted of arrest of oral contraception and/or androgens [9,10].
For a number of years, surgical treatment was proposed whatever the tumor size if no regression was observed

after hormone discontinuation, due to the unpredictable evolution of these lesions.
Recently, a conservative approach has been preferred instead of surgery in all cases [5,51,60]. However, management

of HCA remains controversial due to the lack of strong evidence in the literature [6,61]. Therapeutic strategy is
guided by the risk of complications. Tumor size and localization, subtype of the molecular classification, and sex
are the three main factors that determine therapeutic strategy (Figure 5) [21]. Currently, a laparoscopic approach is
preferred rather than open surgery, since it is associated with reduced morbidity, reduced blood loss and need for
transfusion, reduced length of hospital stay, and less esthetic damage in young women [62].

In men, all HCA should be surgically removed due to the high risk of malignant transformation [4,43,51].
Radiofrequency ablation (RFA) has also been proposed by several authors, in combination with or as an

alternative to surgery for treatment of small HCA. Only small series are available in the literature, having no
correlation with the molecular classification of HCA; potential indications for RFA remain unclear [63]. As a radical
treatment, RFA should be proposed based on the risk of complication, depending on HCA subtype and molecular
classification. Potential advantages include a satisfactory safety profile, high cost–effectiveness and acceptability for
esthetic reasons, particularly in young women [64]. This strategy must also be discussed in case of morbid obesity,
or liver steatosis associated with morbidity after major surgery. One major disadvantage is that, unlike surgery, no
definitive histologic or molecular analysis of the entire tumor specimen can be performed. More studies are needed
to clarify the possible use of RFA in patients with HCA.

In women with large HCA (over 5 cm) [65], several solutions are available and should be discussed by a
multidisciplinary tumor board:

• Systematic resection via surgery;
• Surgery after 6–12 months of estroprogestative withdrawal if HCA does not regress;
• Surgery only for symptomatic patients, or HCA with high risk of complications defined by molecular classifi-

cation.

In women with small HCA (less than 5 cm), surgical indication should be guided by the presence of the β-catenin
exon 3 mutation, whereas follow-up could be proposed for the other molecular subtypes [20,66]. In our series of
511 HCA, H-HCAs of less than 5 cm were never associated with malignant transformation and were able to be
diagnosed by MRI without the need for tumor biopsy [21]. In other cases, tumor biopsy was proposed to search for
the β-catenin mutation and to better assess the risk of malignant transformation [8,21]. However, one limitation that
remains is the small number of laboratories worldwide that perform molecular analysis of HCA in clinical care.

Liver transplantation is required only in very select cases of glycogenosis type 1A or in unresectable HCC
developing on HCA [67]. For liver adenomatosis or multiple HCA, risk of complications is almost the same as that
for HCA alone, and therapeutic strategy may follow the same rules as for HCA alone, mixing gender, size and
molecular subtype [21,51]. HCA is not a contra-indication for pregnancy, since risk of bleeding during pregnancy is
low or even inexistent in recently published series [51]. However, if possible, resection of HCA should be discussed
by a multidisciplinary tumor board prior to pregnancy.

Conclusion & future perspective
In the past few years, major breakthroughs have occurred in our understanding of the physiopathology of HCA. A
limited number of genetic alterations affecting driver genes (one to two per tumor) are required to promote HCA
development. HCA is no longer considered a homogeneous disease; rather, it is described as a complex entity divided
into several molecular subgroups linked to risk factors, histological and imaging features, and clinical behavior that
redefine the nosology of the disease. Four signaling pathways involved in benign liver tumorigenesis have emerged: an
HNF1A inactivation link with metabolic disorder; Wnt/β-catenin pathway activation; IL-6/JAK/STAT3 pathway
activation; and sonic hedgehog pathway activation.

Specific inhibition of drivers in each pathway by targeted therapies represents a new avenue of treatment of
nonresectable HCA and liver adenomatosis. For example, preclinical data have shown that JAK1 and Src inhibitors
may promptly shut down activation of the inflammatory pathway in preclinical models, but this requires validation
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in clinical trials in humans with IHCA [68]. Moreover, only a few patients exposed to estrogens developed HCA,
which suggests that other genetic and/or environmental factors are required to promote HCA development.
However, except for HNF1A germline mutations and glycogenosis type 1A, a genetic predisposition toward HCA
remains to be explored. Finally, based on gender, tumor size, and molecular classification, a new therapeutic strategy
has been proposed for optimizing management of patients with HCA that requires validation in multicentric
prospective cohorts.
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