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Nucleotide metabolism plays a central role in bacterial physiology, producing the nucleic

acids necessary for DNA replication and RNA transcription. Recent studies demonstrate

that nucleotide metabolism also proactively contributes to antibiotic-induced lethality

in bacterial pathogens and that disruptions to nucleotide metabolism contributes

to antibiotic treatment failure in the clinic. As antimicrobial resistance continues to

grow unchecked, new approaches are needed to study the molecular mechanisms

responsible for antibiotic efficacy. Here we review emerging technologies poised to

transform understanding into why antibiotics may fail in the clinic. We discuss how these

technologies led to the discovery that nucleotide metabolism regulates antibiotic drug

responses and why these are relevant to human infections. We highlight opportunities

for how studies into nucleotide metabolism may enhance understanding of antibiotic

failure mechanisms.
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INTRODUCTION

In the nearly 100 years since the discovery of penicillin, antibiotics have revolutionized medical
practice and have become a cornerstone of modern medicine. However, growing rates of
antimicrobial resistance pose an urgent and looming threat to public health and economic stability
(1). These are compounded by a diminished antimicrobial discovery pipeline (2), creating a critical
need to understand mechanisms responsible for antibiotic treatment failures and to discover new
effective antimicrobials.

Clinical microbiology traditionally relies on general microbiology and molecular biology
laboratory techniques, such as polymerase chain reaction and gene deletion/over-expression,
to elucidate molecular mechanisms responsible for clinical phenotypes. However, experimental
throughput by these methods limits progress toward understanding mechanisms of antibiotic
treatment failure. In recent years several new experimental and digital technologies have emerged
with promise to increase clinical microbiology laboratory throughput and enhance clinical
management of bacterial infections (3–5). Moreover, advances in prokaryotic systems biology (6, 7)
and interpretable machine learning (8) are for the first time accelerating discovery of mechanisms
underlying antibiotic efficacy (9, 10).

Here, we review emerging digitalization technologies poised to transform research into
mechanisms of antibiotic treatment failure in the clinic. We describe several antibiotic resistance,
tolerance and persistence mechanisms discovered from clinical strains. We discuss in detail
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the recent discovery that nucleotide metabolism actively
participates in antibiotic lethality and the clinical relevance
of these findings (11). We propose new opportunities for
digitalization technologies to advance clinical practice and to
open frontiers for basic research into nucleotide metabolism and
antibiotic efficacy.

DIGITALIZATION IN CLINICAL AND
RESEARCH SETTINGS

The most important goal in clinical microbiology is to identify
an infectious pathogen and determine its drug susceptibility
profile (12). Traditionally, clinical microbiology laboratories
rely on culture-based methods for pathogen identification and
susceptibility testing. These approaches require the successful
isolation and culture of pathogen cells from a clinical sample,
followed by in vitro screening with standardized antibiotics.

In vitro studies in research settings have enabled the
discovery of antibiotic resistance mechanisms. For example,
following the initial detection of clinical tetracycline resistance,
several microbiology studies identified decreased drug transport
as the mechanism responsible for reduced efficacy (13, 14).
Subsequent studies identified multi-drug resistant efflux pumps
in multiple pathogenic species (e.g., AcrB in Escherichia coli and
MexB in Pseudomonas aeruginosa) (15). As with their clinical
counterparts, these fundamental studies rely on culture-based
growth and targeted sequencing; however, such experimental
technologies are resource- and labor-intensive and do not scale
well with the plethora of pathogen variants, drug mechanisms,
and resistance strategies found in the clinic.

In recent years, advances in laboratory evolution, high-
throughput sequencing, and computational biology have greatly
expanded the scope of addressable questions in microbiology
and the study of antibiotic resistance (16). For instance, adaptive
laboratory evolution can simulate natural selection pressures
(17), allowing researchers to study the emergence of novel
antibiotic treatment phenotypes (18), as well as their relationship
to environmental conditions (19). In many cases, these granular
experimental techniques invite complementary computational
modeling activities, from mechanistically simulating drug-target
binding to predicting complex ecological dynamics, yielding
deeper insights into clinical resistance phenomena.

Concurrently, whole-genome sequencing has transformed the
study of antibiotic resistance, enabling the identification of all
possible gene variants that can give rise to clinical phenotypes
(20). Whole-genome sequencing has proven instrumental in
revealing population- and epidemiological-level insights into
pathogen detection and emergence. For example, the 2011
outbreak of the Shiga-toxin producing enteroaggregative E. coli
O104:H4 resulted in over 3,000 infections and more than 50
deaths – rapid, open-access whole-genome sequencing analysis
revealed the phylogenetic relationships between this strain
and 40 previously published pathogen genomes (21). These
analyses conclusively demonstrated that O104:H4’s virulence was
attributable to the horizontal acquisition of stx2, along with other
unexpected traits heretofore unseen in this lineage (22). Indeed,

whole-genome sequencing enables insights into a pathogen’s
plasticity and facilitates real-time epidemiological tracing (23).

Whole-genome sequencing has spurred the development
of advanced computational techniques capable of inferring
meaningful biological relationships. Advances in mathematical
modeling and machine learning are now, for the first time,
enabling the direct identification of antibiotic resistance
determinants from the genomes of clinical isolates in as
Staphylococcus aureus, P. aeruginosa, and E. coli (24). Moreover,
mathematical modeling and high-throughput sequencing
approaches have revealed that sub-inhibitory selection and
step-wise adaptation play just as important a role in antibiotic
treatment failure as canonical antibiotic resistance mechanisms
(25). Indeed, clinical isolates from patients with relapsed
Mycobacterium tuberculosis infection exhibit sub-breakpoint
minimum inhibitory concentrations (MICs) in comparison to
strains from patients durably cured (26). Mutations responsible
for such subtle cellular phenotypes are readily overlooked
using previous methods. Additionally, machine learning can
complement traditional culture-based methods and enable
the direct prediction of pathogen MICs (27, 28) and provide
experimentally testable insights into antibiotic mechanisms of
action (9).

ANTIBIOTIC TREATMENT FAILURE
MECHANISMS IN CLINICAL PATHOGENS

Antibiotic treatment failure is conventionally understood to be
fully explained by antibiotic resistance, in which a pathogen
acquires a genetic mutation either to reduce the ability of
an antibiotic to inhibit its target or reduce the effective
intracellular concentration of an antibiotic (15, 29). Indeed,
antibiotic resistance mutations from sequenced clinical isolates
frequently appear in either the target of the antibiotic,
modifying the ability of an antibiotic to bind, or in the
promoter regions of drug efflux pumps, inducing antibiotic
export (30). Other antibiotic resistance alleles, such as genes
encoding β-lactamases, commonly appear in mobile genetic
elements and can become exchanged by horizontal gene
transfer (31).

However, in recent years there has been a growing recognition
that alternative bacterial phenotypes, such as antibiotic tolerance
(in which isogenic bacteria exhibit slower killing by an antibiotic)
and antibiotic persistence (in which isogenic bacteria exhibit
a shallower antibiotic killing plateau), also lead to treatment
failure and relapsed infection (32). Additionally, there is growing
appreciation that the local microenvironment of infection
can act on several aspects of bacterial physiology to alter
antibiotic treatment efficacy (33, 34). In fact, the local metabolic
microenvironment of an infection is highly dynamic and local
metabolites induced by either infection or antibiotic treatment
itself can inhibit a pathogen’s cellular response to antibiotic
exposure (35).

It is clear that antibiotic-target interactions alone are
insufficient for explaining antibiotic treatment failure in human
patients. To address these knowledge gaps, interpretable machine
learning approaches are being developed, which seek to
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rapidly generate experimentally testable hypotheses for biological
phenomena. In one of the earliest demonstrations of these,
a biochemical screen was performed to measure changes
in antibiotic efficacy following metabolic stimulation, and
genome-scale metabolic modeling simulations were performed
to estimate metabolic reaction activities in each screening
condition (Figure 1A). By applying machine learning to these
data, purine biosynthesis was identified as a prominent player
that governs antibiotic efficacy (9), highlighting a target-
independent aspect of bacterial physiology is commonly involved
in the lethal process of diverse bactericidal antibiotics. In
light of the central role that purine metabolites also play
in regulating the immune system (36), these results are also
suggestive of mechanisms by which the patient-specificmetabolic
environment of an infection can promote drug tolerance or
antibiotic treatment failure.

In another study, a metabolic model-based machine learning
classifier was developed, which uses flux balance analysis
to estimate the biochemical effects of genetic mutations
characterized from clinical isolates (Figure 1B). Applying this
approach to a large collection of genomes from drug-tested
M. tuberculosis strains, novel metabolic resistance mechanisms
to first-line tuberculosis antibiotics were discovered (10).
These two examples illustrate how network models can serve
as quantitative knowledgebases (37) and be combined with
machine learning analyses to learn molecular mechanisms
responsible for antibiotic treatment failures directly from clinical
isolates (38).

NUCLEOTIDE METABOLISM IN
ANTIBIOTIC TREATMENT FAILURE

Bacterial metabolism is now understood to be an important
physiological regulator of antibiotic efficacy (39). Across living
systems, cellular metabolism is governed by the synthesis,

allocation, and utilization of energy; and a growing number
of studies demonstrate that metabolic dormancy protects cells
from antibiotic treatment by inducing a phenotypically tolerant
physiological state (29). Moreover, ATP synthesis correlates
with the lethality of bactericidal antibiotics better than bacterial
growth rates (40), suggesting that antibiotic-induced lethality is
an active process and not merely a passive consequence of the
loss-of-function of an essential gene product.

In particular, bactericidal antibiotics have been shown to
elevate central carbon metabolism activity (41, 42) and trigger
the formation of byproduct reactive oxygen species (43, 44),
which damage DNA and cause bacterial lethality (45–47). These
phenomena are not restricted to antibiotics, as reactive oxygen
species also actively contribute to the lethality of bacterial
secretase dysfunction (48) and thymine depletion (49).Moreover,
defects in central carbon metabolism activity are linked to
antibiotic tolerance and persistence across many bacterial species
(50–53) and can be stimulated to enhance antibiotic efficacy
(54, 55). However, antibiotic treatment perturbs several aspects
of bacterial metabolism beyond central carbon metabolism
(56), highlighting important knowledge gaps in understanding
how different metabolic pathways may contribute to antibiotic
treatment failure.

It may come to no surprise that nucleotide metabolism
is actively involved in antibiotic efficacy (9). Nucleotides are
essential metabolites and are ubiquitous to all living cells; in
addition to their roles as fundamental building blocks for
DNA and RNA molecules, constituting more than 20% of
cellular biomass (57), nucleobases also form the molecular
basis of primary energy currencies such as ATP and NADH,
and many coenzymes are derived from nucleobase monomers.
In fact, the thermodynamic properties of nucleobases are so
special, that these metabolites synchronize cell biochemistry and
regulate biochemical group transfers across diverse physiological
processes (58). Moreover, the concentration of intracellular ATP

FIGURE 1 | Recent innovations in interpretable machine learning for studying antibiotic treatment failure. (A) A biochemical screen was combined with metabolic

network modeling and machine learning regression analyses to elucidate pathway mechanisms of antibiotic lethality. This led to the discovery that purine biosynthesis

is a critical component of bactericidal antibiotic lethality (9). (B) Whole-genome sequencing data from antibiotic resistant (R) and susceptible (S) strains from clinical

strains were applied as modeling constraints to genome-scale metabolic models. Machine learning classification analyses were applied (10).
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is tightly regulated across the tree of life and heavily buffered
across environmental conditions (59).

De novo nucleotide biosynthesis from carbohydrates
begins with the pentose phosphate pathway, which supplies
phosphoribosyl pyrophosphate (prpp) as a shared substrate to
the purine and pyrimidine biosynthesis pathways (Figure 2).
These pathways produce nucleotide triphosphates which can
be incorporated into DNA and RNA or processed into energy
currencies that can power virtually all other biochemical
processes in the cell. Interestingly, nucleotide biosynthesis is
itself an energetically demanding process, costing a cell 8 ATP
molecules to synthesize one adenine molecule from one glucose
molecule. Indeed, cells employ a multitude of strategies to
manage these tradeoffs, including prioritized nutrient usage,
maintenance metabolism, and nucleotide salvage.

Antibiotic treatment imposes additional layers of complexity
on these processes; cells must expend energy to mount
defensive stress responses, and many antibiotics preferentially
kill metabolically active cells. Specific components of nucleotide
metabolism have been shown to contribute to antibiotic efficacy

and protection both in vitro and in vivo. In many cases,
defects in nucleotide biosynthesis have been shown to induce
antibiotic persistence, suggesting these may represent a key
metabolic strategy for evading antibiotic efficacy. For example,
several chemogenomic screens identify nucleotide biosynthesis
genes, as well as global regulators of nucleotide metabolism, as
important regulators of antibiotic tolerance (60, 61). Likewise,
antibiotic drug screening under nutrient limitation identified
several compounds that interfere in core or peripheral nucleotide
metabolism branching points (62).

Of note, purine biosynthesis frequently emerges as a key
pathway responsible for antibiotic efficacy. For example, in
an antibiotic persistence screen using a S. aureus transposon
mutant library, 29% of all depleted genes were related to
cellular metabolism, and of these, five were involved in purine
biosynthesis (63). These ex vivo observations are important for
understanding clinical antibiotic treatment failure, asmethicillin-
resistant S. aureus clones isolated from patients enduring multi-
drug antibiotic treatment were found to possess mutations in
purR, a transcriptional repressor of purine synthesis, within 1

FIGURE 2 | Nucleotide metabolism is energetically expensive. De novo biosynthesis of purines (red) and pyrimidines (blue) begins with the pentose phosphate

pathway (green), which generates phosphoribosyl pyrophosphate (prpp) from glycolysis (black). The energetic demand for ATP molecules to power purine and

pyrimidine biosynthesis drives activity through the tricarboxylic acid (TCA) cycle (black) and oxidative phosphorylation (purple).
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week of treatment. In vitro follow-up experiments confirmed
that this mutation reduced the rate of vancomycin-induced
killing, revealing the evolution of antibiotic tolerance in vivo
(64). Importantly, this mutation preceded the onset of canonical
resistance evolution; these and other studies suggest that
mutations in nucleotide metabolism may help create a reservoir
of pathogen cells primed to subsequently evolve target-specific
antibiotic resistance alleles.

Recent microbiological studies are beginning to clarify
how nucleotide metabolism contributes to antibiotic efficacy
(Figure 3). Interpretable machine learning analyses reveals that
several metabolic pathways proximal to purine biosynthesis
contribute to the lethality of bactericidal antibiotics in E. coli
(9). Purine biosynthesis becomes induced by bactericidal stress-
induced adenine limitation, which can be directly measured
by targeted metabolomics (56). Consequently, oxidative
phosphorylation becomes elevated to meet the increased
energetic demand of enhanced purine biosynthesis, increasing
cellular respiration and central carbonmetabolism and providing
substrates for toxic reactive oxygen species (42, 43). Indeed,
regulation of nucleotide metabolism appears to be a well-
conserved mechanism that bacteria have evolved to handle
diverse stresses (65).

Consistent with these, purine nucleotides such as (p)ppGpp
function as universal alarmones for transcriptionally activating
the stringent response and other bacterial stress responses
as evolutionally conserved strategies for surviving nutrient
limitation and other environmental stressors (66, 67).
Intracellular accumulation of (p)ppGpp and related purine
alarmones can induce antibiotic tolerance by promoting growth
arrest (68) and entry to antibiotic persister states (69). Recent
studies demonstrate that in additional to these transcriptionally
mediated programs, (p)ppGpp can also inhibit nucleotide
metabolism directly by binding several enzymes involved in
purine biosynthesis, including PurF and Gsk (70, 71). These data
collectively support a central role for nucleotide metabolism in
antibiotic treatment efficacy.

It is interesting to note that nucleotide metabolism is also
very important for the in vivo pathogenesis of diverse bacterial
infections, and may be required for a pathogen’s growth and
survival within the host environment (72). For instance, S.
aureus cells with transposon insertions in purB fail to establish
bone infections in mice (73) and deletion of purine biosynthesis
genes prevents uropathogenic E. coli from expanding into
intracellular bladder epithelial cells (74). Likewise, in vivo
studies of methicillin-resistant S. aureus showed that purine

FIGURE 3 | Nucleotide metabolism contributes to antibiotic lethality. In addition to their target-specific effects, bactericidal antibiotics induce purine biosynthesis,

which increases activity in central metabolism. Increases in central metabolism stimulate the production of toxic reactive oxygen species, which oxidize nucleotides

and damage DNA. These insults to DNA and the nucleotide pool induce bacterial death and may further potentiate purine biosynthesis.
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biosynthesis was causally linked to survival during endovascular
infection (11). Collectively, it is clear that nucleotide metabolism,
particularly purine biosynthesis, plays an important role in
bacterial pathogenesis and in the response to antibiotic stress.

DISCUSSION

The growing challenge of clinical antibiotic failure demands
renewed attention into the study of antibiotic mechanisms of
action and the discovery of new antimicrobial compounds.
Digital technologies such as whole-genome sequencing, machine
learning, mass spectrometry and predictive modeling are likely
to transform the clinical management of bacterial infections
in the coming decades. Exciting developments in machine
learning are, for the first time, enabling the rapid discovery of
novel classes of antimicrobial compounds (75) and the rapid
identification of bacterial pathogens in the clinic (5). Advances
in mass spectrometry-based metabolomics are enabling the rapid
discovery of antimicrobial mechanisms of action (76). Advances
in predictive modeling (7) are enabling new understanding into
the complex ecology of microbial communities (77).

The discovery that nucleotide metabolism is involved in
antibiotic efficacy has several translational implications. Unlike
the Mueller-Hinton or Luria-Bertani media commonly used by
clinical and academic microbiology laboratories, the metabolic
microenvironment of a bacterial infection is dynamically
enriched for nucleotide metabolites during infection (35). In fact,
purine metabolites are important regulators of innate immunity
(36), playing dual roles in regulating the host response to
infection and the pathogen response to antibiotics. Nucleotide
analogs are also commonly used to treat human cancers and viral
infections and have potential to address antimicrobial resistance
in the clinic (78, 79).

Nucleotide metabolism is one of the oldest areas of bacterial
physiology to be investigated, with early studies into bacterial

purine and pyrimidine metabolism predating the discovery of
the lac operon (80, 81). Interest in nucleotide metabolism is
mounting a resurgence, spurred by the growing recognition that
nucleotides play important roles in both immunometabolism
(82, 83) and cancer pathogenesis (84). Given that purine
and pyrimidines exert opposing effects on antibiotic efficacy
and carbon metabolism in bacteria (9), nucleotide metabolism
represents an exciting open frontier for future studies in bacterial
physiology and antibiotic treatment failure.

Concurrently, new digitalization techniques are becoming
increasingly democratized and are poised to transform our basic
and translational understanding of how nucleotide metabolism
may contribute to antibiotic efficacy. Advances in predictive
modeling (7) and non-targeted metabolomics (85) are revealing
the diverse systems-level consequences of antibiotic stress.
Quantitative microscopy advances (86) are enabling detection
of antibiotic tolerance and resistance at single-cell resolution.
Advances in transposon insertion sequencing (87) and adaptive
lab evolution (88) are revealing new mechanisms for antibiotic
resistance. Indeed, it would be exciting for future discoveries to
reveal how nucleotide metabolism may contribute to antibiotic
failure mechanisms beyond persistence (11) and potentially
rewrite our understanding of antimicrobial resistance (29).
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