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The efficiency of visual tasks involving localization has traditionally been evaluated using
forced choice experiments that capitalize on independence across locations to simplify
the performance of the ideal observer. However, developments in ideal observer analysis
have shown how an ideal observer can be defined for free-localization tasks, where a
target can appear anywhere in a defined search region and subjects respond by localizing
the target. Since these tasks are representative of many real-world search tasks, it
is of interest to evaluate the efficiency of observer performance in them. The central
question of this work is whether humans are able to effectively use the information in
a free-localization task relative to a similar task where target location is fixed. We use a
yes-no detection task at a cued location as the reference for this comparison. Each of the
tasks is evaluated using a Gaussian target profile embedded in four different Gaussian
noise backgrounds having power-law noise power spectra with exponents ranging from
0 to 3. The free localization task had a square 6.7◦ search region. We report on two
follow-up studies investigating efficiency in a detect-and-localize task, and the effect of
processing the white-noise backgrounds. In the fixed-location detection task, we find
average observer efficiency ranges from 35 to 59% for the different noise backgrounds.
Observer efficiency improves dramatically in the tasks involving localization, ranging from
63 to 82% in the forced localization tasks and from 78 to 92% in the detect-and- localize
tasks. Performance in white noise, the lowest efficiency condition, was improved by
filtering to give them a power-law exponent of 2. Classification images, used to examine
spatial frequency weights for the tasks, show better tuning to ideal weights in the
free-localization tasks. The high absolute levels of efficiency suggest that observers are
well-adapted to free-localization tasks.
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INTRODUCTION
The concept of calculation efficiency, which we refer to simply as
efficiency, in the presence of image noise has been used exten-
sively as a method for understanding visual processing since its
seminal introduction by Barlow (Barlow, 1977, 1978; Barlow and
Reeves, 1979). At the core of this measure is comparison with
an optimal decision maker, the ideal observer, for a given task.
The use of the ideal observer as yardstick for human performance
implicitly controls for the relevant information present in stimuli
used to perform a task. This topic has a long history in vision sci-
ence, as well as areas of applied vision such as medical imaging.
In the realm of vision science, there are many examples where
efficiency is used to reveal the presence (or absence) of limita-
tions and constraints in visual processing (Barlow, 1978; Barlow
and Reeves, 1979; Burgess et al., 1981; Pelli, 1985; Legge et al.,
1987; Geisler, 1989; Tjan et al., 1995). In imaging applications,
efficiency is used to identify opportunities for image processing
or other methodological changes that lead to improved perfor-
mance in visual tasks (Myers et al., 1985; Wagner and Brown,
1985; Insana and Hall, 1994; Siewerdsen and Jaffray, 2000; Abbey
et al., 2006).

Studies evaluating efficiency have often relied on experimen-
tal paradigms where the location of a target, if it is present,
is explicitly defined through the use of location cues. Forced-
choice paradigms, with two or more specified locations that serve
as possible target locations, are a common choice (Burgess and
Ghandeharian, 1984). These studies do involve spatial (or tempo-
ral) search, but it is a limited search that is confined to choosing
between distinct, cued locations. The use of independent noise
masking the target at each location makes the computation of
the ideal observer considerably easier. Studies that have analyzed
the ideal observer in tasks with location uncertainty on a quasi-
continuous scale (i.e., limited to the pixelation of the stimulus)
have generally utilized a detection or discrimination response that
did not involve localizing the target (Park et al., 2005; Tjan and
Nandy, 2006; Neri, 2010).

However, recent analysis by Khurd and Gindi (2005) have
demonstrated how an ideal observer may be evaluated when tar-
gets can be located anywhere within a search region, and the
task requires localizing targets to within a fixed distance, or
more general acceptance region. This general paradigm has been
used previously in medical imaging studies (Burgess et al., 2001;
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Bochud et al., 2004) due to the similarity with many clinical tasks
that require identifying a location in the body for further assess-
ment. However, these studies did not have the benefit of an ideal
observer. The Khurd and Gindi approach leads to the definition of
an optimal decision function, from which ideal observer perfor-
mance can be extracted via simulation studies, as we do below.
Extensions to the theory (Khurd et al., 2010) include methods
for evaluating the presence of multiple targets that are beyond
the scope of this work. There has been some use of this analy-
sis to evaluate the role of regularization in emission computed
tomography (Liu et al., 2009). However, we are not aware of any
use of the ideal observer for examining efficiency in more general
free-localization tasks.

The main focus of this work is a comparison of fixed-location
detection tasks—where a single target location is well cued—to
free-localization tasks, where the subject must indicate the loca-
tion of a target that can be anywhere in a defined search region.
Figure 1 gives examples of the stimulus displays for each task.
For the detection tasks, subjects render a decision on whether a
Gaussian “bump” target profile is present or not at the cued loca-
tion. In the localization tasks, the subject is required to indicate
the location of the target profile, which will always be present
somewhere in the search region. We are interested in compar-
ing the efficiency of human observers in these two tasks, and
understanding the mechanisms that can explain differences.

We are also interested in the role of the background image
statistics on this process. For this reason, we evaluate four dif-
ferent Gaussian image textures. These are defined by their power
spectra, which are constrained to be a power-law parameter-
ized by the power-law exponent β. We evaluated four different
background textures, based on β-values ranging from 0 (white
noise) to 3 (See Figure 2 below). Natural scenes are often mod-
eled as power-law processes with exponents that vary around
β = 2 (Burton and Moorhead, 1987; Field, 1987). Various forms
of x-ray images, for breast imaging in particular, have also been

A

C

B

FIGURE 1 | Detection and localization stimuli. Image displays for the
detection (A) and localization (B) tasks. The target to be detected is a
Gaussian (“bump”) profile(C) embedded in power-law noise with an
exponent of 2 here. For the detection task, the target is located at the
center of the cross when it is present. In the localization task, the target can
be located anywhere within the search area indicated by the marks (arrow).

modeled as power-law processes with exponents ranging from
less than 2 for computed tomography reconstructions (Metheany
et al., 2008; Chen et al., 2012, 2013) to 3 or more for tomosyn-
thesis (Engstrom et al., 2009) or projection images (Bochud et al.,
1999; Burgess et al., 2001).

In addition to the main comparison of detection and localiza-
tion tasks, two smaller follow-up studies were conducted to give
additional insight on issues that arose from the primary study.
One issue was the different nature of the two tasks, given that
a yes-no type detection task requires maintaining some sort of
detection criterion from trial to trial for choosing the response.
The free-localization tasks do not require this. To investigate the
effect of a detection criterion on free-localization tasks, we evalu-
ated a detect-and localize (D&L) task, in which the target profile
appeared at a random location in the search region in 50% of
the trials, and was not present in the other 50% if the trials. As
an alternative to indicating the target location, the subjects could
also respond “not present” in these experiments. In this way, the
requirement of maintaining a task criterion in the detection task
was matched in a task with substantial spatial uncertainty.

The second follow-up study concerned the white-noise
(β = 0) background condition, where lower efficiency than
other power-law backgrounds was observed in both detection and
localization tasks. In this case, we were interested in whether pro-
cessing the images to have more favorable background statistics
could improve performance. We evaluated task performance after
filtering these images to have a power-law power spectrum with
β = 2, which also modified the profile of the target.

METHODS
A total of 5 subjects participated in the primary comparison of
efficiency between detection and forced-localization tasks. On
subject (S1) was a coauthor of this work, and the other 4 were
naïve to the purposes of the research and compensated for their
participation. Of these, 3 subjects (S2, S4, and S5) participated
in the secondary detect-and-localize experiments, and 3 subjects
(S3, S4, and S5) participated in the secondary image-processing
experiments.

STIMULUS AND DISPLAY PROPERTIES
A monochrome CRT display (Imaging Systems, Minnetonka,
Minnesota) with a dedicated controller (DOME, NDS Inc., San
Jose, CA), was used for all experiments, which were conducted in
a darkened room. The monitor was photometer-calibrated to an
8-bit linear lookup table (LUT) that ranged from 0.02–40 Cd/m2.
Viewing distance of the subjects was not constrained. Subjects had
normal vision or wore corrective lenses. After becoming famil-
iar with the display procedure, and completing several sessions of
experiments, measurements of each subject’s comfortable view-
ing distance were made. The average viewing distance used was
64 cm, with a range of 51–70 cm. This average distance was used
for all subsequent calculations of visual angle. The stimuli were
generated as 256 by 256 pixel images, and these were magnified by
a factor of two for display, making the effective pixel size 0.052◦
(0.583 mm).

The experiments used a Gaussain “bump” as a target added to
stationary noise with a power-law power spectrum. The spatial

Frontiers in Psychology | Perception Science May 2014 | Volume 5 | Article 345 | 2

http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science/archive


Abbey and Eckstein Efficiency in free-localization tasks

FIGURE 2 | Sample power-law textures. Noisy backgrounds with different power-law exponents (β) are shown from the same underlying random number
seed.

standard deviation of the target was 3 pixels giving the displayed
target a FWHM of 0.37◦. A mean background level of 100 gray
levels (gl) was added as well and the noise was scaled to have a
pixel variance of 400 gl2, which is equivalent to a 20% RMS con-
trast on the linearized display that was used for the psychophysical
studies. Target contrast varied over the different experiments, as
described below.

Noise backgrounds were generated by filtering white noise
to achieve a power-law power spectrum in the spatial-frequency
domain, Sβ

(
f
) = Cβ/f β , which we will identify by the power-law

exponent, β. To avoid the singularity at f = 0, the DC compo-
nent is set to the value of the first harmonic. The normalization
constant, Cβ , is set so that the RMS contrast of the background
is fixed at 20%. The noise generation filter for each background
condition was set to be the square-root of Sβ

(
f
)
. Examples of the

different noise textures for the four values of β that we used are
seen in Figure 2.

For detection tasks using the different backgrounds, targets
had a 50% probability of being present in any given trial. Subjects
were informed that this was the target probability. When present,
the target was always located in the center of the image with
the location indicated by cross-hairs, as shown in Figure 1. The
observer response was obtained by capturing a mouse click out-
side the image area. Feedback (correct/incorrect) was given after
each trial. While separate performance measures were determined
for target present and target absent images (hit rate and false
alarm rate), for purposes of fitting psychometric functions the
proportion of correct responses was also used.

For localization tasks, the target was randomly located in
the central region of the image, with borders delineated by
hash marks. Subjects were informed that this was the search
region. The central region consisted of 128 by 128 pixels
(6.7 by 6.7◦), and thus constituted one quarter of the total
image area. The large border region was chosen to minimize
any edge effects as well as effects from “wrap-around” from
the filtering operation. Observers responded by clicking with
a mouse on their selected location. Mouse-clicks that were 5
pixels (0.26◦) or less from the center of the target were con-
sidered “correct,” and subject performance was measured as
the proportion of correct responses. Subjects received feed-
back (correct/incorrect and true target location) after each
trial.

Slight modifications to the experimental protocol above were
used in the two follow-up studies. For the D&L tasks, there was
a 50% probability that the target was present somewhere in the
search region. Subjects responded with a mouse-click on the tar-
get location to indicate target presence at that location, or by
a mouse-click outside the image to indicate target not present.
Subjects received feedback (correct/incorrect and target location
if applicable) after each trial.

In the image processing study, white noise images (i.e., β = 0)
were filtered after the target profile was added to have a β =
2 power-law spectrum. The frequency profile of the filter was√

S2
(
f
)
. As a result of this filtering operation, the target was no

longer a Gaussian profile, which reflects the practical reality that
image processing alters the properties and appearance of both tar-
get and background. Examples of the an image before and after
filtering, as well as a plot showing the effect on the target pro-
file, are seen in Figure 3. Detection and localization tasks on the
processed images were run as described above.

THE IDEAL OBSERVER
Task efficiency with respect to the ideal observer is the fundamen-
tal calculation used in this work. In this section we describe how
the ideal observer analysis is implemented, leading to an efficiency
estimate.

Detection tasks
For the yes-no detection task we identify target-present images
as one hypothesis (or class), H1, and the target-absent images
as the other possible hypothesis, H0. We will refer to the images
generically as g, a column vector of pixel values, with the assump-
tion that the mean background intensity of the stimuli (100 gl
in our case) has been subtracted off of the pixel intensities. The
Gaussian noise in the images is specified by a multivariate normal
distribution (MVN) with a covariance matrix that depends on
the power-law exponent of the noise texture, �β. The conditional
distributions of the resulting images are given by

p
(

g|H0
) = MVN

(
0, �β

)
p
(

g|H1
) = MVN

(
s,�β

)
.

(1)

Under these conditions, it is well known that the ideal observer
can be implemented as a weighted sum of the pixel intensities
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A B C

FIGURE 3 | Processing white noise images. Processing white noise images (A) with the appropriate filter gives them a β = 2 power-law background (B). This
transformation also changes the target profile, giving it much longer tails (C). Target contrast (arrows) is enhanced here for display.

(Green and Swets, 1966). Let the vector wIO,β represent these
weights, which are defined in terms of the statistical properties
of the images as

wIO,β = �−1
β s. (2)

The resulting Ideal observer strategy is implemented by com-
paring the weighted sum of the image, with mean background
subtracted, to a detection threshold,

H0 : if wT
IO,βg < tcrit

H1 : if wT
IO,βg > tcrit.

(3)

The value of the threshold, tcrit, determines the tradeoff between
hits and false alarms. In principle this term should be set on the
basis of outcome utilities. However, we leave it as a free parameter
to be fit to the human observer data.

With human observer data, we obtain the equivalent contrast
for the ideal observer by adjusting contrast and tcrit until the hit
rate and false-alarm rate equal the human observer’s. Let CD

Obs,β
be the target contrast used for the human observer study, and
let CD

IO,β be the equivalent ideal observer contrast. The efficiency
of the observer is defined in terms of a squared ratio of contrast
thresholds following Kersten (1987) as

ηD
obs,β =

(
CD

IO,β

CD
Obs,β

)2

. (4)

Standard errors are determined by calculating efficiency on a
session-by-session basis, and then computing the standard error
across sessions.

Localization tasks
As mentioned in the Introduction, the theory we use for ideal
observers in a free-localization task comes from the work of
Khurd and Gindi (2005). Here we present a somewhat simpli-
fied derivation that is adequate for our purposes. In this case, we
have a conditional probability of the data for every possible loca-
tion of the target. Let sl represent the profile of the target, when
it is centered on the pixel with index l, which can be anywhere in

the search region (i.e., 1282 possible locations). The conditional
likelihood of the data given a particular target location is

p
(

g|l) = MVN
(

sl, �β

)
. (5)

The basis for localization by the ideal observer is the posterior
distribution on possible locations, p

(
l|g). For a uniform prior

distribution on target locations, the posterior distribution is pro-
portional to the likelihood. Under the Gaussian assumptions of
our images, we have

p
(
l|g) = NgesT

l �−1
β g

, (6)

where Ng is a normalization constant that ensures that p
(
l|g)

sums to 1 over all possible locations.
The task specifies that any response within 5 pixels of the tar-

get center is considered a correct response. The ideal observer will
therefore choose the location that maximizes the probability of
a correct answer. For each point under consideration, the ideal
observer adds up the probabilities of all points within a 5-pixel
radius, to get a final score for the location. The point with the
largest score is then chosen as the ideal observer’s response. It is
worth noting that the ideal observer response at a given location
is very similar to an ideal detector with spatial uncertainty (Pelli,
1985), where uncertainty is confined to the acceptance region
around a given location.

The ideal observer decision function can be implemented
using convolutions to speed up the computationally intensive
steps. For example, the stationary nature of the noise covariance
matrix allows the computations of sT

l �−1
β g to be implemented

by convolving the ideal observer template, defined in Equation
2, with the mean-subtracted background. Similarly the com-
putation of the final score at each location in the image can
be computed by convolving a disk of radius 5 pixels with the
normalized posterior distribution in Equation 6. The recipe for
computing the ideal observer begins with pre-computing the ideal
observer filter by dividing the Fourier transform of the target by
the power-spectrum of the noise. Then for each image, (1) this fil-
ter is used in a convolution after the mean background has been
subtracted; (2) the result is exponentiated; (3) pixels outside the
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search region are set to zero; (4) pixels in the search region are
scaled so that they sum to 1; (5) the posterior is convolved with a
disk of radius 5 pixels; and (6) the maximum point is chosen.

With a case-by-case ideal observer algorithm, the performance
of the ideal observer is estimated to arbitrary accuracy using large
sets of sample images. We use this approach to build LUTs of ideal
observer performance as a function of target contrast. The LUTs
for each β are determined in contrast increments of 0.01 from 0
until PC rises above 94%. The functions are plotted for each β

in Figure 4. Each point is based on 2000 sample images, which
results in standard errors that are less than 1% near the 80%
correct level that is used in the experiments. Inverting these func-
tions allows for us to determine the contrast threshold required
by the ideal observer to achieve the specified level of PC. For an
observer that achieves a proportion correct of PCObs in a local-
ization task with a target contrast of CL

Obs,β , efficiency is again
defined (Kersten, 1987) as the squared contrast ratio

ηL
Obs,β =

(
CL

IO,β (PCObs)

CL
Obs,β

)2

. (7)

Standard errors are determined by calculating efficiency on a
session-by-session basis, and then computing the standard error
across sessions.

The D&L task uses a similar process as the localization task,
except that in the last step a threshold is applied. If the maximum
score is above the detection threshold, the location of the score is

FIGURE 4 | Ideal observer LUT. The plots show performance of the ideal
observer as a function of target contrast for each of the power-law
exponents. These data can be used as a look-up-table for determining the
threshold contrast needed by the IO to achieve a given level of
performance. For example, at β = 1, the threshold contrast needed to
achieve 80% correct is seen to be 0.4.

selected for detecting and localizing the target. If the maximum
score is below the detection threshold, the ideal observer selects
the “target-absent” response. For matching human observer data,
the threshold contrast and detection criterion are adjusted to
match the rate of correct detect-and-localize responses and the
false positive (FP) rate. Efficiency is then calculated as the squared
ratio of this contrast to the contrast used in the experiment, as in
Equations 4 and 7.

CLASSIFICATION IMAGES
In addition to efficiency, we will use classification images as a way
to investigate how visual processing affects task efficiency. This
approach is straightforward for the detection tasks, where the
classification image analysis has been well developed by Ahumada
(2002) and others (Gold et al., 2000; Chauvin et al., 2005; Victor,
2005; Tjan and Nandy, 2006; Murray, 2011). Let n represent the
noise field for a given trial, with no target profile or mean back-
ground. Let us define the quantity q as the product of the inverse
covariance and the noise field, q = �−1

β n. The classification
image is given by

wD
CI = q̄FP − q̄TN + q̄TP − q̄FN, (8)

where the q̄ are the average q over the FP, true-negative (TN),
true-positive (TP), and false-negative (FN) noise fields. Under
the (strong) assumption of a linear template as the mecha-
nism for detecting the target, the classification image will pro-
vide an unbiased estimate of the template. If the observer does
not follow the linear assumption, the resulting classification
image may be distorted, depending on the degree of violation
(Ahumada, 2002).

Tjan and Nandy (2006) have analyzed discrimination tasks
in the presence of target location uncertainty using classification
images. Their approach utilizes the concept of a “clamped signal,”
in which the noise field masking the target profile in an incor-
rect response is analyzed. This approach was found to work well
in various two-class detection and discrimination tasks with tar-
gets that could be subject to spatial uncertainty. Additionally, Neri
(2010) has used early static nonlinearities as a way to model per-
formance in such tasks. In principle, our free-localization task can
be considered a classification task with 1282 possible response
categories (and a somewhat ambiguous definition of a correct
response that includes neighboring locations). However, in this
work we have pursued a different approach for classification
images in which the noise at the location of an incorrect response
is used rather than the noise that masked the unchosen target.
In this regard, our approach is similar to a previous study by
Rajashekar et al. (2006) that used eye-tracking to estimate gaze-
contingent classification images, as well as studies that have used
the classification-image approach in multiple-alternative forced
choice studies (Caspi et al., 2004; Eckstein et al., 2007; Dai and
Micheyl, 2010).

Let nA represent a “response-aligned” noise field, in which the
image noise field is shifted so that the location selected by the
observer is translated to the center of the image. Let qA = �−1

β nA,
which is analogous to a response-aligned version of q defined
above. For classification images in the localization tasks, we use
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the average of the response-aligned q vectors when the subject
incorrectly localizes (IL) the target

wL
CI = q̄A

FL. (9)

In these cases, the response is entirely driven by the form
of the noise at the response location. We will see below that
this leads to a strong classification image relative to detec-
tion, even though the detection task uses all noise fields in the
image and this approach for the free-localization uses approx-
imately 20% of the trials in which a false-localization response
is given.

As a simple test of the classification image approach for local-
ization tasks, we have used it to evaluate the ideal observer.
Figure 5A shows the frequency weights of the ideal observer,
derived analytically from �−1

β s. In Figure 5B, we see the esti-
mated frequency weights for 2000 trials of the ideal observer using
Equation 9, when the target contrast is set so that PC = 80%.
While there are some areas of apparent bias, particularly at the
lowest spatial frequencies for β = 0, there is generally good agree-
ment between the actual frequency weights used to perform the
task and the estimated weights.

RESULTS AND DISCUSSION
PSYCHOMETRIC FUNCTIONS
Contrast thresholds were determined for each subject in each con-
dition from fitted psychometric functions. After an initial training
of 5 runs of increasing difficulty totaling 210 trials, psychome-
tric data was acquired in 20 runs of 50 trials at five different
contrast levels for a total of 200 trials at each contrast level. The
contrast levels used were determined from pilot data. Cumulative
Gaussian distribution functions were fit to the proportion of cor-
rect responses over the range of contrasts, and contrast thresholds
were determined from the contrast that produced 80% correct.
An example of the psychometric functions (Subject 4, β = 1) is

shown in Figure 6. There was generally good agreement between
the subject data and the cumulative Gaussian fitting function.

The average threshold contrast for each task and background
type is plotted in Figure 6B. Thresholds within each task peak for
b = 2. The thresholds are substantially higher for the localization
task, with roughly a factor of two increase for each background.

CHARACTERIZING TASK PERFORMANCE
After each contrast threshold was determined from the psycho-
metric data, subjects performed a total of 40 runs of 50 trials,
for a total of 2000 trials at the subject’s threshold contrast.
Efficiency with respect to the ideal observer was estimated from
this data. The efficiency results are described below in Detect-
And-Localize Efficiency. Here, we will describe other measure-
ments that provide additional information to characterize task
performance.

Performance in the efficiency data is reasonably close to the
nominal 80% correct levels derived from the psychometric func-
tions. Figure 7A plots average PC across subjects from the effi-
ciency data as a function of the power-law exponent of the
background. Overall, PC values averaged 81.9% in the detec-
tion experiments and 80.3% in the localization experiments. The
slight increases across subjects may be due to learning effects
that occurred over the 2000 trials. The largest observed deviation
from 80% correct for a single subject in a single condition was
7.3%. These results give us some confidence that efficiency was
measured at contrasts near the actual 80% correct threshold.

While reaction time is not an endpoint of our study, this data
is recorded as part of the experimental procedure. Reaction time
is defined as the time from stimulus onset to the acquisition of
a subject response. Median reaction times, given in Table 1, are
mostly larger for the free localization task. This is not surprising
since the subject need to search an area 6.7 × 6.7◦ in the local-
ization task. Given the size of this area, the 48% average increase
in reaction times seems rather modest. It is worth noting that the

A B

FIGURE 5 | Classification images in free-localization tasks. Ideal observer
filter weights (A) were used to generate responses for each power-law
exponent. The filter weights were then estimated from the incorrectly

localized noise fields (B). While there is some evidence of bias, particularly
for β = 0 at low spatial frequencies, the estimated weights generally give a
good sense of the actual filters used to perform the task.

Frontiers in Psychology | Perception Science May 2014 | Volume 5 | Article 345 | 6

http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science/archive


Abbey and Eckstein Efficiency in free-localization tasks

A B

FIGURE 6 | Psychometric functions and thresholds. An example of
detection and forced-localization psychometric data (A) and fitted
psychometric functions are shown for one subject in one condition. Error bars
= ±1 s.e. The fitting function is a cumulative Gaussian distribution that is
used to determine the contrast threshold for 80% correct performance in the

subsequent experiments. The average subject contrast thresholds (B) in each
power-law background is shown for both detection and localization tasks.
Standard errors across subjects (not shown) are less than 0.01. The
localization tasks requires approximately a factor of 2 greater contrast to
obtain equivalent (80% correct) performance.

A B

FIGURE 7 | Accuracy and reaction time. A check of performance
levels in the efficiency data (A) shows that performance levels
were reasonably close to the targeted 80% level. The midpoint

of reaction time in each quartile (B) is plotted against
performance for the quartile. Averages and standard errors across
subjects are shown.

Table 1 | Reaction times.

Subjects Detection RT Localization RT Rel. dif. (%)

S1 1.35 2.61 94
S2 1.11 1.80 62
S3 1.17 1.77 51
S4 3.97 2.85 −28
S5 1.01 1.65 64
Ave 1.72 2.13 48

Median reaction times (RTs) are given for each subject as well as the relative

difference between the detection and localization tasks.

increase in median response times is not uniform over the sub-
jects. One subject (S4) is markedly slower in the detection task.

It is also of interest to compare the effect of reaction time and
performance as shown in a representative example in Figure 7B.

We divided the data into quartiles of 500 trials according to
reaction time, and then computed proportion correct in each
quartile. The figure plots proportion correct as a function of
the median reaction time for the quartile. All subjects exhibited
a similar trend of decreased performance with greater reaction
times in both tasks. This finding is the opposite of what might
be expected from a speed-accuracy tradeoff, where slower speeds
allow for more effective task performance. However, decreased
performance for longer reaction times has been found previously
(Eckstein et al., 2001), and is thought to reflect the effects of a
noise limited task where longer reaction times are associated with
noise masks that make the task more difficult.

Unlike the detection task, the localization response requires
careful positioning of the cursor using the mouse. The accuracy
of this process has consequences both for overall accuracy in the
task, if mis-positioning the cursor causes the localization response
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Table 2 | Localization accuracy.

Abs. dev. β = 0 β = 1 β = 2 β = 3 Uniform

Pixels 1.96 ± 0.08 1.69 ± 0.11 1.52 ± 0.14 1.41 ± 0.15 3.40

Degrees 0.102 ± 0.004 0.088 ± 0.006 0.079 ± 0.007 0.074 ± 0.008 0.180

Average absolute deviation (±s.e. across subjects) of correct localization responses relative to the target center. Data is given both in pixel units as well as degrees

of visual angle. For reference, the absolute deviation assuming a uniform distribution within the acceptance region is also given.

to fall outside the acceptance region, and for aligning the noise
fields for the classification image analysis. To get some sense of
the accuracy of the localization responses, we have evaluated the
deviation of the responses, which is defined as the distance of the
subject mouse clicks from the target location for responses that
fall within the acceptance region of 5 pixels from the target center.
Table 2 gives the average deviation across subjects, in both pixels
and degrees of visual angle, and well as the deviation assuming
a uniform distribution of responses over the acceptance region.
The deviations are all substantially smaller than the uniform
distribution would predict, suggesting that there is considerable
additional accuracy in the localization response. In addition, there
is a consistent decrease in the deviation as β increases. The error
represented by the absolute deviation contains both the effects of
subject’s misperception of the target center, as well as motor noise
in the subject’s response. Of these two, motor noise will be detri-
mental to the classification image methodology, since it will lead
to misalignment of the selected noise fields. The observed devi-
ations in Table 2 act as an upper bound on motor noise in the
subject responses, and suggest that these effects may be modest.

TASK EFFICIENCY
The primary performance result we are interested in for these
studies is observer efficiency, as plotted in Figure 8. Efficiency
with respect to the ideal observer appears to be substantially
higher for localization tasks than detection tasks. A Two-Way
ANOVA with the five subjects considered as replications finds sig-
nificant effects for both the task [F(1,32) = 63.4, p < 0.0001] as
well as the background exponent [F(3, 32) = 11.7, p < 0.0001].
The interaction between task and exponent was not found to
be significant [F(3, 32) = 0.39, p > 0.76]. It should be noted that
average efficiency near 80% for β-values of 1–3, is considered
quite high. In the classic experiments by Burgess et al. (1981),
efficiency as high as 70% was observed with averages across
observers closer to 50%. These experiments used a spatial forced
choice methodology and white noise (β = 0). Experiments in
low-pass noise similar to the β = 3 condition used here (Abbey
and Eckstein, 2007), found efficiency in the 40 to 60% range.
These are consistent with our findings in the detection task, all
of which utilize aperiodic “bump” targets. Efficiency of oscilla-
tory targets are typically lower (Legge et al., 1987). The increased
efficiency we find in the localization tasks represents a substantial
gain from these fixed-location tasks, and suggests that subjects
have little room for sub-optimal computations in performing
these tasks.

Efficiency is somewhat lower for β = 0 in both the detection
and localization tasks. We consider this case further in Efficiency
of Image Processing for β = 0. below. We also note that these

FIGURE 8 | Task efficiency. Efficiency of detection and localization tasks is
plotted as a function of the power-law exponent, showing a substantial
increase for localization tasks. Error bars are ±1 s.e.

efficiency values appear to be relatively stable with the accep-
tance radius. We observed less than a 1% difference in observed
efficiency varying the acceptance region from 4 pixels to 7.

These efficiency results show that in spite of larger thresh-
olds for the free-localization relative to detection, as shown in
Figure 6B, overall efficiency is substantially higher. This means
that thresholds for the ideal observer increase proportionally even
more than the human subjects’ did. Our findings are consis-
tent with the uncertainty hypothesis (Tanner, 1961; Pelli, 1985),
which posits imperfect use of the location cues in detection
tasks, and leave the observer with some residual uncertainty
regarding the location of the target that can reduce performance.
The ideal observer is not subject to this phenomenon, which
results in a somewhat lower contrast threshold. In the free-
localization task, where uncertainty is intrinsic to the task, the
ideal observer does not have the advantage of precise knowl-
edge of location, and contrast thresholds rise relative to the
human observers as a result. However, other explanations for
the large difference in efficiency are possible. For example, detec-
tion tasks require that the subject use some sort of criterion that
dichotomizes responses. If this criterion drifts or is prone to jit-
ter, performance will be reduced. This possibility motivated the
detect-and-localize study.
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DETECT-AND-LOCALIZE EFFICIENCY
A subset of three subjects performed the detect-and-localize
experiments, which were all run after the detection and localiza-
tion data were acquired. Threshold target contrast from the local-
ization tasks were used as target contrasts for these experiments.
The proportion of correct responses dropped modestly from an
average of 80.3% in the localization tasks to 76% in the D&L
tasks. Figure 9 plots shows the efficiency data for the detection
task, localization task, and D&L tasks as a function of the power-
law exponent for the subset of subjects that participated in all
three studies. The average efficiency values for the D&L are all
well above both the detection and localization tasks. In fact several
observed values are near 90% efficiency, which is again quite high
for tasks masked by luminance noise. These findings are close to
the highest reported efficiency we are aware of for visual tasks
limited by noise (Manjeshwar and Wilson, 2001).

EFFICIENCY OF IMAGE PROCESSING FOR β = 0
Figure 8 shows reduced efficiency in the β = 0 condition of both
the detection and localization tasks. After finding this effect, we
were interested in whether it might be mitigated by processing
the images to have a background power-law of β = 2, where effi-
ciency was generally better. As described above in Stimulus and
Display Properties, this is accomplished by filtering the images
with a kernel that has a 1/f spectrum, which will modify both
the background statistics and the target profile, as shown in
Figure 3.

Figure 10 shows that the effect of processing is to bring effi-
ciency in the β = 0 condition up to 66% in the detection task

FIGURE 9 | Detect and localize efficiency. The plot shows
detect-and-localize efficiency compared to detection efficiency and
localization efficiency for each power-law background. Error bars are ±1 s.e.
Small differences with Figure 8 (detection efficiency and localization
efficiency) are due to limiting the averages to the three subjects that
participated in the D&L study.

and 80% in the localization task. These levels are consistent with
efficiency levels found for β in the range of 1–3.

CLASSIFICATION IMAGES
Figure 11 shows the classification images for each subject in each
background condition for both the detection and localization
tasks. The images are cropped to the central 2.1◦ of visual angle
(40 pixels). Outside of this area, there are no discernable features
beyond what appears to be estimation error in the classification
images. To mitigate the effects of noise, the classification images
have been low-pass filtered with a 4th-order Butterworth filter,
with the roll-off parameter set to 5.6 cyc/deg (0.29 cyc/pixel). This
was well beyond the point at which the spatial frequency plots
below appear to decay to zero.

The images in Figure 11 were windowed to have approxi-
mately the same mean background and error magnitude. Thus,
the intensity of the features in the observed classification images
gives some sense of their signal-to-noise ratio (SNR). The
generally brighter appearance of classification images in the
localization tasks relative to the corresponding detection tasks
suggests that search process may lead to methodological advan-
tages for estimating classification images, even though the local-
ization classification images are estimated from approximately
20% of the subjects responses in which an incorrect localiza-
tion response if given. There also appears to be some differences
in the intensity of the classification images going from β = 0
to β = 3, and there are clearly individual differences between
subjects.

In addition to the overall intensity of the classification images,
we are also interested in the profile of these decision weights.

FIGURE 10 | Effect of processing the β = 0 condition. Efficiency of
detection and localization tasks in β = 0 condition is plotted against
efficiency with (processed) and without (unprocessed) filtering the images
to have power-law spectrum with β = 2. Error bars represent ±1 s.e. Small
difference between the unprocessed data and Figures 8, 9 are due to
limiting the averages to the three subjects that participated in the
processing study.
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A B

FIGURE 11 | Classification images. Estimated classification images (cropped to 2.1◦ per side) are shown for each condition (columns) and subject (rows) in
the detection (A) and localization (B) tasks. The images are windowed to have approximately the same magnitude of estimation error.

Based on previous experience, we find that differences between
classification images in different conditions are most clearly
depicted for radial averages in the spatial-frequency domain.
Figure 12 plots the classification frequency weights averaged over
subjects and normalized so that the weight at the peak frequency
is 1. To reduce the effects of noise in the classification images,
a Butterworth spatial window with a cutoff of 1.05◦ (20 pixels)
was applied before the Fourier transform and radial averaging.
For reference, we have plotted the classification weights of the
ideal observer as well. In all conditions, the average frequency
weights assume a bandpass form, peaking at frequencies between
0.7 cyc/deg and 1.6 cyc/deg as β goes from 0 to 3. As has been
found previously (Abbey and Eckstein, 2007; Conrey and Gold,
2009), the classification weights here give evidence of visual pro-
cessing that is changing with the different power-law textures in
the background. But this process is not as extreme as the adap-
tation that occurs in the ideal observer, where peak frequencies
move from 0 to 1.7 cyc/deg.

In the β = 0 condition, we observe substantial underweighting
of low spatial frequencies relative to the ideal observer. Of inter-
est for the comparison of detection and localization tasks, there is
less low-frequency suppression in the localization task compared
to the detection task. As β increases, we see that the low-frequency
profiles come together, but now they do not suppress low fre-
quencies as much as the ideal observer. Also, as β increases, the
classification weight frequency profiles begin to diverge at higher
spatial frequencies above the peak values. Here the profiles from
the localization tasks have higher weights that are closer to the
ideal observer.

Figure 13 shows the frequency plots in the β = 0 condi-
tion using responses from the processed and unprocessed data
averaged over the three subjects that participated in these studies.

The plots show processing effectively modifies the weighting pro-
file that subjects use. In both tasks, the effect of processing is to
increase the low-frequency weighting so that the average subject
classification weights more closely match the ideal observer. Thus,
the classification image profiles give a visual mechanism for the
improved efficiency found in Figure 10.

SUMMARY AND CONCLUSIONS
We find human observers substantially improve in performance
relative to the ideal observer in free-localization tasks compared
to fixed-location detection tasks, in spite of increased contrast
thresholds. This occurs in all four power-law textures that were
investigated. In a follow-up study investigating a detect-and-
localize task, we find the highest measured efficiency in our
experiments, suggesting that our efficiency results are not simply
a consequence of a general inability to maintain detection criteria.
Our findings are consistent with spatial uncertainty as a limiting
effect in the presence of location cues.

While it is clear from the classification images that observers
are able to tune their visual templates to the statistics of the noise
in the images, there is also evidence that this process is lim-
ited in both fixed and free-localization tasks. Despite a common
target profile, the different power-law textures require different
frequency tuning to achieve optimal performance. We do find
some evidence of such tuning in the classification images esti-
mated from the subject responses. Peak spatial frequency weights
change by roughly a factor of two going from a power-law expo-
nent of β = 0 to β = 3 (0.72–1.59 cyc/deg). However, on average
the subject frequency weights exhibited some clear departures
from optimal tuning as defined by the ideal observer. At β =
0, we find human observer frequency weights shifted to higher
spatial frequencies relative to the ideal observer. For β > 0,
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A

C

B

D

FIGURE 12 | Frequency weights derived from Classification images.

Radial frequency profiles are shown for each of the four power-law
textures (A–D) with normalization so that the maximum weight is one.

The ideal observer profile is derived from theory. The detection and
localization plots are averaged across the five subjects. Error bars are ±1
s.e. averaged across subjects. The legend (A) applies to all plots.

A B

FIGURE 13 | Frequency weights for processed and unprocessed images.

These plots are similar to Figure 12 and show estimated weights from the
β = 0 images using the responses to processed and unprocessed images. In

both the detection (A) and localization (B) tasks, the effect of image processing
is to increase the estimated weights at low spatial frequency, bringing them
closer to the ideal observer weights. The legend (A) applies to both plots.
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human-observer classification weights peak at lower spatial fre-
quencies than the ideal observer.

Frequency tuning of subjects in the white-noise condition was
most different from the ideal observer. This condition also led to
the lowest efficiency in performance. Since β = 0 was the power-
law exponent furthest from that found in natural scenes (β = 2),
this finding is consistent with the idea that the human visual
system is somewhat adapted to the statistics of natural images.
The follow-up study investigating processed images supports this
connection by finding uniformly improved performance when
the white-noise images were filtered to have β = 2. Filtering the
images was also seen to effectively improve frequency tuning of
the subjects in the white-noise condition.

While we do not attempt to explicitly model the visual sys-
tem to explain our findings, we do believe that our findings
may be relevant in such attempts, for the same reasons given
originally by Burgess (Burgess et al., 1981). The finding of high
efficiency in free-localization and detect-and-localize tasks sug-
gest that models of vision in these tasks cannot be very different,
at a computational level, from the ideal observer, and thus may
provide a valuable constraint to such efforts in future studies.
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