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Abstract

In the present work, we report a novel class of glutathione transferases (GSTs) originated from the pathogenic soil
bacterium Agrobacterium tumefaciens C58, with structural and catalytic properties not observed previously in prokaryotic
and eukaryotic GST isoenzymes. A GST-like sequence from A. tumefaciens C58 (Atu3701) with low similarity to other
characterized GST family of enzymes was identified. Phylogenetic analysis showed that it belongs to a distinct GST class not
previously described and restricted only in soil bacteria, called the Eta class (H). This enzyme (designated as AtuGSTH1-1)
was cloned and expressed in E. coli and its structural and catalytic properties were investigated. Functional analysis showed
that AtuGSTH1-1 exhibits significant transferase activity against the common substrates aryl halides, as well as very high
peroxidase activity towards organic hydroperoxides. The crystal structure of AtuGSTH1-1 was determined at 1.4 A resolution
in complex with S-(p-nitrobenzyl)-glutathione (Nb-GSH). Although AtuGSTH1-1 adopts the canonical GST fold, sequence and
structural characteristics distinct from previously characterized GSTs were identified. The absence of the classic catalytic
essential residues (Tyr, Ser, Cys) distinguishes AtuGSTH1-1 from all other cytosolic GSTs of known structure and function.
Site-directed mutagenesis showed that instead of the classic catalytic residues, an Arg residue (Arg34), an electron-sharing
network, and a bridge of a network of water molecules may form the basis of the catalytic mechanism. Comparative
sequence analysis, structural information, and site-directed mutagenesis in combination with kinetic analysis showed that
Phe22, Ser25, and Arg187 are additional important residues for the enzyme’s catalytic efficiency and specificity.
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Introduction

Glutathione transferases (GSTs; EC 2.5.1.18) are phase II
detoxification enzymes that metabolize a wide range of hydro-
phobic toxic compounds by catalyzing the conjugation of
glutathione (GSH) to the hydrophilic centre of the toxic substances
[1-4]. GSTs are known as promiscuous enzymes capable of
catalyzing the conjugation of GSH with a broad range of
electrophilic substrates [5—7]. Several members of the GST family
are selectively induced by biotic and abiotic stress treatments and
play important roles in the regulation of redox homeostasis as well
as In endogenous metabolism [3,4]. GSTs can also bind
hydrophobic compounds that are not their substrates [6]. This
non-substrate binding (termed ‘ligandin’ function) is possibly
associated with the sequestration, storage, and transportation of
drugs, hormones, and other metabolites [6]. GSTs, therefore, are
able to participate in various unrelated biological processes and
may be considered as ‘moonlighting’ proteins [5].

GSTs form a highly diverse protein family and, therefore, have
been subdivided into a number of subfamilies associated with
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different functionalities and enzymatic properties [8-12]. GSTs
are divided into at least four major families of proteins, namely
cytosolic GSTs, mitochondrial GSTs, microsomal GSTs, and
bacterial fosfomycin-resistance proteins [5,7,8]. GSTs that are
grouped into different classes usually have different general
substrate profiles, while members of the same class have fewer
differences in substrate recognition [2,7]. All cytosolic GSTs have
the same protein folding, which comprises two domains. The N-
terminal domain (domain I) adopts o/ topology and provides the
GSH-binding site (G-site). The C-terminal domain (domain II) is
an all-o-helical structure and provides the structural element for
recognition of a broad range of hydrophobic co-substrate (H-site).
The H-site lies adjacent to the G-site and defines the substrate
specificity of the enzyme [7-12].

Like eukaryotic organisms, bacteria are characterized by
multiple GST genes of widely divergent sequences and unknown
biological function [8]. In bacteria, four different classes of GST's
have been identified: beta, chi, theta and zeta. Most of the
bacterial GSTs identified to date belong to the bacterial-specific
beta class and the crystal structures of several representatives of
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this class have been determined and characterized, such as Profeus
mirabiis GST (PmGST) [13] and Ochrobactrum anthropi GST
(0aGST) [14].

Agrobacterium tumefaciens is a ubiquitous soil borne pathogen that
is responsible for crown gall, the plant disease that causes large
tumor-like growth in over 90 families of plants and results in major
agronomical losses [15]. We have recently reported the identifi-
cation and functional analysis of the GST family of enzymes from
A. tumefaciens C58 [16]. In the present study, we report the kinetic
characterization and crystal structure determination of Aw3701
protein from A. tumefaciens. Sequence and structural analysis
indicate that 43701 defines a novel GST class distinct from other
previously characterized GSTs.

Results and Discussion

Identification and bioinformatics analysis of a new class
of GSTs

In silico homology searches of Agrobacterium tumefaciens strain C58
genomic sequence revealed the presence of several sequences
corresponding to putative GST homologues [16]. A putative
sequence with NCBI accession number AAK89703 (ORF name
Atw3701, AtuGST [16]) which shares low sequence homology, and
therefore significant evolutionary distance, to other prokaryotic
and eukaryotic GST classes was identified and selected for further
study. AtuGST4 contains an open reading frame of 693 bp, coding
for a polypeptide of 230 amino acid residues with a predicted
molecular mass of 26,140 Da (residues 1-230) and a theoretical pl
of 6.33. The gene is located in a linear chromosome of A.
tumefaciens, between 779,833-780,525 bp [17].

BLAST analysis revealed that AfuGST4 has the highest identity
(~64-68%) with unclassified GSTs from proteobacteria species
(e.g. Stigmatella, Mesorhizobium, Sinorhizobium, Bradyrhizobium). Inter-
estingly, several close homologs of AiuGST4 were found in a set of
environmental sequences determined recently by the environmen-
tal (marine metagenome) sequencing project carried out by the
Whole Genome Shotgun (WGS) sequencing project (www.ncbi.
nlm.nih.gov/projects/ WGS/WGSprojectlist.cgi). This sequence,
therefore, is likely to belong to a larger family. The size of this
family is expected to increase as the existing sequence databases
expand.

GSTs that share greater than 40% sequence identity are
generally included in the same class, and those that possess less
than 20-30% sequence identity are assigned to separate classes
[5,8,18]. As shown in Figure 1 and Table S1, AuGST4 exhibits
only 17.2 to 26.1% sequence identity with representatives of all the
available different GST classes, which supports the grouping of
this enzyme into a new class. The AuGST4 shows the highest
identity with the bacterial Chi (26.1%) and plant Phi (24.2%) class
enzymes.

In order to examine the genetic relationship between this
enzyme and GSTs from all known classes, a phylogenetic analysis
was created (Figure 2). The results showed that the AuGST4
sequence is clearly separate from all GST classes presented in the
phylogenetic tree even from those representing bacterial-specific
classes (e.g. beta, chi) [12,19]. AGST4 branch extends separately
from the clades of GSTB and GSTX and appears to be more
ancient than them. All the above evidences point to the conclusion
that AiuGST4 belongs to a new GST class, distinct from previously
characterized GSTs. According to the available GSTs nomencla-
ture and classification system we propose that AtuGST4 belongs to
the Eta class (H) and may be designated as AGSTHI-1.
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Purification and kinetic analysis

In order to characterize the AGSTHI-1 protein, the full-
length sequence was cloned, expressed in £. cols BL21 (DE3) cells,
and purified. The enzyme did not bind adequately to the classical
affinity adsorbents (GSH-Sepharose or hexyl-GSH-Sepharose)
that are widely used for the purification of recombinant as well as
native GSTs. This indicates differences in the G-site topology of
AtwGSTHI1-1 compared to the majority of other GST classes that
are efficiently purified using GSH-based affinity adsorbents.
AwGSTHI1-1 was purified (>98% purity) in a single-step
procedure by metal-chelate affinity chromatography on Ni-NTA
affinity adsorbent.

Steady-state kinetic analysis using CDNB and GSH was carried
out and the k., and K, parameters were determined (Table 1).
The K,,, values for GSH and CDNB were determined as 0.29 mM
and 1.5 mM, respectively. Initial screening has shown that
AtwGSTHI-1 exhibits high GSH-dependent peroxidase activity
(GPOX) towards organic hydroperoxides such as cumene
hydroperoxide and tert-butyl hydroperoxide [16]. Organic
hydroperoxides can be formed both nonenzymatically by reaction
of free radicals with polyunsaturated fatty acids and enzymatically
by lipoxygenase- or cyclooxygenase-catalyzed oxidation of linoleic
acid and arachidonic acid. AwGSTHI-1 exhibits very high
peroxidase activity (specific activity with cumene hydroperoxide
23.6 U/mg). With cumene hydroperoxide and tert-butyl peroxide
as electrophile substrates, AwGSTHI1-1 exhibits high catalytic
efficiency (k../K,,) (Table 1), suggesting that hydroperoxides may
be the ‘natural” substrates for AtuGSTHI-1.

AtuGSTHI-1 exhibited significant thioltransferase activity using
the 2-hydroxyethyl disulfide (HED) as a substrate. The k., and
K,, values for HED were determined as 2.4 min~ ' and 4.1 mM,
respectively (T'able 1). In cases of oxidative stress, when there is a
lack of GSH, some protein thiols are S-thiolated making protein-
thiol disulfides [20]. This modification affects the activity of the
proteins or enzymes, suggesting that AuGSTHI1-1 may play an
important regulatory role in stress defence mechanism [21].

As shown in Table 1, the K, values for GSH are dependent on
the electrophilic substrate used. For example, the K.,,“5" varies
between 0.3 to 1.7 mM. Probably, this is the result of the rapid
equilibrium random sequential bi-bi mechanism with intrasubunit
modulation between the GSH binding site and electrophile
binding site that is operated by GSTs [9,10].

Structural characterization of AtuGSTH1-1

Quality of the structure. The crystal structure of
AwGSTHI-1 was determined to 1.4 A resolution with Ry and
Rpee 0of 17.2% and 18.6%, respectively (Table 2). The final refined
structure contains 213 residues, 313 water molecules, 1 S-(p-
nitrobenzyl)-glutathione (Nb-GSH) molecule, and 1 phosphate
ion. The first 13 and the last 4 residues are flexible and were not
modeled in the structure. Lysl4 and Trpl41 lack side-chains
owing to their high flexibility. Ten residues were modeled in
alternative  conformations. The structure exhibits good
stereochemistry with root mean square deviation (r.m.s.d) in
bond lengths and bond angles of 0.008 A and 1.15°, respectively.
The (phi, psi) plot shows 92.5% of the non-Gly and non-Pro
residues in the most favored regions and no residues in disallowed
regions. One residue (Glu85) is found in the generously allowed
region, possibly as a result of its interaction with Nb-GSH. The
coordinate error as deduced by the diffraction precision indicator
is 0.06 A.

Description of the structure. The structure of AiuGSTH]1-1
exhibits the characteristic overall fold of GSTs that comprises an
N-terminal thioredoxin-like domain and a C-terminal all o-helical
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Figure 1. Multiple sequence alignment of AtuGST4 with representative GST sequences. Alpha, (GSTA, AAA16572); beta, (GSTB, CAR42930);
delta, (GSTD, EDW42478); epsilon, (GSTE, EDV55071); phi, (GSTF, AAA33469); kappa, (GSTK, EDM15501); lambda, (GSTL, BT051648); mu, (GSTM,
AAC17866); omega, (GSTO, EDL42044); pi, (GSTP, AAP72967); ro, (GSTR, ABV24478); sigma, (GSTS, EAA45010); theta, (GSTT, BAB39498); tau, (GSTU,
ABF99228), chi, (GSTX, EAW33767); and zeta, (GSTZ, P28342). NCBI accession numbers are in parentheses. The degree of conservation is shown below
the alignments in green. Amino acids are colored according to polarity or charge (red for negative charged, blue for positive charged, black for
neutral and green for uncharged polar amino acids).

doi:10.1371/journal.pone.0034263.g001

domain (Figure 3) [1,5,9,10]. In total, ten o-helices (H1-H10), 2 residues 35—45; H4, residues 85-95), two short o-helices (H2,
310-helices and 4 B-strands (B1—P4) were located in the structure. residues 56-59; H3, residues 62—65) and a four-stranded mixed B-
The N-terminal domain comprises two large o-helices (HI, sheet with a left-handed twist formed by strands B2 (residues 50—
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Figure 2. Hypothetical evolutionary history of AtuGST4. Phylogeny tree was constructed using representative members from all known GST
classes: GSTA, (AAA16572, DAA16513 EDL26376); GSTB, (CAR42930 EFE52214 EDN73431); GSTD, (EDS36584 CAB03592 EDW42478); GSTE, (EDV55071
AAF64647 EDV36040); GSTF, (ABQ96852 CAI51314 AAA33469), GSTK, (EDL13490 EDM15501 AAS01180); GSTL, (BT051648 AED90518 ACH63212);
GSTM, (AAC17866 AAK28508 P46419); GSTO, (AAF71994 CAI17224 EDL42044); GSTP, (AAP72967 EDL32992 AAF01323); GSTR, (CAK10882 ABV24478
ABD67511); GSTS, (EAA45010 CAA86859 AAA92066); GSTTtheta, (XP001089367 BAB39498 DAA20393); GSTU, (ABF99228 AAC05216 BAF27055), GSTX,
(EAW45480 EAW33767 BAC07760); and GSTZ, (P57108 AAO61856 AAN39918 P28342) and the AtuGST4 from A. tumefaciens C58. NCBI accession

numbers are in parentheses.
doi:10.1371/journal.pone.0034263.g002

54), B1 (residues 18-22), B3 (residues 75-78) and P4 (residues 81—
84). Pro73 at the beginning of B3 adopts a cis-configuration and
creates a characteristic turn essential for GSH binding. A 10-
residue linker region (residues 96-105) that adopts an extended
structure connects the N- terminal domain with the larger C-
terminal domain. The latter (residues 105 to 224) has an all-o
structure with the o-helices arranged in a right-handed spiral. o-
Helix H5 exhibits a sharp kink at its centre (Thr121) that splits it
into two smaller helices, namely Hba (residues 105-120) and H5b
(residues 122-135). a-Helix Hba is straight and oriented nearly
parallel to a-helix H4, while a-helix H5b has a bent appearance
and projects over the active site located in the N-terminal domain.
The C-terminal end of H7 takes a 3¢-helix conformation (residues

@ PLoS ONE | www.plosone.org

185-190). Helices H8 (residues 197-207) and H9 (194-197)
correspond closely to similar regions in most of the other GST
classes. H10 (residues 203-212) folds back over the top of the N-
terminal domain and against helix H1.

In the C-terminal domain, AiuGSTHI-1 possesses two local
structural motifs, an N-capping box and a hydrophobic staple
motif at the beginning of a-helix H6 in the hydrophobic core of
the molecule, similar to other cytosolic GSTs [22,23]. Both motifs
are located between amino acids 172-177 (Phe-Ser-Ala-Ala-Asp-
Ile). The N-capping box (Ser-Ala-Ala-Asp) consists of a reciprocal
hydrogen bonding interaction of Ser173 with Asp176, whereas the
hydrophobic staple motif consists of a hydrophobic interaction
between Phel72 and Ilel177. In mammalian GSTs and in beta
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Table 1. Steady-state kinetic analysis of AtuGSTH1-1.

A. tumefaciens eta Class Glutathione Transferase

Table 2. Data collection and refinement statistics.

Substrate K., (mM) Keat (Min™")?  keoo/Kpy (MM~ *min~")

GSH 0.3*0.03 31.920.05 214
CDNB 1.5+0.09

GSH 0.9+0.07 339.4+6.05 123.9
CuOOH 2.7%+0.21

GSH 1.1£0.05 149.7%5.21 95.3
t-BuOOH 1.6*0.07

GSH 1.7%£0.1 2.4£0.05 0.6
HEDS 4.1*0.12

“kcat Values were calculated for the substrates CDNB, CuOOH, and HEDS.
doi:10.1371/journal.pone.0034263.t001

class bacterial PmGST these structural elements are critical for
protein folding, stability, and catalytic function [8,22,23].

Structural comparison with other proteins. A Dali search
[24] showed an r.m.s.d with other GSTs between 2.3-3.5 A and a
20-25% sequence identity. The GST-like protein YfcG (PDB id
3gx0) [25] an E. coli GST homologue with disulfide-bond
reductase activity, was identified as the closest structural
neighbor of AwGSTHI-1 (Z=229, rmsd=19A 22%
sequence identity). The second structure in the Dali list was that
of  Rhodobacter  sphacroides GST (PDB id 3lsz; Z=21.7,
rm.s.d=25 A, 28% sequence identity).

Subunit-subunit interactions. The structure of AwGSTH]1-
1 contains one molecule in the asymmetric unit. The functional
dimer found in GSTs was generated by the symmetry operator -x,
y, -z+"2 of the (222, space group (Figure 3B). The interface
involves 49 residues from each monomer and the buried surface
area is ~1645 A? from each monomer (about 15% of the total
solvent accessible area of each monomer), which is within the
values found in most other GST families [1,7,9,10]. The main
regions involved in subunit interactions are residues 65-72 (part of
helix H3), 80-85 (strand B4), 86-96 (helix H4), 105-128 (part of
helix H5), 139-143 and 154-162 from helix H6. Close inspection
shows that the formation of the dimer follows the ‘lock-and-key’
mode that is also found in the phi, alpha, mu and pi classes of
GSTs [9,26]. The “lock-and-key” motif plays important functional
and structural roles and is generally considered important for
dimerization. The “key” is an aromatic residue in one subunit and
the “lock™ is a cluster of hydrophobic residues from the other
interacting subunit. Indeed, the side chain of Phe70 acts as the
‘key’ that locks into a hydrophobic pocket consisting of Ile122°,
Leul60’, Leul70’, Metl81°, Leu200’, and Trpll4’ from the
second subunit. Six hydrogen bonds (three from each subunit) with
distances from 2.5 to 3.5 A contribute further to the stability of the
interface: Argl156 NH1-Phe70 O 3.4 A; Thr121 OG1-Glu85 OE2
2.6 A; Argl48 NH2-Glul39 OEI1 3.0 A; Argl48 NHI-Glul39
OE2 2.8 A. Glu85, in particular, is involved in Nb-GSH binding
through its OE1 atom whereas its OE2 atom makes a hydrogen
bond with Thr121 OG1 (distance 2.6 &) from subunit B at the
subunit interface. This interaction might also induce the kink of
helix H5.

GSH Binding Site (G-site). A molecule of Nb-GSH was
found bound in the active site of AuGSTHI1-1 (Figure 3C). The
glutathione portion of Nb-GSH is located in a region formed by
the beginning of helices Hl and H4 and part of the B-turn
between H3 and B3. The y-Glu portion makes hydrogen bonds
through the oxygen atoms O11 and O12 with Glu85 and Ser86.

@ PLoS ONE | www.plosone.org

Data collection

Space group

Cell dimensions (A)

Number of molecules
Resolution range (A)

Number of measured reflections

Unique reflections

222,
49.4x96.0x88.4

1

20.0-1.40 (1.5-1.4)%
247406 (45974)
41008 (7614)

Completeness (%) 99.4 (99.9)
Mosaicity (°) 0.2
<l/o()> 19.9 (4.1)
Rmerge (%) 5.6 (49.7)
Reneas (%)* 62 (54.2)
Wilson B-factor (A%) 20.8
Refinement

Reflections (working/test) 41008 (38919/2089)

Rwork/Rfree (%) 17.2/18.6
Number of protein atoms 1757
Number of waters 313

RMS deviation from ideal geometry

Bond lengths (A) 0.008
Bond angles (°) 1.15
Ramachandran plot

Residues in most favoured regions (%) 92,5
Residues in additional allowed regions (%) 7.0
Residues in generously allowed regions (%) 0.5

Average B factors (A7)

Main chain/Side chain 14.9/19.8
Waters 31.6
S-(p-nitrobenzyl)-glutathione 16.2

#Numbers in parenthesis correspond to the highest resolution shell.
&Redundancy-independent R-value [54].
doi:10.1371/journal.pone.0034263.t002

In addition, O11 makes two indirect contacts with main chain O
of Pro74 and side-chain NE2 of GIn68. The N1 atom interacts
with the side-chain atoms of Glu84 and also with two residues
Thr121 OGIl and Asnl20 NE2 from the symmetry-related
subunit that forms the functional dimer. The conserved SNAIL/
TRAIL motif in the N-terminal domain that is present in most
GST classes and contributes polar functional groups to the GSH
binding site is absent in AGSTHI1-1 [27,28]. However, a putative
SNAIL/TRAIL-like motif (SGAIV) was found at amino acid
positions 86-90 (Figure 1). The hydroxyl group of Ser86 makes a
hydrogen bond with the y-Glu portion of GSH. The other residues
of the motif are not directly involved in GSH binding.
Electrophilic Binding Site (H-site). The H-site in GSTs is
characterized by low conservation that reflects its role in substrate
specificity. In contrast to other GST's where the H-site involves C-
terminal domain residues, interactions in AiuGSTHI1-1 are mainly
provided by Argl87 and the long turn between strand Bl and
helix H1 (residues 25-33) (Figure 4). Compared to Nb-GSH
binding in tau class GnGSTU4-4 [9] the orientation is different
with the AGSTHI1-1 4-nitrobezyl group more buried than the
GmGSTU4-4/4-nitrobenzyl group which points towards the bulk
solvent. This might be caused by the presence of bulky Trp163 in
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Figure 3. Crystal structure of AtuGSTH1-1. A. Ribbon diagram of
AtuGSTH1-1 monomer. Assignment of secondary structure elements
was carried out by DSSP [55]. The bound Nb-GSH and phosphate ion
are shown as sticks coloured according to atom type. B. Ribbon
diagram of the dimeric AtuGSTH1-1 structure. The 2-fold axis is
perpendicular to the plane of the page. Subunit A is colored in cyan
and subunit B is in lemon yellow. The inhibitor Nb-GSH is represented
with sticks and coloured according to atom type. C. Stereo view of the
mFo-DFc electron density omit map for the bound Nb-GSH contoured
at 3c. The figures were produced using the CCP4 molecular graphics
program [56].

doi:10.1371/journal.pone.0034263.9g003

GmGSTU4-4 whereas in AtuGSTHI1-1 the structural equivalent
position of Trpl63 is occupied by Argl87. Further comparison
shows that several hydrophobic residues from the C-terminal helix
in other GSTs are absent in AwGSTHI-1 as a result of the
different position of the C-terminal helix (H10) in AwGSTHI-1

@ PLoS ONE | www.plosone.org
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away from the active site. In the case of alpha GSTAI-1 [29], tau
GmGSTU4-4 [9], and pi class GSTP1-1 [30], the C-terminal helix
is longer and acts as a lid over the substrate binding site, thus
creating a more restricted binding site entrance. The absence of
such a feature in AwGSTHI-1 may explain the ability of this
enzyme to accommodate a diverse range of substrates at the H-site
[16]. Salt bridges between helix H1 residues Arg34, Glu43, and
Glu44 with helix H10 Arg214 and Arg209 may contribute to the
stabilization of H10 position away from the active site.

Catalytic mechanism and site-directed mutagenesis

It is widely accepted that GSTs achieve catalysis mainly through
the involvement of an active site residue that interacts with and
activates the sulfhydryl group of GSH to generate the catalytically
active thiolate anion [1,9-11,31,32]. This residue in the alpha,
mu, pi, sigma classes is a Tyr. In the delta, epsilon, theta, tau and
zeta GSTs, the active site residue is a Ser. In omega, beta and
lambda is instead a catalytically essential Cys, which is involved in
forming a mixed disulfide with GSH. Analysis of the structure of
AtuGSTHI1-1 showed the absence of any functional side-chain
(Ser, Tyr, Cys) in hydrogen bond distance with the cysteinyl
moiety of the bound Nb-GSH (Figure 4). This observation
distinguishes AuGSTH]1-1 from all other cytosolic GST's of known
structure and function. However, structural analysis indicated that
the side-chains of Phe22, Ser25, Arg34 and Argl87 are oriented
towards the ligand binding-site and may be important in substrate
binding and/or catalysis. Phe22 and Ser25 are located at the
beginning of a-helix H2 whose structural and functional role has
been established in numerous publications [9,10,31]. The
guanidium groups of Argl187 and Arg34 are adjacent to the sulfur
atom of Nb-GSH.

To investigate the role of Phe22, Ser25, Arg34 and Argl87,
these residues were mutated to Ala and the mutant enzymes
(Phe22Ala, Ser25Ala, Arg34Ala and Argl87Ala) were expressed in
E. coli BL21(DE3), purified as the wild-type enzyme, and subjected
to kinetic analysis. The kinetic parameters k.,, and K,,, toward the
two model substrates CDNB and cumene hydroperoxide were
determined by steady-state kinetic analysis, and the results are
listed in Table 3. The results showed that in the case of CDNB/
GSH system the mutants Phe22Ala and Ser25Ala exhibit
moderate differences in K,,, values for CDNB, compared to the
wild-type enzyme, indicating that the mutations do not change
appreciably the affinity of the H-site for the CDNB. Small
differences were also observed for the k., values. It is noteworthy
that mutant Ser25Ala and Phe22Ala showed decreased K, values
for GSH, suggesting that these residues are involved in GSH
binding in the G-site. The mutant enzyme Argl87Ala exhibits
larger reduction in catalytic efficiency and shows about 3-fold
lower kg, value and 5-fold increase K, value for CDNB,
compared to the wild-type enzyme. These results suggest that
Argl187 may contribute significantly either to the rate-limiting step
or to the chemistry of the catalytic reaction. The mutation of
Arg34 had the most detrimental effect on activity. Indeed, the
Arg34Ala mutant was inactive (ke approximately 0.01 min ™),
indicating that Arg34 may represent an important catalytic
residue.

The effect of mutations using CuOOH/GSH as substrates
appears to be significantly different from that seen in the CDNB/
GSH system. Phe22 and Ser25 seem to play an important role in
determining the K, values for CuOOH since a significant
increase was observed (6.4—14.7-fold). Interestingly, both mutants
show also significant increase in kg, values towards CuOOH.
Probably, the structural integrity or flexibility of the loop where
Phe22 and Ser25 are located has been altered in the mutated form
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Figure 4. Close-up stereo view of the active site. Hydrogen-bonds (<4.0 A) between Nb-GSH and the enzyme are shown as dashed
lines. W304 and W117 from the proposed electron-sharing network are depicted. The orientation of Nb-GSH is the same as in Figure 3C. The figure

was produced using the CCP4 molecular graphics program [56].
doi:10.1371/journal.pone.0034263.9004

of the enzyme. A plot of the crystallographic B-factors along the
polypeptide chain, which can give an indication of the relative
flexibility of the protein portions, indicates that this region undergo
large conformational changes (data not shown). The perturbation
of loop’s flexibility or the loss of specific interactions may lead to
structural perturbation of helix H2 with concomitant effect the
alterations in K,,, and k., values.

The mutant enzyme Argl87Ala displays moderate differences
in kinetic constants, compared to the wild-type enzyme. On the
other hand, the mutation Arg34 to Ala abolishes enzyme activity
(ko approximately 0.02 minfl) using the CuOOH/GSH sub-
strate system, providing additional evidence for the catalytic role of
Arg34 (Table 3).

The effect of viscosity on the kinetic parameters was measured
in order to analyze the rate-limited step of the catalytic reaction. A
decrease of k., by increasing the medium viscosity should indicate
that the rate-limiting step of reaction is related to the product
release or to diffusion-controlled structural transitions of the
protein [9,33-35]. A plot of the inverse relative rate constant k.,,”/

Kear (keat” 1s determined at viscosity n°) versus the relative viscosity
Nn/M° should be linear, with a slope equal to unity when the
product release is limited by a strictly diffusional barrier or a slope
approaching zero if the catalytic reaction chemistry is rate-
limiting. The inverse relative rate constant ke, /ke for
AtuGSTHI1-1 for the CDNB/GSH substrates system shows linear
dependence on the relative viscosity with a slope 0.151%0.003
(Table 4). The observed intermediate value of the slope
(0<slope<1) indicates that the rate-limiting step in the enzyme
is not dependent on a diffusional barrier (i.e. product release) and
other viscosity-dependent motions or conformational changes of
the protein contribute to the rate-limiting step of the catalytic
reaction. The effect of viscosity was also evaluated using CuOOH.
The slope obtained was determined to be equal to 0.339%0.008
supporting the results obtained using CDNB as substrate. The
mutants Phe22, Ser25 and Argl87 exhibit k., -viscosity slopes with
slight differences compared to the wild type enzyme (Table 4).
This suggests that the mutations may contribute to catalysis
through modulation of specific conformational changes in the

Table 3. Kinetic parameters of mutant enzymes for the CDNB/GSH and CuOOH/GSH reactions catalyzed by AtuGSTH1-1.
Enzyme Kmns (MM) (GSH) Kms (mM) (CDNB) Keat (CDNB) (% of the wild-type)
Wild-type 0.30+0.03 1.5+0.09 100
Phe22Ala 0.085+0.002 3.2%0.39 90.5
Ser25Ala 0.140.01 1.9+0.18 78.2
Arg34Ala ND? ND? 0.01
Arg187Ala 0.340.08 7.120.76 335
Enzyme Kmns (MM) (GSH) Kmns (MM) (CuOOH) Keat (CUOOH) (% of the wild-type)
Wild-type 0.9+0.07 2.7+0.21 100
Phe22Ala 2.9+0.56 39.6+2.81 553.0
Ser25Ala 17.3%1.11 17.41.61 298.1
Arg34Ala ND? ND? 0.02
Arg187Ala 0.94+0.02 3.5+0.66 79.9
“ND: Non determined.
doi:10.1371/journal.pone.0034263.t003
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Table 4. The effect of viscosity on ke, for the CDNB/GSH and
CuOOH/GSH reactions catalyzed by AtuGSTH1-1 and its
mutants.

Enzyme Slope (CDNB/GSH) Slope (CuOOH/GSH)
Wild-type 0.1510.003 0.339+0.008
Phe22Ala 0.189+0.003 0.263+0.003
Ser25Ala 0.325+0.008 0.318+0.005
Arg187Ala 0.140£0.005 0.271£0.002

The slopes for the wild-type and the mutant enzymes were derived from the
linear plot of the relative turnover number (k°..i/kear) as a function of relative
viscosity (/n°) using glycerol as co-solvent.
doi:10.1371/journal.pone.0034263.t004

enzyme without excluding the possibility of their involvement in
the reaction chemistry (i.e. Argl87).

Recently, a conserved electron-sharing network that assists the
glutamyl y-carboxylate of GSH to act as a catalytic base accepting
the proton from the -SH thiol group of GSH, forming an ionized
GSH was investigated in GSTs [36]. This electron-sharing
network is created by residues that form ionic bridge interactions
between the negatively-charged glutamyl carboxylate group of
GSH, a positively-charged residue (primarily Arg) and a
negatively-charged residue (Glu or Asp) stabilized by hydrogen-
bonding networks with surrounding residues (Ser, Thr) and/or
water-mediated contacts. This network has been suggested to
contribute to the “base-assisted deprotonation” model postulated
to be essential for the GSH ionization step of the catalytic
mechanism [36]. In the AwGSTHI1-1/Nb-GSH complex, the
conserved residues Arg34, Glu85, Ser86, GIn68 and Asnl20’
appear to form the proposed electron-sharing network. Based on
Quantum mechanics/Molecular mechanics (QM/MM) calcula-
tions it was recently proposed [37] that the GSH activation by
GSTs is accomplished by a water-assisted proton-transfer
mechanism that takes into account the suggested roles of the
GSH vy-glutamyl carboxylate group and the active-site water
molecules. According to this mechanism, a water molecule acting
as a bridge is able to transfer the proton from the GSH thiol group
to the GSH y-glutamyl carboxylate group. Dourado ¢t al. have
resorted to density functional theory and to potential of mean force
calculations to determine the GSH activation mechanism of
GSTP1-1 and GSTMI-1 isoenzymes [37]. For the GSTPI-1
enzyme, they have demonstrated that a water molecule can assist a
proton transfer between the GSH cysteine thiol and the GSH
glutamate alpha carboxylate groups. In the case of GSTMI-1
enzyme, two water molecules positioned between the GSH-SH
and the N atom of His107, working like a bridge, are able to
promote the proton transfer between these two active groups.
Arg34 in AtuGSTHI-1 occupies two alternative positions and
exhibits high crystallographic temperature factors, indicating
significant flexibility. In particular, in one conformation its
guanidium group interacts with the y-glutamyl carboxylate of
GSH forming an electrostatic interaction, while in the second
conformation with the sulfur atom of Nb-GSH (3.4 A), the water
molecules W117 and W304, and the backbone carbonyl group of
bound Nb-GSH. Argl87 interacts with the water molecule W304
and forms a m-cation interaction with the benzyl group of Nb-
GSH. Hence, Arg34 and Argl87 appear to work as a bridge that
connects the two water molecules 304 and 117 (Figure 4). Wat304
might be a crucial element in the catalytic mechanism. In the
structure, Wat304 was found fixed by the guanidium group of
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Arg187 with a hydrogen bond of 2.7 A and with Arg34 with one
weak hydrogen bond (3.8 A). The sulfur atom of Nb-GSH is 5.1 A
away from Wat304. The residues Argl87 and Arg34 could,
therefore, function as a ‘clamp’ to grip Wat304 in a position to
form a hydrogen bond with the sulfonate group. Based on the
above analysis, in the case of AwGSTHI-1, a putative bridge of a
network of water molecules in the region of an electron-sharing
network does exist as shown in Figure 4. Consequently, Arg34
may act as a catalytic residue for GSH activation.

In conclusion, in the present study we showed the structural and
functional characterization of the Am3701 protein from A.
tumefaciens. Sequence and structural analysis indicated that
Atu3701 defines a new GST class. Based on the available GSTs
nomenclature and classification system the new class was classified
as the Eta class (H) and accordingly the enzyme was named
AtGSTHI-1. Members of this class were found in soil bacteria
and more recently in a set of environmental sequences. Thus, this
structure most likely represents a larger family, whose size is
expected to grow further as the existing sequence databases
expand. AtuGSTH]1-1 exhibits wide substrate specificity although
analysis of the catalytic efficiency (k.. /K.,) suggests that
hydroperoxides may be its ‘natural’ substrates, indicating that
the enzyme may play important role in counteracting oxidative
stress conditions. Investigation of the crystal structure of
AtuGSTHI-1 in complex with Nb-GSH indicated that although
the enzyme adopts the canonical GST fold it lacks the classic
catalytic essential residues in GSTs (e.g. Tyr, Ser, Cys). This
characteristic distinguishes AGSTH1-1 from all other cytosolic
GSTs of known structure and function. Site-directed mutagenesis
showed that Arg34 may represent the catalytic residue. This
residue together with an electron-sharing network and a bridge of
water molecules are proposed to form the basis of the catalytic
mechanism.

Materials and Methods

Materials

Reduced glutathione, 1-chloro-2,4-dinitrobenzene (CDNB),
Nb-GSH and all other enzyme substrates and chemicals were
obtained from Sigma-Aldrich, USA. Molecular biology reagents
were purchased from Invitrogen, USA.

Cloning, expression, and purification of AtuGSTH1-1 in E.
coli

Cloning and expression of AuGSTHI-1 in E. coli BL21(DE3)
cells was carried out as described previously [16]. Purification of
AtuGSTHI1-1 was carried out as following: after expression, E. coli
BL21(DE3) cells were harvested by centrifugation at 10,000 g for
10 min (4°C), resuspended in potassium phosphate buffer
(50 mM, pH 8.0, 9 ml) containing sodium chloride (0.3 M),
sonicated, and centrifuged at 10,000 g for 20 min. The superna-
tant was collected and was loaded to a column of Ni-NTA
adsorbent (1 ml), which was previously equilibrated with potassi-
um phosphate buffer (50 mM, pH 8.0) containing sodium chloride
(0.3 M). Non-adsorbed protein was washed off with 10 ml
equilibration buffer, followed by 20 ml of potassium phosphate
buffer (50 mM, pH 6.2) containing sodium chloride (0.3 M) and
glycerol (10%, v/v). Bound AwGSTHI-1 was eluted with
equilibration buffer containing imidazole in gradually increasing
concentrations of 5 mM, 20 mM, 0.1 M, 0.2 M and 0.5 M (total
volume of 10 ml). Collected fractions (2 ml) were assayed for GST
activity and protein (Bradford assay). Fractions with AGSTH]1-1
activity were pooled and dialysed overnight against appropriate
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buffer and was used for kinetics and structural analysis. Protein
purity was judged by SDS-PAGE.

Bioinformatic analysis
Multiple sequence alignment and phylogenetic analysis were
carried out as described by Skopelitou et al. (2012) [16].

Assay of enzyme activity and protein

Enzyme assays were performed according to Skopelitou et al.
[16]. Observed reaction velocities were corrected for spontaneous
reaction rates when necessary. All initial velocities were deter-
mined in triplicate in buffers equilibrated at constant temperature.
Turnover numbers were calculated on the basis of one active site
per subunit. One unit of enzyme activity is defined as the amount
of enzyme that catalyses the turnover of 1 pmol of substrate per
min. Specific activity is expressed in pmol -+ min~' per mg of
protein. Protein concentration was determined by the Bradford
assay using bovine serum albumin (fraction V) as standard. Steady-
state kinetic measurements for the wild-type enzyme were
performed at 37°C in 0.1 M potassium phosphate buffer,
pH 6.5, over 10-fold varied substrate concentrations. Steady-state
data were fitted to the Michaelis-Menten equation by nonlinear
regression analysis using the GraFit (Erithacus Software Ltd.)
computer program.

Viscosity dependence of kinetic parameters

The effect of viscosity on kinetic parameters was assayed in 0.1
M potassium phosphate buffer, pH 6.5, containing variable
glycerol concentrations. Viscosity values (1) were calculated as
described in Wolf et al [38].

Site-Directed Mutagenesis

Site-directed mutagenesis was performed according to Ho et a/
[39]. The pairs of oligonucleotide primers used in the PCR
reactions were as follows: for the Ser25Ala mutation, 5’-
CGTTTTTGAACGCGCGCCCGATGGCGG-3' and 5'- CC-
GCCATCGGGCGCGCGTTCAAAAACG-3’ for the Phe22Ala
mutation, 5'-CGATCACCGTTGCGGAACGCTCTCC-3" and
5'-GGAGAGCGTTCCGCAACGGTGATCG-3', for the Ar-
g34Ala mutation, 5'- GGTCTCGCGGCGGATATGCCG-3’
and 5'-CGGCATATCCGCCGCGAGACC-3', for the Ar-
gl187Ala mutation, 5'- CGTCTTACGCGCGCTGGAATCG-3’
and 5'-CGATTCCAGCGCGCGTAAGACG-3'. All mutations
were verified by DNA sequencing. The mutant enzymes were
expressed and purified as described for the wild-type enzyme.

Crystallization

Prior to crystallization, AuGSTHI1-1 was concentrated to
4.85 mg/ml in buffer Tris-HCI 15 mM, pH 7.0 and mixed with
a 100 mM stock solution of S-(p-nitrobenzyl)-glutathione (10 mM
final concentration). Crystals were grown with the hanging drop
vapor diffusion method. The drops contained 2 pl of the protein
solution mixed with 2 ul of a well solution (1.4 M Na/K
phosphate, pH 8.3). The drops were equilibrated against 800 pl
of well solution at 16°C.

Structure determination and refinement
An initial data set to 1.4 A resolution was collected on station
X13 at EMBL-Hamburg c¢/o DESY from a single crystal soaked
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for a few seconds in crystallization solution supplemented with
20% v/v glycerol as cryoprotectant. The crystal was subsequently
placed in a gaseous nitrogen stream and flash-cooled directly at
100 K. A total of 250 images were recorded on a MARCCD
detector using a rotation angle of 0.5° and an exposure time of
10 seconds. Data were processed with XDS [40]. Crystals of
AwGSTHI-1 were found to belong to the €222, space group with
unit cell dimensions 49.4x96.0x88.4 A. Assuming one molecule
in the asymmetric unit, the Matthews coefficient [41] is 2.3 A%/
Da~!, corresponding to 46.5% solvent content. Attempts to
determine the structure by molecular replacement did not produce
any clear solution as judged by the low Z-scores (below 5) in
PHASER [42] and the poor quality of the resultant electron
density maps. Initial phases were obtained by Br-SAD from a
single AiuGSTHI1-1 crystal soaked with 1 M KBr for 45 seconds in
cryoprotectant solution. The crystal was subsequently flash-cooled
to 100 K in a stream of gaseous Ny. A total of 600 diffraction
images were collected (A=0.9 A) to 2.01 A resolution on the
BW7A beamline at EMBL-Hamburg (c/o DESY) using a rotation
angle of 0.5°, exposure time of 1 sec per image, and a MARCCD
detector. Data were processed with DENZO and Scalepack [43].
The search for Br atoms was performed with SHELX [44], which
identified an anomalous signal of 1.2 up to 2.4 A resolution and
located 8 Br ions. Phasing with AutoSHARP [45] resulted in a
phasing power of 1.125 and an initial figure-of-merit of 0.3.
Following solvent flattening and density modification, ARP/
wARP [46] was able to build 202 residues in 3 chains out of 227
residues in total in the aminoacid sequence. Refinement was
mitially carried out with REFMAC [47] and slowly extended to
1.4 A in small steps of 0.2 A. At the final stages of refinement, the
program PHENIX [48] was employed. No anisotropic B-factor
refinement was performed as the drop in Rg.. was insignificant.
The structure was visualized and rebuilt using COOT [49].
MOLPROBITY [50] and PROCHECK [51] were used to
validate the structure. Structural superpositions were performed
with SSM [52] and analysis of interfaces with PDBePISA [53].

Protein Data Bank accession code
The final coordinates and the structure factors have been
deposited with the Protein Data Bank under the accession code

2ycd.
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