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A B S T R A C T   

Dynamic ensemble selection has emerged as a promising approach for hyperspectral image 
classification. However, selecting relevant features and informative samples remains a pressing 
challenge. To address this issue, we introduce two novel dynamic residual ensemble learning 
methods. The first proposed method is called multi-features driven dynamic weighted residuals 
ensemble learning (MF-DWRL). This method leverages various combinations of features to 
construct classifier pools that incorporate feature differences. The K-Nearest Neighbors algorithm 
is employed to establish the region of competence (RoC) in the dynamic ensemble selection 
process. By assessing the performance of the RoC, the feature sets that yield the highest classi-
fication accuracy are identified as the optimal feature combinations. Additionally, the classifi-
cation accuracy is utilized as prior information to guide the residual adjustments of each 
classifier. The second method, known as features and samples double-driven dynamic weighted 
residual ensemble learning (FS-DWRL), further enhances the performance of the ensemble. This 
approach not only considers the selection of feature combinations but also takes into account the 
informative samples. By jointly optimizing the feature and sample selection processes, FS-DWRL 
achieves superior classification accuracy compared to existing state-of-the-art methods. To 
evaluate the effectiveness of the proposed methods, three hyperspectral datasets from China—-
WHU-Hi-HanChuan, WHU-Hi-LongKou, and WHU-Hi-HongHu—are used for classification ex-
periments. For these datasets, the proposed methods achieve the highest classification accuracies 
of 90.57 %, 98.77 %, and 91.08 %, respectively. The MF-DWRL and FS-DWRL methods exhibit 
significant improvements in classification accuracy.   

1. Introduction 

Hyperspectral imaging (HSI) contains extensive spectral information with hundreds of contiguous spectral bands [1,2], enabling its 
wide application in various fields such as geoscience [3], biomedicine [4], agriculture [5], geological prospecting [6], and environ-
mental studies [7]. However, HSI classification faces challenges, including redundancy, high dimensionality, and a scarcity of labeled 
samples [8–14]. To address these issues, advanced technologies such as deep learning and ensemble learning strategies have been 
developed. 
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Active learning [15,16], as a deep learning method, allows the model to proactively select samples it deems most informative for 
labeling, thereby serving for training. This is especially crucial for hyperspectral images, which require extensive annotation costs. The 
essence of this approach is that the model actively chooses data samples that are most beneficial for its training, thus reducing the need 
for manual labeling, especially in the expensive annotation realm of hyperspectral imaging. When applying deep learning models, such 
as Convolutional Neural Networks (CNNs) [17], to HSI classification, integrating active learning can more precisely select key samples. 
This not only enhances the model’s classification accuracy but also effectively reduces training costs and time. Mainstream active 
learning strategies primarily include uncertainty-based sampling, which chooses samples where the model’s prediction is most un-
certain; representativeness-based sampling, which emphasizes selecting samples that can represent a large portion of unlabeled data; 
and model-improvement strategies, which opt for samples most likely to enhance model performance [18–20]. In summary, active 
learning offers an effective means of reducing annotation costs and boosting model performance in hyperspectral image classification. 
However, despite its commitment to minimizing labeling requirements, active learning might be affected by model bias, limitations in 
data selection, ongoing annotation costs, data imbalance, and scope of its application [21]. Ensemble learning [22], by combining 
multiple models, can balance out these biases, strengthen model generalization, and doesn’t rely on continuous user annotation. It is 
also better equipped to handle data imbalances and showcases broader adaptability. Hence, compared to active learning, ensemble 
learning exhibits clear advantages in various aspects. 

Firstly, hyperspectral data often contains redundant information because neighboring pixels in an image are likely to have similar 
spectral signatures. This redundancy can lead to inefficiencies in classification algorithms. Ensemble learning can help by combining 
multiple classifiers, each trained on a subset of the data or with different features, reducing the impact of redundancy. By aggregating 
the results of multiple classifiers, ensemble methods can capture a broader range of information and reduce the influence of redundant 
data. Secondly, hyperspectral data is characterized by a high number of spectral bands, resulting in high-dimensional feature spaces. 
High dimensionality can lead to increased computational complexity and overfitting. Ensemble learning can mitigate this by using 
techniques such as feature selection or dimensionality reduction in combination with individual classifiers. By reducing the dimen-
sionality of the data before classification, ensemble methods can improve the efficiency and effectiveness of the classification process. 
Lastly, HSI classification often suffers from a lack of labeled training samples, making it challenging to train accurate classifiers. 
Ensemble learning can address this limitation by allowing the integration of weak or limited classifiers. It combines the predictions of 
multiple classifiers to make a final decision, enhancing overall classification performance even with few labeled samples. Some 
ensemble techniques [22], like bootstrapping and bagging, can generate multiple subsets of the available labeled data to train diverse 
classifiers, which can be particularly useful when data is limited. In summary, ensemble learning strategies can help improve HSI 
classification by leveraging multiple classifiers to handle redundancy, reduce dimensionality, and make the most of the available 
labeled data. By combining the strengths of multiple classifiers, ensemble methods aim to enhance classification accuracy and 
robustness in scenarios where traditional single classifiers may struggle due to the mentioned limitations. 

Ensemble learning models can be mainly divided into two categories: static ensemble methods and dynamic ensemble selection 
(DES) methods. The static ensemble method [23] is based on the idea that a weak classifier can be promoted to a strong classifier 
through a specific ensemble strategy. Classic methods include bagging and boosting. In the bagging method [24,25], a diverse classifier 
pool is generated using the bootstrap strategy. Better classification results are then obtained based on the classifiers in the pool through 
a specific fusion strategy. Boosting [26–28] promotes a weak classifier to a strong classifier by weighting the samples, reducing 
variance and bias. Zhang et al. [29] proposed a new ensemble learning method based on sparse joint representation, incorporating 
both spectral and spatial features of hyperspectral data. The results show that the proposed method can perform better than traditional 
ensemble methods. Li et al. [30] proposed a new ensemble network for hyperspectral object tracking, which demonstrates effec-
tiveness and better performance compared to other models. Su et al. [31] proposed a new ensemble learning framework using the 
tangent collaborative representation model as the base classifier, showing that representation models can also be used in ensemble 
learning. However, the static ensemble method does not consider each classifier’s specific classification effects on different targets, and 
the accuracy of prior information for the base classification is difficult to obtain. The second category is the dynamic ensemble se-
lection (DES) method [32–35]. This method first uses K-NN or clustering to divide the classification targets into different regions, 
called regions of competence (RoC), and then selects the best classifier set for each local target according to some evaluation indicators. 
DES can better utilize the regional advantage of each base classifier compared to the static ensemble method. Even a less capable 
classifier may perform better in a local area. The purpose of DES is to leverage the unique classification advantages of each classifier 
[36–38]. Bharath and Rama [39] applied the idea of dynamic classifier selection (DCS) to hyperspectral image classification, 
combining dimensionality reduction and dynamic selection to construct a new DCS strategy. Meanwhile, Bharath et al. [40] proposed a 
DES method for heterogeneous classifiers, using the Markov random field (MRF), extreme learning machine (ELM), and random 
subspace method (RSM) as base classifiers. The results show that the dynamic classifier selection method can be effectively applied to 
HSI classification. Additionally, Lu et al. [41] proposed a new RoC construction method based on multi-view clustering for DES, which 
shows better classification accuracy than traditional DES models. However, current DES methods are limited to selecting classifiers 
without considering the adaptability of different samples and features to the target area. In summary, the static ensemble method can 
better utilize the advantages of different classifiers, but it often ignores the specific classification performance of multiple classifiers for 
different targets. Without prior selection of classifiers, the performance of classifier ensembles may be lower than that of a single 
classifier. Although the DES method focuses on the classifier’s behavior, it does not consider the impact of features and samples on the 
classification target. 

Therefore, this paper proposes a hyperspectral image classification strategy based on a diversity-guided dynamic sample and 
feature selection method. The research introduces a novel dynamic ensemble feature selection method for hyperspectral remote 
sensing image analysis, utilizing heterogeneous collaborative representation classification. Additionally, it presents a strategy that 
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combines dynamic feature and sample selection to address the issue of insufficient sample information in existing classification 
methods through bootstrap sampling. Finally, a weighted residual ensemble framework is proposed, leveraging the prior behaviors of 
classifiers obtained from previous methods for residual-weighted ensemble, aiming to achieve more accurate classification results. The 
main contributions of the paper are as follows:  

1) In response to the lack of exploration of hyperspectral remote sensing image features in existing dynamic ensemble learning 
methods, a dynamic ensemble feature selection method based on heterogeneous collaborative representation classification is 
proposed in this paper for the first time. The K-NN method is used to construct a validation set to obtain priori information. Then, 
according to a certain accuracy measurement metrics, a feature or a feature set with higher classification accuracy is selected for 
HSI classification, which can better exploit the local classification advantages of each feature. Compared to traditional methods, the 
proposed approach introduces, for the first time, dynamic ensemble theory-based feature selection, which can more fully exploit 
the local classification advantages of each feature while simultaneously improving computational efficiency while ensuring clas-
sification accuracy.  

2) To address the issue of inadequate exploration of sample information in existing hyperspectral remote sensing image classification, 
this paper proposes a strategy that combines dynamic feature and sample selection using bootstrap sampling based on the concept 
of dynamic selection. In contrast to traditional classification methods that use all samples for classification, this paper utilizes the 
RoC obtained in advance from dynamic ensembles to acquire prior information about the samples. Consequently, samples with 
higher confidence are selected for classification, providing better training samples and further enhancing classification accuracy.  

3) A weighted residual ensemble framework is proposed in the paper. Unlike traditional ensemble learning methods, the classifier 
prior behavior obtained in 1) and 2) is utilized to directly perform a weighted ensemble with the residuals of the collaborative 
classifiers. According to the differences of multiple CR-based classifier sets, the method constrains the residuals of the classifiers by 
their prior behaviors, so as to obtain weighted classification results. 

The remainder of this paper is organized as follows. In Section 2, the proposed FS-DWRS and MF-DWRL are presented. The results 
of the experiment are demonstrated in Section 3. In Section 4, the robustness, extensibility, transferability, and convergence of the 
proposed algorithms are discussed in detail. Finally, the conclusions of this study are drawn in Section 5. 

2. methodology 

2.1. Related works 

2.1.1. Kernel collaborative representation classifiers (KCRC) 
The basic idea of collaborative representation [42–45] is to indicate the data measurement data with the least samples. Given a 

training set X = [x1, ..,xn] ∈ Rm×n for n classes, a test sample ∈ Rm. The target is to solve the l2 minimization problem. 

x̂1 = argmin
x

‖x‖2subjectto‖αX − y‖2 < ε (1)  

where α is the representation coefficient. Compute the residuals. 

ri(y) = ‖y − αxi‖2, for i = 1,…, n (2)  

where n represents the number of classes. Finally, sample y can be classified as. 

class(y) = argmin
i

ri(y) (3) 

Meanwhile, to solve the problem of standard linearity, some studies have proposed an algorithm with kernel tricks, which is the 
KCRC [45] model. However, the residuals of KCRCs with different parameters are quite disparate. Therefore, a new weighted residual 
ensemble method to get more reliable classifier results is proposed in the paper. 

2.1.2. Dynamic ensemble selection 
Dynamic ensemble selection (DES) is a classifier selection strategy that can assign one or some classifiers with optimal competence 

for a specific test region. The basic idea of the DES method is that each weak classifier has its own unique classification advantages for 
predicting a particular region of the target. Therefore, the validation data and test data into regions with homogeneity, and uses the 
classification accuracy of the classifier on the validation set as the prior information in DES. Then the optimal classifier or classifier set 
is assigned to the target region. Finally, the final results are obtained by these regions which are ca lled region of competence (RoC). 
The processes of DES can be divided into three steps: 

Similar to traditional methods, DES method also needs to obtain a classifier pool with diversity. The diversity of classifiers can be 
often obtained by setting different features, selecting different types of models, or using different training data (different samples, 
multiple features). 

The clustering and K-NN methods are standard techniques for defining regions of competence (RoC) in dynamic ensemble selection 
(DES). The fundamental idea is to exploit the correlation between validation and test data. Specifically, the connection between 
labeled samples (test samples) and unlabeled samples (validation samples) is established through specific metrics. By partitioning 
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them into the same regions and creating connections between unknown samples and labeled samples, the sample space is divided into 
several regions. Selecting well-performing base classifiers within each region enhances the classification performance and general-
ization ability of the ensemble model. In the K-NN method, k samples around each test point are obtained by calculating the distance 
between samples. These samples are then used as a validation set to provide prior information for each classifier. Based on the RoC 
constructed as described, the optimal classifier or classifier set is assigned to each capability area using specific evaluation indicators 
and selection methods. Finally, a voting method is employed to obtain the final classification result. 

2.2. Proposed methods 

2.2.1. Multi-features driven dynamic weighted residuals ensemble learning (MF-DWRL) 
Algorithm 1 MF-DWRL  

Input: Multiple feature combinations data set Xf; the k value; the empty ensemble of features EoFt; testing samples y 
for each testing sample t in do 

Obtain Ψte as the K region of competence by K-NN based on validation set 
for each classifier ci generation by feature combinations in Xf do 
1. Calculating the residuals of each ci according to Eqs. (5)–(9); 
2. Obtaining the classification accuracy OA and weights matrices w of each ci according to Eq. (10)–(12); 

3. Using the classification accuracy in step.2 to screen the two best feature combinations as the best training features; 
4. Getting the final weighted residuals fusion results WR according to Eq. (13) 

end for  
Use the ensemble EoF*t to classify testing set according to Eq. (14) 

end for 
Output: class(y)  

The process of the two proposed algorithms is mainly divided into three parts: pool generation, weight matrices and accuracy 
calculating, dynamic residuals selection and fusion. The structure of two methods is shown in Fig. 1.  

1) Classifier pool generation by multi-features 

Three different features are used as input for the classifier pool: spectral features, Extend Morphological Profile (EMP) features, and 
Gabor features. In order to measure the influence of different features on the classification accuracy of hyperspectral images, the base 
classifiers with multiple features combination are constructed in the paper. It is mainly divided into three combinations: single feature, 

Fig. 1. Flowchart of proposed methods.  
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double features, and multi-features. They are denoted as 

Xf =
[
xf

1,…,xf
m] (4)  

where xf
m is different combinations of multiple features, and m represents the number of features. 

Unlike traditional methods, in order to make the algorithms more focus on feature selection, only the kernel collaborative rep-
resentation classifier (KCRC) as the base classifier for the construction of the classifier pool. At last, the pool with multiple classifiers is 
denoted as F =

{
f1, f2, ..., f c

}
, where c represents the number of base classifiers.  

2) Get residuals and accuracy by K-NN validation samples 

Firstly, given a training set Xtr , according to formula (1), the representation coefficient of multiple features can be obtained by 
using the classifier f i. 

X̂
i
tr = argmin

x

⃦
⃦xi

tr

⃦
⃦

2subjectto
⃦
⃦αi

trX
i
tr − yi

⃦
⃦

2 < ε, i = 1,…, c. (5)  

where xi
tr is the training samples of the ith classifier in the pool, and the αi

tr is the corresponding representation coefficients which is 
solved as 

αi
tr =

(
Xi

tr
TXi

tr + λI
)− 1

Xi
tr

Tyi (6)  

Then a coefficient matrix of each classifier f i is obtained, as 

α = [α1,…,αi], i = 1,…, c. (7) 

Calculating the residual according to formula (2), and obtaining the residual matrix: 

r(y) = ‖y − αxtr‖2, i = 1,…, c (8) 

Then the residual matrix is obtained 

RES = [r1,…, ri], i = 1,…, c (9)  

where RES is the residual matrix of each classifier f i. Then the validation set Xv =
[
xv

1,…,xv
k] is obtained by K-NN algorithm. For f i in 

the classifier pool, the classification performance in k validation set is obtained, which is denoted as 

Xv =
[
xv

1,…,xv
k] (10) 

where the OAi is the overall accuracy of the ith classifier. 

2.2.1.1. According to Eq. (4), the weight matrices is calculating 
W = [w1,…,wi] (11)  

wi =
OAi

∑i

1
OAi

(12)  

where wi represents the weight of the classification accuracy of the ith classifier in the pool for the validation.  

3) Dynamic residuals ensemble selection and fusion 

According to Eq. (10), the two sets of feature combinations with the best performance are chosen as the optimal training features, 
denoted as wb1 and wb2. 

Finally, the weighted residual is obtained by Eq. (4): 

WR = wb1rb1 + wb2rb2 (13)  

where wb1 and wb2 are the optimal features selected by DES, rb1 and rb2 are the corresponding residuals. Then the final classification 
result is obtained according to formula (3): 

class(y) = argminWR(y) (14)  

J. Wang et al.                                                                                                                                                                                                           



Heliyon 10 (2024) e35792

6

2.2.2. Features and samples double driven dynamic weighted residual ensemble learning (FS-DWRL) 
Algorithm 2 FS-DWRL  

Input: Optimal feature combinations data set X’f; numbers of resample times N; testing samples y for X’f do 
Use the bootstrap method to sampling Xʹ and get sub training set Xʹ

sub for each classifier ci generation by sub_Xf do 
1. Calculating the residuals of each ci according to Eq. (15)–(17); 
2. Obtaining the classification accuracy OA and weights matrices w of each ci according to Eq. (18) and (19); 

3. Getting the final weighted residuals fusion results WR’ according to Eq. (20) 
end for 
Classify testing set by EoF*t according to (21) end for Output: class(y)    

1) New classifier pool generation by Bootstrap sampling 

According to the optimal features Xʹ
sub based on MF-DWRL algorithm, the bootstrap is used to resample the training data in into n 

groups, denoted as 

Xʹ
sub =

[
xʹ

sub 1,…,xʹ
sub q

]
(15)  

where xʹ
sub i is the sub-training set and q represents the number of subsets. Then the new classifier is constructed based on Xʹ

sub , which is 
denoted as 

Fʹ =
[
fʹ

1,…, fʹ
q

]
(16)  

where Fʹ is the new classifier pool generated based on a sub-training set.  

2) Get residuals and weight matrices by K-NN validation samples 

Similar to the MF-DWRL, the residual of new classifier pool is calculating as, 

r(y) = ‖y − αxʹ‖2, i=1,…, q RESʹ =
[
rʹ

1,…, rʹ
q

]
(17)  

where RESʹ is the residual matrix of each classifier fʹ
i. 

The prior accuracy information and weight matrix for each classifier is calculated by validation set using Xsub, denoted as 

OA =
[
OA1,…,OAq

]
(18)  

wi =
OAi

∑i

1
OAi

(19)  

where wi represents the weight of the classification accuracy of the ith classifier in the pool for the validation. 

2.2.2.1. Dynamic weighted residuals ensemble learning. Finally, the weighted residual is obtained 

Table 1 
The WHU-Hi-HanChuan data set.  

No. Samples Name 

1 44735 Strawberry 
2 22753 Cowpea 
3 10287 Soybean 
4 5353 Sorghum 
5 1200 Water spinach 
6 4533 Watermelon 
7 5903 Greens 
8 17978 Trees 
9 9469 Grass 
10 10516 Red roof 
11 16911 Gray roof 
12 3679 Plastic 
13 9116 Bare soil  
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WRʹ =
∑n

i=1
wʹ

ir
ʹ
i (20)  

where WRʹ is the weighted residuals. 
Then the final classification result is obtained 

class(y) = argminWRʹ(y) (21)  

3. Results 

3.1. Data source 

The WHU-Hi-HanChuan data set [46] is the first hyperspectral image to evaluate the proposed methods. It contains 274 spectral 
bands with the wavelengths ranging from 0.4 to 1 μm, which is obtained by UAV hyperspectral remote sensing observation in Han-
chuan, Hubei Province, China. The details of this data are listed in Table 1. The false-color image and ground truth are shown in Fig. 2 
(a) and 2 (b). 

Fig. 2. (a) False-color image and (b) ground truth of the WHU-Hi-HanChuan data set.  
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The WHU-Hi-LongKou data set [46] contains 270 spectral bands with wavelengths ranging from 0.4 to 1 μm, which is acquired by 
UAV hyperspectral remote sensing observation in Longkou, Hubei Province, China. The details of nine classes in this HIS are listed in 
Table 2. The false-color image and ground truth are presented in Fig. 3 (a) and 3 (b). 

The WHU-Hi-HongHu data [46] set is gathered by UAV hyperspectral remote sensing observation in Honghu, Hubei Province, 
China. It contains 270 spectral bands with 940 x 475 pixels. The detailed information of each class is shown in Table 3 and Fig. 4 (a) 
and 4 (b). 

3.2. Experimental setup 

All experiments are implemented on the platform of Python 3.8.6. The specific parameters of the proposed algorithms are set as 
follows. 

3.2.1. Parameter setup 
The range of k number n_k in DWR-DEL is set {1, 2, 3, 4, 5}. The number of resample n_r is set {5, 10, 15, 20, 25}. The regularization 

parameter λ is set {1e-1, 1e-2, 1e-3, 1e-4, 1e-5}. The data partitioning was conducted using a random sampling approach. Each class 
was separately sampled with {5, 10, 15, 20, 25} instances for experimentation. The presented results represent the outcomes obtained 
using 25 samples per class. Additionally, the hyperparameters of different algorithms for all the dataset are set to the same values. 

3.2.2. Multi-features construct 
To ensure the comparability and fairness, the compared and proposed algorithms are under the same experimental conditions. The 

classifier pool through different feature combinations, namely Spectral feature (sf), EMP feature (ef), and Gabor feature (gf) is used to 
evaluate the proposed methods in this paper. To focus on feature and sample selection, only KCRC classifier is used as base classifier in 
this paper. 

3.2.3. Baseline and comparative algorithms 
To evaluate the performance of the proposed algorithm, multiple classification algorithms were used for comparison. For example, 

the classic machine learning algorithms SVM and RF are the baselines. Moreover, the ensemble algorithm GBDT [47], LightGBM [48], 
and XGboost [49] are also used as a comparison algorithm. In addition, the two advanced DES algorithms, DES-MI [50] and META-DES 
[51] algorithm are used as comparative algorithms in the paper The overall accuracy (OA), average accuracy (AA), and kappa indexes 
are used to evaluate the classification of all the comparisons and proposed methods in this section. OA measures the proportion of 
correctly classified instances over the total, AA considers accuracy for each class and averages them, while the kappa index adjusts 
accuracy for chance agreement, making it valuable for comparing methods or assessing inter-rater agreement. 

3.3. Classification performance and maps 

The classification performance of proposed methods and comparative algorithms for the first data set are shown in Table 4. The 
classification images obtained by these methods are shown in Fig. 5 (a)–(l). For the WHU-Hi-HanChuan data set, 

the classification performance of proposed methods is better than other comparative models. The accuracy of the MF-DWRL al-
gorithm can reach 90.57 %, which is about 45 % and 3 % higher than the traditional SVM and RF algorithms, respectively. Meanwhile, 
compared with the latest DES algorithms DES-MI and Meta-DES, the classification accuracy of the proposed method is still higher. 
Notably, the MF-DWRS performs the best in the case of classification accuracy among all algorithms. Additionally, the highest kappa 
value (kappa = 0.89) was attained by the proposed MF-DWRL method, indicating that high consistency and accuracy in classification 
tasks were achieved. A kappa value close to 1 signifies that there is a high level of agreement among raters and a relatively low error 
rate. Consequently, it is suggested by this result that the MF-DWRL method is capable of yielding highly consistent results in the 
classification process and is likely to be considered a preferred classification approach. 

Similar to the first experimental, the proposed algorithms MF- DWRL and FS-DWRS perform both better than other methods for the 
WHU-Hi-LongKou data set. The detailed performance of each algorithm is shown in Table 5, and the thematic maps are described in 
Fig. 6(a)–(l). The OA of the two proposed can reach 98.66 % and 98.77 %, respectively. Compared with the GBDT algorithm, the MF- 

Table 2 
The WHU-Hi-LongKou data set.  

No. Samples Name 

1 34511 Corn 
2 8374 Cotton 
3 3031 Sesame 
4 63212 Broad-leaf soybean 
5 4151 Narrow-leaf soybean 
6 11,854 Rice 
7 67056 Water 
8 7124 Roads and houses 
9 5329 Mixed weed  
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DWRL and FS-DWRS methods perform better. Moreover, compared with three latest ensemble learning algorithms, the two proposed 
algorithms yield 8 %, 4 %, and 4 % improvements. 

For the last data set, the classification performance of all algorithms is shown in Table 6, and the thematic images are shown in 
Fig. 7(a)–(l). For the third data set, the MF-DWRL and FS-DWRS perform better than other comparative methods. Compared with CRC 
and ProCRC models, the proposed methods yield 10 % and 13 % improvements, respectively. Moreover, the classification performance 
of FS-DWRS is better than MF-DWRL. 

4. Discussions 

4.1. Extendibility of proposed methods 

To verify the generalization ability of the proposed algorithm, three sets of classical hyperspectral data are also used for experi-
ments. The overall accuracy (OA), average accuracy (AA), and kappa indexes are used to evaluate the classification of all the com-
parisons and proposed methods in this section. 

According to Table 7, for the Indian Pines data set, the classification performance of proposed methods is better than other 
comparative models. The accuracy of the MF-DWRL algorithm can reach 89.50 %, which is about 31 % and 3 % higher than the 
traditional SVM and RF algorithms, respectively. Meanwhile, compared with the classical ensemble learning algorithm GBDT and the 
latest DES of the proposed method is still higher. Notably, the FS-DWRS performs the best in the case of classification accuracy among 
all algorithms. 

Fig. 3. (a) False-color image and (b) ground truth of theWHU-Hi-LongKou data set.  

Table 3 
The WHU-Hi-HongHu data set.  

No. Samples Name 

1 14041 Red roof 
2 3512 Road 
3 21821 Bare soil 
4 163285 Cotton 
5 6218 Cotton firewood 
6 44557 Rape 
7 24103 Chinese cabbage 
8 4054 Pakchoi 
9 10819 Cabbage 
10 12394 Tuber mustard 
11 11015 Brassica parachinensis 
12 8954 Brassica chinensis 
13 22507 Small Brassica chinensis 
14 7356 Lactuca sativa 
15 1002 Celtuce 
16 7262 Film covered lettuce 
17 3010 Romaine lettuce 
18 3217 Carrot 
19 8712 White radish 
20 3486 Garlic sprout 
21 1328 Broad bean 
22 4040 Tree  
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Similar to the first experimental, the proposed algorithms MF-DWRL and FS-DWRS perform both better than other models for the 
University of Pavia data set. The OA of the two proposed can reach 94.40 % and 94.17 %, respectively. Moreover, compared with three 
DES methods, the two proposed algorithms yield 12 %, 11 %, and 11 % improvements (Table 8). Meanwhile, both proposed methods 
can achieve the highest kappa coefficient value. 

For the third data set, the MF-DWRL and FS-DWRS perform better than other comparative methods. Compared with CRC and 
ProCRC models, the proposed methods yield 5 % and 7 % improvements, respectively. Moreover, the classification performance of FS- 
DWRS is better than MF-DWRL (Table 9). The proposed method MF-DWRL and FS-DWRS outperforms other comparison algorithms in 
terms of kappa coefficient performance. 

4.2. The effect of different sample sizes 

For the three real HSI data set, the number of samples significantly impacts the classification performance. Fig. 8. (a) – (c) show the 
accuracy of the MF-DWRL and FS-DWRL algorithms when the number of samples changes in range. 

For the WHU-Hi-HanChuan data set dataset, the accuracy of the MF-DWRL and FS-DWRL algorithms shows the same trend as the 

Fig. 4. (a) False-color image and (b) ground truth of the WHU-Hi-HongHu data set.  

Table 4 
Classification results (%) for the WHU-Hi-HanChuan data set.  

Class SVM RF CRC ProCRC GBDT DES-MI Meta-DES XGboost LightGBM DCNN MF-DWRL FS-DWRL 

1 33.99 88.39 57.92 32.50 89.93 90.02 85.11 82.55 88.62 86.45 95.35 93.87 
2 34.75 71.21 61.47 55.49 69.61 79.36 70.39 68.41 77.04 69.13 71.65 70.82 
3 37.53 83.46 68.32 56.24 79.65 85.13 80.95 84.23 89.05 73.43 92.51 95.91 
4 69.73 92.70 95.70 94.53 91.38 89.59 91.50 93.83 91.50 92.99 94.34 93.74 
5 60.00 99.48 95.65 99.83 95.30 99.39 99.65 94.17 98.35 97.30 99.83 99.83 
6 8.28 79.57 68.10 80.33 87.84 83.92 83.45 80.55 76.89 74.01 81.75 84.07 
7 79.58 92.86 90.98 81.68 79.38 93.87 92.35 90.48 94.57 92.31 97.18 96.70 
8 16.05 82.17 58.24 60.61 77.00 80.10 81.94 85.13 83.15 86.13 80.42 80.28 
9 20.04 81.74 58.69 53.59 77.11 77.45 78.46 65.54 80.40 61.86 85.44 83.26 
10 40.50 87.48 68.72 88.28 90.67 89.66 89.03 92.14 93.45 92.11 94.82 93.81 
11 79.59 96.89 95.80 83.69 83.99 96.70 97.05 91.64 95.10 92.87 98.24 98.46 
12 52.07 98.87 88.62 99.53 92.04 97.63 98.76 97.44 98.02 96.31 99.86 99.89 
13 23.76 70.83 63.04 48.80 77.13 68.42 75.07 80.00 81.56 68.39 78.91 79.01 
14 16.80 93.74 92.31 93.51 89.35 89.52 91.72 93.19 94.43 94.38 93.06 92.17 
15 50.83 93.20 87.50 93.47 88.42 90.53 93.11 95.86 97.06 93.84 93.66 92.37 
16 65.45 93.52 76.66 98.14 82.13 90.52 94.38 89.39 92.03 89.55 93.84 93.30 
OA 45.10 88.04 72.23 72.84 83.01 87.62 87.52 85.29 88.93 85.24 90.57 90.05 
AA 43.06 87.88 76.73 76.26 84.43 87.61 87.68 86.54 89.45 85.07 90.68 90.47 
Kappa 0.38 0.86 0.68 0.69 0.80 0.86 0.85 0.83 0.87 0.83 0.89 0.88  
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sample changes. The best classification accuracy can be obtained when the number of samples is 25. Meanwhile, it can be seen that 
when the number of samples is from 10 to 20, the classification accuracy of FS-DWRL is higher than MF-DWRL. 

For the WHU-Hi-LongKou data set, when the number of samples is 20, the classification accuracy of the two algorithms reaches the 
highest. However, unlike WHU-Hi-HanChuan data, the classification accuracy of MF-DWRL has always been higher than the FS-DWRL 
algorithm. 

Finally, the classification accuracy of MF-DWRL and FS-DWRL is affected by the number of samples for the WHU-Hi-HongHu data 
set, similar to the previous two data. Unlike the first two data, the overall classification accuracy of the two algorithms is large, and the 
classification performance of FS-DWRL is much higher than MF-DWRL. 

Fig. 5. Classification for the WHU-Hi-LongKou data set. (a) SVM. (b) RF. (c) CRC. (d) ProCRC. (e) GBDT. (f) DES-MI. (g) Meta-DES. (h) XGboost. (i) 
LightGBM. (j) DCNN. (k)MF-DWRL. (l) FS-DWRL. 
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4.3. Parameters analysis for number of λ 

Fig. 9 shows the effects of parameter λ on the classification accuracy. For WHU-Hi-HanChuan data (Fig. 9(a)), the classification 
accuracy of MF-DWRL increases with the gradual decrease in regularization parameter λ. The classification accuracy of MF-DWRL and 
FS-DWRL is increasing first, and then the overall classification performance should be due to MF-DWRL. For theWHU-Hi-LongKou data 
(Fig. 9(b)), as the parameter λ decreases, the classification accuracy of the MF-DWRL algorithm is increases. For FS-DWRL, the 
classification accuracy rises first and then drops. When λ is 1e-3, both algorithms reach the highest accuracy. 

The classification performance of WHU-Hi-HongHu data (Fig. 9(c)) has gradually increased with the decrease when regularization 
parameter λ in range 1e-1 and 1e-3. When λ is 1e-3, both algorithms reach the highest accuracy. 

4.4. Parameters analysis for number of bootstrap iterations n_r 

For the FS-DWRL algorithm, the paper discusses the impact of the number of resamples times on the classification accuracy 
(Fig. 10). It can be seen from Fig. 10(a)–(c) that the number of resample times has little effect on the classification accuracy of the 
proposed method. Meanwhile, with the increase of the number of resample times, the classification accuracy has decreased first and 
then increased. It is worth noting that for three different hyperspectral data, when the parameter is set as 10, the classification accuracy 
reaches the highest. In summary, the model is not sensitive to the change of parameter, and has great generalization and robustness. 

Table 5 
Classification results (%) for the WHU-Hi-LongKou data set.  

Class SVM RF CRC ProCRC GBDT DES-MI Meta-DES XGboost LightGBM DCNN MF-DWRL FS-DWRL 

1 93.85 96.85 99.49 99.82 96.82 98.22 97.88 97.36 97.58 98.55 98.71 99.49 
2 81.61 98.32 98.22 98.24 97.60 98.61 98.26 98.79 98.38 95.11 99.08 99.05 
3 84.99 98.03 99.63 99.93 93.08 97.69 97.86 93.08 97.19 99.83 98.66 99.03 
4 54.99 88.12 84.93 71.09 87.77 90.70 85.62 90.38 93.11 93.97 97.38 97.32 
5 75.12 97.91 99.56 99.42 95.14 96.59 96.94 96.57 96.42 99.34 98.95 99.15 
6 90.39 83.99 91.53 87.99 86.08 85.38 89.47 78.49 92.18 98.73 99.14 99.17 
7 99.88 99.97 99.99 100.00 99.92 99.94 99.96 99.14 99.95 99.89 99.96 99.94 
8 62.48 93.65 91.13 83.46 83.89 88.14 91.46 95.02 95.16 97.92 97.92 98.07 
9 56.65 87.21 93.14 74.01 81.85 75.70 74.91 86.90 82.99 95.13 96.11 95.61 
OA 80.57 94.17 94.19 89.01 93.53 94.77 93.47 94.33 96.21 97.37 98.66 98.77 
AA 77.77 93.78 95.29 90.44 91.35 92.33 92.48 92.86 94.77 97.61 98.43 98.54 
Kappa 0.76 0.92 0.92 0.86 0.92 0.93 0.92 0.93 0.95 0.97 0.98 0.98  

Fig. 6. Classification for the WHU-Hi-HongHu data set. (a) SVM. (b) RF. (c) CRC. (d) ProCRC. (e) GBDT. (f) DES-MI. (g) Meta-DES. (h) XGboost. (i) 
LightGBM. (j) DCNN. (k)MF-DWRL. (l) FS-DWRL. 
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Table 6 
Classification results (%) for the WHU-Hi-HongHu dataset.  

Class SVM RF CRC ProCRC GBDT DES-MI Meta-DES XGboost LightGBM DCNN MF-DWRL FS-DWRL 

1 66.89 92.37 72.45 89.84 88.75 95.51 94.10 88.21 89.29 92.00 97.08 97.28 
2 50.06 90.67 92.69 91.74 89.63 89.14 89.37 89.43 89.51 92.26 94.74 94.86 
3 70.21 84.67 86.90 83.16 82.32 86.47 85.58 84.50 84.12 82.99 85.12 85.44 
4 58.95 96.70 91.47 82.89 90.44 96.52 96.91 92.81 96.93 89.90 96.78 97.41 
5 30.50 96.40 83.35 84.65 92.09 92.64 93.30 97.13 96.92 91.94 95.98 96.81 
6 77.14 89.30 92.56 92.64 90.27 90.32 89.48 89.58 88.82 88.79 92.42 91.11 
7 18.96 64.74 43.96 43.19 59.15 67.52 65.28 60.06 62.40 67.64 62.52 58.17 
8 8.37 91.28 77.97 82.49 92.11 86.51 83.47 98.78 99.58 84.52 95.63 97.80 
9 79.07 94.64 92.96 96.00 92.65 93.00 92.74 92.18 92.49 91.22 92.72 92.13 
10 29.16 79.49 65.57 53.47 71.95 77.20 74.28 85.97 87.31 75.43 85.21 89.28 
11 34.84 60.28 54.80 47.44 79.04 64.33 59.17 73.23 78.85 60.73 80.67 81.04 
12 34.27 83.85 67.77 71.97 85.42 80.69 77.59 89.22 90.86 85.68 90.35 92.49 
13 48.02 77.82 34.37 33.57 66.99 76.11 74.95 72.77 74.67 68.61 82.83 84.69 
14 43.54 81.60 65.07 69.60 84.38 76.02 79.14 83.73 85.89 84.01 87.09 87.89 
15 58.55 95.17 91.19 95.59 91.92 94.54 94.65 95.70 95.80 95.49 97.06 94.75 
16 48.13 98.43 99.49 99.81 99.71 97.99 99.00 99.72 99.72 97.09 99.64 99.75 
17 65.81 90.24 93.95 94.80 91.79 85.20 89.59 91.79 91.79 90.88 93.31 93.72 
18 37.09 91.79 91.76 86.14 85.70 87.37 87.44 86.36 86.77 95.01 94.44 94.73 
19 26.09 73.54 66.10 62.31 76.85 66.17 70.63 78.35 80.24 79.47 76.04 72.28 
20 45.87 94.62 92.99 88.01 90.13 88.97 93.36 90.83 95.34 97.50 99.04 99.04 
21 73.98 95.86 99.30 94.69 98.75 93.75 97.81 98.28 99.14 100.00 99.61 99.69 
22 44.21 99.12 99.00 98.67 97.44 96.59 97.87 98.27 98.45 97.37 98.95 98.97 
OA 54.56 89.00 80.94 77.20 85.48 88.69 88.39 87.45 89.77 85.51 90.96 91.08 
AA 47.71 87.39 79.80 79.21 86.25 85.57 85.71 88.04 89.31 86.75 90.78 90.88 
Kappa 0.47 0.86 0.76 0.72 0.82 0.86 0.85 0.84 0.87 0.82 0.89 0.89  

Fig. 7. Classification accuracy of three data set versus varying samples of proposed methods. (a) SVM. (b) RF. (c) CRC. (d) ProCRC. (e) GBDT. (f) 
DES-MI. (g) Meta-DES. (h) XGboost. (i) LightGBM. (j) DCNN. (k)MF-DWRL. (l) FS-DWRL. 
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Table 7 
Classification results (%) for the Indian Pines data set.  

Class SVM RF CRC ProCRC GBDT DES-MI Meta-DES XGboost LightGBM DCNN MF-DWRL FS-DWRL 

1 94.12 100.00 100.00 100.00 88.24 100.00 100.00 100.00 100.00 93.75 100.00 100.00 
2 20.36 69.86 69.35 72.23 76.69 79.86 77.99 76.33 73.02 77.00 78.99 78.49 
3 34.39 77.24 77.62 79.27 84.07 87.23 86.09 81.16 84.45 86.28 82.81 82.68 
4 44.50 93.50 80.50 88.00 80.00 94.50 94.00 98.00 99.50 71.50 98.00 98.50 
5 63.60 82.02 88.99 88.54 75.28 88.54 86.29 82.47 82.92 85.98 89.89 90.56 
6 74.20 94.06 95.80 93.91 90.14 96.96 97.25 91.01 93.19 94.44 94.93 95.07 
7 100.00 100.00 100.00 100.00 83.33 100.00 100.00 83.33 100.00 100.00 100.00 100.00 
8 100.00 100.00 100.00 100.00 99.55 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
9 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
10 73.55 79.01 84.80 86.83 80.09 76.23 82.23 70.99 77.52 85.61 82.66 82.01 
11 66.14 79.06 85.31 88.41 82.24 76.86 80.88 84.81 82.57 75.47 90.73 90.60 
12 34.71 72.12 79.50 81.65 82.37 60.43 70.50 90.11 86.87 77.02 81.12 80.04 
13 93.45 96.43 97.62 99.40 86.90 95.24 96.43 95.24 97.62 98.75 97.62 97.62 
14 78.12 94.45 99.67 100.00 93.47 91.18 97.22 99.02 99.18 98.60 99.76 99.76 
15 40.35 88.76 91.35 85.88 95.68 75.50 89.63 96.54 96.83 96.17 97.98 97.98 
16 93.44 100.00 100.00 100.00 100.00 100.00 98.36 100.00 100.00 100.00 100.00 98.36 
OA 58.76 82.43 85.87 87.39 84.49 82.81 85.79 86.09 86.06 84.74 89.50 89.69 
AA 69.43 89.16 90.66 91.51 87.38 88.91 91.05 90.56 92.10 90.03 93.40 93.23 
Kappa 0.54 0.80 0.84 0.86 0.82 0.80 0.84 0.84 0.84 0.83 0.88 0.88  

Table 8 
Classification results (%) for the University of Pavia data set.  

Class SVM RF CRC ProCRC GBDT DES-MI Meta-DES XGboost LightGBM DCNN MF-DWRL FS-DWRL 

1 50.43 72.39 86.07 81.89 75.59 88.66 87.63 90.24 91.06 96.95 96.24 92.60 
2 57.19 73.83 92.36 84.42 61.59 81.34 79.38 77.99 70.12 89.94 90.20 93.01 
3 66.19 76.62 88.70 96.49 77.59 87.21 81.14 88.70 90.28 83.16 83.13 89.27 
4 67.94 87.94 95.73 95.80 64.62 83.61 92.18 71.09 78.19 98.91 97.56 97.73 
5 86.43 99.25 99.77 100.00 92.84 96.15 99.40 93.74 93.74 99.92 100.00 100.00 
6 50.35 80.95 91.14 91.99 86.30 71.09 76.56 93.09 70.85 99.48 97.76 97.30 
7 83.89 97.86 98.55 99.24 92.98 95.95 98.24 98.09 97.94 100.00 99.54 98.93 
8 60.46 76.27 88.72 46.86 80.31 71.41 78.62 79.00 86.16 99.23 96.60 95.77 
9 98.49 99.78 98.81 99.89 85.13 95.69 100.00 79.42 91.92 100.00 99.89 100.00 
OA 59.45 77.90 91.55 84.37 71.72 82.09 82.92 82.92 78.46 94.08 94.40 94.17 
AA 69.04 84.99 93.32 88.51 79.66 85.68 88.13 85.71 85.58 96.40 96.07 96.58 
Kappa 0.50 0.72 0.89 0.80 0.65 0.77 0.78 0.78 0.73 0.92 0.93 0.92  

Table 9 
Classification results (%) for the Salinas data set.  

Class SVM RF CRC ProCRC GBDT DES-MI Meta-DES XGboost LightGBM DCNN MF-DWRL FS-DWRL 

1 80.04 99.90 99.80 100.00 89.44 100.00 99.70 94.10 92.25 100.00 100.00 100.00 
2 56.22 100.00 99.81 99.95 95.24 98.01 99.68 99.76 99.89 99.62 99.95 100.00 
3 63.38 92.12 99.49 93.34 95.07 99.03 93.13 80.32 92.22 92.37 99.79 99.80 
4 52.60 98.70 96.68 98.12 98.70 97.11 90.03 96.46 99.28 99.70 99.70 99.13 
5 73.80 91.45 91.83 92.43 61.99 90.55 92.99 81.71 86.88 98.48 97.69 97.34 
6 90.15 99.14 99.29 99.85 86.60 98.89 98.35 95.09 91.16 99.97 99.85 98.61 
7 85.91 99.75 98.40 99.92 96.05 97.65 99.36 99.47 99.72 99.91 99.80 99.89 
8 51.59 68.49 61.08 49.41 63.70 94.41 90.65 97.62 93.88 51.71 90.02 71.27 
9 91.25 96.84 99.19 98.05 88.28 95.01 96.80 79.41 88.68 99.72 99.98 99.98 
10 55.23 88.95 92.35 94.86 91.52 77.91 86.57 86.02 88.68 98.76 98.58 95.26 
11 59.36 88.75 95.94 97.35 77.98 87.43 88.75 74.67 75.14 93.42 99.81 94.33 
12 16.95 90.82 87.85 94.73 17.79 87.79 93.90 79.92 84.19 100.00 100.00 100.00 
13 72.08 97.79 90.40 92.60 97.90 94.92 98.01 98.68 98.45 99.54 97.83 98.23 
14 33.30 93.40 92.45 90.00 33.96 66.04 90.09 87.26 90.38 92.07 99.13 94.43 
15 54.22 70.46 65.21 67.31 69.04 40.71 45.95 69.14 60.47 87.20 87.30 78.15 
16 85.92 97.72 98.72 100.00 92.32 89.71 95.27 99.44 100.00 100.00 98.64 99.00 
OA 64.78 86.81 85.10 83.27 77.41 86.23 87.73 88.30 88.25 87.32 90.22 93.24 
AA 63.87 92.14 91.78 91.74 78.47 88.45 91.20 88.69 90.08 95.53 95.34 96.53 
Kappa 0.61 0.85 0.83 0.81 0.75 0.85 0.86 0.87 0.87 0.86 0.89 0.92  
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Fig. 8. Classification accuracy versus varying λ of proposed methods. (a) Han Chuan data set. (b) Long Kou data set. (c) Hong Hu data set.  

Fig. 9. Classification accuracy versus varying λ of proposed methods. (a) Han Chuan data set. (b) Long Kou data set. (c) Hong Hu data set.  

Fig. 10. Classification accuracy versus varying number of bootstrap iterations of proposed methods. (a) Han Chuan data set. (b) Long Kou data set. 
(c) Hong Hu data set. 

Table 10 
Classification results (%) for the three data sets based on different feature combinations.   

S E G SE SG EG) SEG MF-DWRL FS-DWRL 

Han Chuan 59.57 85.19 35.73 85.10 44.24 57.73 60.00 90.57 90.05 
Long Kou 89.94 98.56 47.10 98.23 63.82 82.98 84.44 98.66 98.77 
Hong Hu 60.50 91.44 8.04 89.12 33.59 55.58 57.14 90.96 91.08  
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4.5. Analysis of feature selection 

Table 10 demonstrates the classification results for three groups using different datasets. Here, S, E, G represent spectral features, 
emp features, and Gabor features respectively, while SE, SG, EG, SEG denote different combinations of features. The last two methods 
incorporate a feature selection process. A paragraph of analysis indicates the advantages of the proposed methods. Based on the 
provided data, it can be observed that the proposed methods (MF-DWRL and FS-DWRL) achieve the highest classification accuracies 
across all combinations. This suggests that the proposed methods can effectively enhance classification performance when dealing 
with different feature combinations. Specifically, the classification accuracies of MF-DWRL and FS-DWRL methods are consistently 
higher than those of other methods across all feature combinations (S, E, G, SE, SG, EG, SEG). This indicates that these two methods not 
only fully utilize the information from individual features but also demonstrate stronger classification capabilities in feature combi-
nations. In contrast, other methods may perform poorly in certain feature combinations, possibly due to differences in feature cor-
relation or importance. Furthermore, the most prominent among these methods is FS-DWRL, with classification accuracies 
approaching or exceeding 98 % in most feature combinations. This suggests that FS-DWRL excels in feature selection, extracting the 
most representative features from the original set and significantly improving classification accuracy. In conclusion, the proposed 
methods demonstrate excellent performance across multiple feature combinations, with FS-DWRL particularly standing out for its 
superior feature selection capabilities, making it a highly promising classification approach. 

5. Conclusion 

In conclusion, this paper introduces a novel dynamic ensemble weighted residuals (DES) learning framework designed to integrate 
prior classification information and achieve superior classification performance. The DES framework presents an innovative approach 
for the weighted selection and fusion of multiple features, utilizing the DES methodology to acquire prior classification insights for 
various features within the region of competence (RoC). This prior information is effectively harnessed to constrain the residuals of 
each classifier, thereby enhancing overall classification accuracy. 

Furthermore, the DES framework incorporates the bootstrap method for resampling the training set, thereby generating a diverse 
pool of classifiers. By leveraging the prior classification behavior of each classifier within the RoC, the DES framework derives 
weighted residual fusion outcomes for different samples. In contrast to conventional ensemble learning techniques and DES methods, 
the proposed framework dynamically selects both features and samples, which significantly improves classification performance. 

Empirical evaluations substantiate the superiority of the proposed DES framework over existing models, demonstrating markedly 
improved classification accuracy. Additionally, the DES framework exhibits robustness to parameter variations, thereby mitigating the 
need for intricate parameter tuning in practical applications. The efficacy of the proposed methods is further corroborated by clas-
sification results obtained from three hyperspectral image (HSI) datasets. 

Looking ahead, several promising avenues for future research are apparent. First, extending the DES framework to domains beyond 
image classification—such as natural language processing, time series analysis, and biomedical data analysis—represents an intriguing 
direction. Second, exploring the application of the DES framework to diverse remote sensing tasks, including object detection, land 
cover mapping, and change detection, holds considerable potential. Furthermore, the integration of advanced techniques, such as deep 
learning-based approaches and online learning strategies, could further augment the performance of the DES framework. 

In summary, the proposed dynamic ensemble weighted residuals learning framework offers a robust methodology for incorporating 
prior classification information and achieving enhanced classification outcomes. This research provides valuable insights into the field 
of machine learning and remote sensing analysis, setting the stage for future advancements in ensemble learning methodologies. 
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