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ABSTRACT Assessing “dysbiosis” in intestinal microbial communities is increasingly
considered a routine analysis in microbiota studies, and it has added relevant infor-
mation to the prediction and characterization of diseases and other adverse condi-
tions. However, dysbiosis is not a well-defined condition. A variety of different dysbiosis
indexes have been suggested and applied, but their underlying methodologies, as well
as the cohorts and conditions for which they have been developed, differ considerably.
To date, no comprehensive overview and comparison of all the different methodologies
and applications of such indexes is available. Here, we list all types of dysbiosis indexes
identified in the literature, introduce their methodology, group them into categories,
and discuss their potential descriptive and clinical applications as well as their limita-
tions. Thus, our focus is not on the implications of dysbiosis for disease but on the
methodological approaches available to determine and quantify this condition.

KEYWORDS dysbiosis, dysbiosis index, gut, imbalance, intestine, microbiome,
microbiota

ASSESSMENT OF DYSBIOSIS

Imbalance, dysfunction, or disturbance of the gut microbiota is increasingly recog-
nized as an indicator of a given disease or a poor health status. Due to the complexity

and huge interindividual variation in the microbial communities, no gold standard
exists to determine the presence or extent of a given imbalance or disturbance,
although a multitude of studies refer to it broadly with the term “dysbiosis.” An impor-
tant part of the challenge with defining dysbiosis arises from the fact that due to the
huge interindividual variation existing in the healthy population, no clear definition of
a healthy gut microbiota has been established to date.

Dysbiosis of the gut microbiota has been associated with numerous adverse condi-
tions, such as Clostridioides difficile (formerly designated Clostridium difficile) infection
(CDI) (1), metabolic syndrome (2, 3), inflammatory bowel disease (IBD) (4), colorectal
cancer (5), chronic hepatitis (6), common variable immunodeficiency (7), and even
schizophrenia (8). Dysbiosis has also been observed in nonintestinal microbial com-
munities, such as those of the gums (9), oral mucosa and saliva (10), and scalp and
forehead (11). The application of the term dysbiosis is quite broad, ranging from a
change of a single species to the perturbation of entire microbial communities (12).

To qualify the term dysbiosis, several indexes have been defined and applied. Such
indexes may help to characterize diseases and adverse conditions, predict treatment
outcomes, and provide information other than the commonly used alpha and beta di-
versity assessments. It is worth noting that some researchers have applied the term
dysbiosis even to conditions associated with improved health status, e.g., as a result of
metformin treatment against diabetes mellitus type 2 (13). However, since the prefix
“dys” (Greek for “bad,” “difficult,” or “disordered”) implies an adverse condition, in the
current context, we will refer to dysbiosis as a condition differing from the normal or
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healthy state. It should, however, be highlighted that due to a significant interindivid-
ual variation, defining the normal or healthy gut microbiota remains an inherent chal-
lenge (14); consequently, most dysbiosis indexes are based on comparison to a set of
individuals or samples used as references. Even so, it is important to emphasize that
dysbiosis is not a well-defined condition, and that dysbiosis indexes differ with respect
to methodology and clinical context and were developed in different cohorts of indi-
viduals to describe a variety of different conditions.

Basic methods and principles related to microbiota assessment in a clinical context
were recently reviewed (15). In the present review, we provide a summary of currently
applied dysbiosis indexes and explain their calculation and performance in the context
of specific diseases and conditions. We consider this very relevant for the choice and
use of dysbiosis indexes in future studies. However, the potential causal links between
intestinal dysbiosis and human health are not captured by any of the dysbiosis indexes
and, thus, are outside the scope of this review.

TYPES OF DYSBIOSIS INDEXES

In May 2020, we searched the scientific literature indexed in the PubMed database
for the various combinations of the search terms “dysbiosis” or “disruption” and “score”
or “index,” together with “gut” or “intestine,” in all search fields. We assessed all previ-
ous studies regarding the definition and application of gut dysbiosis indexes appearing
in these searches.

We grouped the identified dysbiosis indexes into five categories based on the
methodology, including large-scale bacterial marker profiling, relevant taxon-based
methods, neighborhood classification, random forest prediction, and combined
alpha-beta diversity (Fig. 1). The generalizations and extensions of a given method
were described when possible. A detailed overview of the different indexes was
compiled (Table 1). Below, we introduce the five categories of indexes, starting
from the most prevalently used.

Category 1: large-scale bacterial marker profiling. Large-scale profiling of bacte-
rial markers determines the dysbiosis of the gut microbiota by simultaneously identify-
ing a large number of carefully selected marker species or taxa. This type of dysbiosis
determination is exemplified by the GA-map dysbiosis test (Genetic Analysis AS, Oslo,
Norway), which is one of a few commercial products designed to determine and char-
acterize the dysbiosis of gut microbiota (16). The technology of this product is based
on a set of 54 probes targeting the 16S rRNA gene (V3 to V7) at different bacterial taxo-
nomic levels, thereby covering six phyla, Firmicutes, Proteobacteria, Bacteroidetes,
Actinobacteria, Tenericutes, and Verrucomicrobia, which includes 10 bacterial classes, 36
genera, and more than 300 species (Fig. 1, index 1.1). The GA-map dysbiosis test
assigns each sample a score from 1 to 5, where a score greater than 2 indicates that
the microbial profile is different from a selected reference population and, thus, desig-
nated “dysbiosis,” while a score of 2 or lower is defined as “normobiosis,” indicating a
healthy state. Additionally, the species targeted by the test are scored from 23 to 3,
where a negative value refers to reduced abundance and a positive value indicates
increased abundance compared to the reference population. The details in score calcu-
lation for samples and taxa are proprietary and not available in the public domain. The
GA-map dysbiosis test was developed based on samples from 668 adults, including
healthy controls (n=297), patients with irritable bowel syndrome (IBS) (n=236), and
patients with inflammatory bowel disease (IBD) (n=135). The test has been validated
in independent cohorts and showed proportions of dysbiosis of 73% in IBS, 70% in
treatment-naive IBD, 80% in IBD in remission, and 16% in healthy individuals (16).

Generalizations and extensions. The GA-map dysbiosis test, outlined above, was
originally developed and validated for diagnosis and prediction of IBD and IBS; how-
ever, studies have also applied the test to evaluate its correlation with the effect of var-
ious interventions, including fecal microbiota transplantation, or FMT (17–19), dietary
interventions (20–22), and anti-tumor necrosis factor (anti-TNF) therapy against ulcera-
tive colitis, or UC (23). The GA-map index score was reportedly reduced following FMT
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(18, 19), and this was further lowered by repetitive FMT (17). The index was additionally
reported to capture the response of the gut microbiota to a diet low in fermentable ol-
igosaccharides, disaccharides, monosaccharides, and polyols (FODMAP), which, nota-
bly, led to an increase of the dysbiosis index (17, 21). However, other reports find that
a low FODMAP diet did not have any effect (22). Magnusson et al. (23) showed that the
effect of anti-TNF therapy for patients with UC was partially determined by the gut
microbiota composition before treatment and that nonresponders had a higher GA-
map index than responders. Another study assessed the performance of the GA-map
dysbiosis index for detection of IBS when morbid obesity was considered (24). Four
groups of subjects with or without IBS and with or without morbid obesity were com-
pared. Dysbiosis was more frequently detected in morbidly obese subjects, regardless
of IBS conditions, than in healthy volunteers. This underlines that confounding factors
should be considered when using the GA-map dysbiosis test.

The GA-map dysbiosis test has also been applied to assess the effect of weight loss
interventions followed by bariatric surgery (25), nonnutritive sweeteners, or NNSs (26),
and primary Sjögren’s syndrome, or pSS (27). The dysbiosis index increased after
weight loss interventions followed by bariatric surgery and was positively associated
with the intake of NNSs. Dysbiosis was additionally found to be more prevalent in pSS
patients than in healthy controls.

Some indexes were adapted for specific applications from the GA-map dysbiosis
test (13, 22). Farup et al. (13) adjusted the GA-map dysbiosis test and thereby created a
new index, named alternative index (ADI) (index 1.2), which allowed differentiation
between microbiota disturbances caused by metformin, which has antihyperglycemic
and weight-reducing effects (28, 29), and microbiota disturbances caused by NNSs,

FIG 1 Hierarchical chart to show different indexes used to characterize the dysbiosis of microbial
communities. Numbers showing in the outmost layer refer to different indexes. Original corresponds
to indexes that are defined early in time and used prevalently. Extension indicates the indexes that
are either derived or generalized from the original indexes.
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TABLE 1 Different indexes to characterize the dysbiosis of microbial communities

Dysbiosis
index Method type Description Disease/condition Method Reference(s)
1.1 Large-scale bacterial

marker profiling
A set of 54 probes targeting 16S RNA gene
(V3–V7) and covering more than 300
bacterial markers; dysbiosis index score
calculation is a commercial secret, and
scores range from 1 to 5 (2 indicates
dysbiosis); scores of each taxon range from
23 to 3, where a negative value refers to
reduced abundance compared to the
reference population

IBS, IBD Microarray 16

1.2 Modified large-scale
bacterial marker
profiling

Summed GA map score of 7 taxa selected
to differ between metformin and NNS
treatment (Alistipes, Proteobacteria,
Shigella spp., Escherichia spp., Bacteroides
fragilis, Ruminococcus gnavus, Bacteroides
spp., Prevotella spp., and Dialister invisus);
the index is scaled from214 to 14

NNSs versus
metformin

Microarray 13

1.3 Modified large-scale
bacterial marker
profiling

Median bacterial scores for 10 taxa
differing between responders and the
nonresponders (higher abundance of
Bacteroides fragilis, Acinetobacter,
Ruminiclostridium, Streptococcus, and
Eubacterium in responders; higher
abundance of Clostridia/Negativicutes/
Bacilli, Actinomycetales, Anaerotruncus,
Clostridiales, and Shigella/Escherichia in
nonresponders) are defined as the cutoff;
each sample is given a point for each
differential taxon; the points for each
sample are then summed up, resulting in
an index between 0 and 10

FODMAPs diet for
patients with IBS

Microarray 22

2.1 Relevant taxon-based
methods

Dysbiosis was calculated as loge of
(summed abundance of taxa increased in
patients with CD/summed abundance of
taxa decreased in patients with CD)

CD 16S ribosomal amplicon
sequencing and shotgun
metagenomics

32

2.2 Relevant taxon-based
methods

Dysbiosis was calculated as (summed
abundance of taxa increased in patients
with cirrhosis/summed abundance of taxa
decreased in patients with cirrhosis)

Cirrhosis Multitag pyrosequencing
of 16S genes

34

2.3 Relevant taxon-based
methods

Dysbiosis was calculated as (summed
abundance of taxa increased in patients
with CHB/no. of CHB-increased taxa)2
(summed abundance of taxa increased in
subjects without CHB/no. of taxa increased
in the absence of CHB)

CHB 16S ribosomal amplicon
sequencing

6

2.4 Relevant taxon-based
methods

Dysbiosis was calculated as [(summed
abundance of taxa increased in patients
with stroke/no. of stroke-increased taxa)2
(summed abundance of taxa increased in
subjects without stroke/no. of taxa
increased in the absence of stroke)]�100

Stroke 16S ribosomal amplicon
sequencing

35

2.5 Relevant taxon-based
methods

Dysbiosis was calculated as [(summed
abundance of taxa increased in patents
with gout/no. of gout-increased taxa)2
(summed abundance of taxa increased in
subjects without gout/no. of taxa
increased in the absence of gout)]�
1,000,000

Gout 16S ribosomal amplicon
sequencing

36

2.6 Relevant taxon-based
methods

Dysbiosis was calculated as log10[(summed
abundance of taxa increased in case 1/
summed abundance of taxa decreased in
case 1)� (summed abundance of taxa

Colorectal cancer
(tumorigenesis)

16S ribosomal amplicon
sequencing

5

(Continued on next page)
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which may induce glucose intolerance (30). While the ADI showed opposite responses
to these two interventions, the unmodified GA-map dysbiosis test yielded increased
scores in both cases.

For quantification and prediction of the response of IBS patients to a 4-week
FODMAP-restricted diet (22), a specific response index (RI) based on the GA-map dys-
biosis test was created (index 1.3). Response was defined as a reduction in IBS sever-
ity scores of greater than 50%. First, the responders’ median bacterial scores (derived
from the GA-map dysbiosis test) of 10 selected taxa, which differed between res-
ponders and nonresponders, were determined and defined as the cutoff. Each sam-
ple was then given a point for each taxon if the less abundant taxa (responders

TABLE 1 (Continued)

Dysbiosis
index Method type Description Disease/condition Method Reference(s)

increased in case 2/summed abundance of
taxa decreased in case 2)� (summed
abundance of taxa increased in case 3/
summed abundance of taxa decreased in
case 3)� (summed abundance of taxa
increased in case 4/summed abundance
taxa decreased in case 4)1 1]; case 1, 2, 3,
and 4 refer to carcinoma, carcinoma
adjacent, adenoma, and adenoma
adjacent

2.7 Relevant taxon-based
methods

Acinetobacter johnsonii and Streptococcus
salivarius were either positively or
negatively associated with RAS; dysbiosis
was calculated as 5.35� (abundance of A.
johnsonii)2 0.309� (abundance of S.
salivarius)

RAS 16S ribosomal amplicon
sequencing

10

2.8 Relevant taxon-based
methods

Dysbiosis was calculated as (abundance of
Firmicutes)/(abundance of Bacteroidetes)

LC, HF, IBS 16S ribosomal amplicon
sequencing

37–39

2.9 Relevant taxon-based
methods

Dysbiosis was calculated as (abundance of
Basidiomycota)/(abundance of
Ascomycota)

IBD 16S ribosomal amplicon
sequencing and ITS2

42

3.1 Neighborhood
classification

Dysbiosis index was calculated as the
median Bray-Curtis distance between the
test sample and the reference

UC, CD Shotgun metagenomics 43

3.2 Neighborhood
classification

Seven selected taxa were reported to be
associated with CE in dogs; their
abundances were determined by qPCR;
dysbiosis was calculated as the difference
between (Euclidean distance between the
test sample and the healthy class centroid)
and (Euclidean distance between the test
sample and the diseased class centroid)

CE qPCR 46

3.3 Neighborhood
classification

Dysbiosis was calculated as log2-
transformed CLOUD statistic

SIBO 16S ribosomal amplicon
sequencing

54, 55

4 Random forest
prediction

Dysbiosis was calculated as out-of-bag
probability of random forest to
differentiate patients with SIBO from
healthy patients

SIBO 16S ribosomal amplicon
sequencing

55

5 Combined alpha-beta
diversity

Dysbiosis was calculated as (mean
difference of Shannon diversity between
the test sample and each of donors)�
(mean Jensen-Shannon divergence of the
test sample and each donor)

CDI 16S ribosomal amplicon
sequencing

1
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versus nonresponders) had lower scores than the cutoff or if the more abundant taxa
(responders versus nonresponders) had higher scores than the cutoff. The summed
points for each sample resulted in an RI range between 1 and 10. Thus, RI was more
sensitive than the GA-map dysbiosis test to distinguish and predict treatment out-
comes, since it was designed to consider only taxa differing between responders and
nonresponders.

Category 2: relevant taxon-based methods. A large number of studies have uti-
lized relevant taxa to create dysbiosis indexes. Such indexes only require the abundan-
ces of specific taxa and have been widely used in studies due to their simplicity, espe-
cially when sequencing data are available. They are easy to interpret and visualize and
are typically calculated based on ratios between abundances, differences between
abundances, or abundance-based linear regressions. The dysbiosis indexes introduced
here are all based on relative abundances; however, other types of normalizations are
also possible (31).

Among these approaches, the method of Gevers et al. was the first introduced and
is currently the most widely used (32) (index 2.1). It is known that an altered gut micro-
bial community composition is associated with the pathogenesis of IBD (33). To quan-
tify and define the associations between gut microbiota and Crohn’s disease (CD),
Gevers et al. compared ileum, rectum, and stool microbiotas from a large number of
subjects with CD (n = 447) with those from healthy controls (n = 221). An overall
decrease in richness as well as an altered gut microbiota composition was observed in
CD subjects. One set of genera was positively correlated with CD, while another set of
genera was negatively correlated. Based on this, the authors developed a dysbiosis
index (index 2.1), defined as

loge

Xn

i¼1
abundanceðCD-enriched taxonÞiXn

i¼1
abundanceðCD-depleted taxonÞi

This index was found to be negatively associated with species richness and posi-
tively associated with CD severity.

Generalizations, extensions, and variants. Gevers’ dysbiosis index was later modi-
fied for detection of other diseases and conditions. In a study of cirrhosis, Bajaj et al.
(34) used the ratio between summed relative abundance of taxa, which in previous
studies had been found to be reduced in cirrhosis patients (Lachnospiraceae,
Ruminococcaceae, and Clostridiales XIV), and summed relative abundances of previ-
ously identified cirrhosis-associated taxa (Enterobacteriaceae and Bacteroidaceae) (index
2.2): Xn

i¼1
abundanceðhealth-related taxonÞiXn

i¼1
abundanceðpatient-related taxonÞi

Low index values indicated dysbiosis. The index was observed to be higher in
healthy controls than in cirrhosis patients and was negatively correlated with endo-
toxin, death, and organ failures.

In a study of chronic hepatitis B (CHB), Wang et al. (6) defined the dysbiosis index
(index 2.3) asXn

i¼1
abundanceðpatient enriched taxonÞi

n
2

Xn

i¼1
abundanceðhealth enriched taxonÞi

n

Thus, this type of index uses the normalized abundance difference instead of the ra-
tio between abundances to quantify dysbiosis. n refers to the number of taxa enriched
in either the diseased or healthy state. The larger the index value, the more severe the
dysbiosis. Thereafter, the authors applied Youden’s J statistic to look for the optimal
index value as a diagnostic threshold to differentiate healthy from CHB patients. The
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cutoff was set at225.36, thereby achieving 0.77, 0.75, and 0.81 for accuracy, sensitivity,
and specificity, respectively.

Similar indexes include a multiplication by 100 or even by 106. For example, Xia et
al. (35) defined a dysbiosis index for acute ischemic stroke (index 2.4) as

Xn

i¼1
abundance patient enriched taxonð Þi

n
2

"
Xn

i¼1
abundance health enriched taxonð Þi

n

#
� 100

The index was calculated based on 18 discriminant taxa, and it achieved AUCs (area
under the receiver operating characteristic curves) of 0.749 in the training cohort and
0.843 in the validation cohort, which indicates a good power for differentiating stroke
patients from controls. Patients with stroke showed significantly higher index values
than healthy controls.

Along the same lines, a study of patients with gout (36) defined a microbial index
of gout (index 2.5) as

Xn

i¼1
abundance patient-enriched taxonð Þi

n
2

 
Xn

i¼1
abundance health-enriched taxonð Þi

n

!
� 106

The index threshold was set at 22.157 by use of Youden’s J statistic. An index
above the threshold indicated increased risk of suffering from gout. This index
achieved an AUC of 0.817 for the identification of individuals diagnosed with
gout.

Some reports define more complicated dysbiosis indexes. To have an index to
describe the tumor burden in colorectal cancer development, Nakatsu et al. (5) devised
a composite index including the microbiota at multiple sample sites, such as carcinoma
(case 1), carcinoma-adjacent (case 2), adenoma (case 3), and adenoma-adjacent (case
4). The dysbiosis index (index 2.6) was then formulated to incorporate the differences
in all cases:

log10

Xn

i¼1
abundance ðenriched taxon in case 1ÞiXn

i¼1
abundance ðdepleted taxon in case 1Þi

0
@
2
4

�
Xn

i¼1
abundance ðenriched taxon in case 2ÞiXn

i¼1
abundance ðdepleted taxon in case 2Þi

�
Xn

i¼1
abundance ðenriched taxon in case 3ÞiXn

i¼1
abundance ðdepleted taxon in case 3Þi

�
Xn

i¼1
abundance ðenriched taxon in case 4ÞiXn

i¼1
abundance ðdepleted taxon in case 4Þi

!
11

#

In contrast to these complex approaches, some studies defined a dysbiosis index
based on only a very few taxa. For example, a study included only two relevant taxa
in a linear regression to create a dysbiosis index (10). Two relevant taxa found to be
significantly associated with recurrent aphthous stomatitis (RAS) (Acinetobacter
johnsonii) and absence of RAS (Streptococcus salivarius), respectively, were identi-
fied based on logistic regression. The coefficients of these two species were then
incorporated in a linear regression, and the dysbiosis index was defined as 5.35 �
[A. johnsonii] 2 0.309 � [S. salivarius], using the relative abundance of A. johnsonii
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and S. salivarius in the mucosa (index 2.7). This dysbiosis index correctly predicted
83% of the total cases for the presence or absence of RAS in the investigated
cohort.

Even simpler, some studies used the ratio of only two phyla, such as Firmicutes
and Bacteroidetes, to calculate an index for the description of the gut microbiota
(index 2.8). Together, these two phyla constitute the majority of the human gut
bacteria, and they represent the Gram-positive and the Gram-negative popula-
tions, respectively. Jeffery et al. (37) applied the Firmicutes-to-Bacteroidetes (F/B)
ratio and successfully differentiated two subgroups (F/B high and F/B low) of
patients with IBS. Stratification into high and low F/B ratios allowed the identifica-
tion of different gut microbiotas in IBS versus healthy controls, which was only
found in the high F/B group. Liu et al. (38) applied the F/B ratio for studies of
patients with liver cirrhosis and observed higher ratio values in patients than in
healthy controls. In patients with heart failure (HF), the microbiota was character-
ized by a decreased F/B ratio and a reduced bacterial diversity, which was associ-
ated with clinical outcome (39). In addition, F/B ratio has been linked with obesity;
however, this is still controversial (40, 41).

While most gut dysbiosis indexes are based on the bacterial community, Sokol et al.
(42) defined the index as the abundance ratio between the two fungal phyla
Basidiomycota and Ascomycota, since these two phyla showed differential abundances
across phenotypes classified as IBD, IBD with flare (IBDf), IBD in remission (IBDr), and
healthy controls. These two fungal phyla additionally exhibited a strong inverse corre-
lation to each other (index 2.9). The index distinctly separated samples originating
from different phenotypes, as healthy subjects scored significantly lower values than
IBD, IBDf, and IBDr subjects and IBDf subjects scored significantly higher values than
IBDr subjects.

Category 3: neighborhood classification. Neighborhood classification is a way
to quantify the deviation of samples from a reference sample set based on the mi-
crobial composition assessed with the distance or dissimilarity matrices. Hence, it
has been used as a measurement of microbial dysbiosis in given individuals com-
pared to a population of healthy controls. By its application, Lloyd-Price et al. (43)
defined a dysbiosis score as the median value of Bray-Curtis dissimilarity between
the test sample and a healthy reference population (non-IBD metagenomes) (index
3.1). This index was developed from either the taxonomic or the metabolomic com-
position of a sample with the computational tools MetaPhlAn2 and HUMAnN2,
respectively (44, 45). The tools include internal normalization to the total pool of
taxa or metabolites. To determine whether a sample was dysbiotic, a threshold was
defined as the 90th percentile of the dysbiosis score in the non-IBD samples. Hence,
the median distance value of a test sample above the threshold indicates dysbiosis.
This dysbiosis index was observed to distribute differently across disease pheno-
types (non-IBD, UC, and CD).

In a more complicated way, AlShawaqfeh et al. (46) introduced a dysbiosis index for
dogs with chronic inflammatory enteropathy (CE) (index 3.2), defined as

Euclidean distance between the test sample and the healthy class centroidð Þ 2
ðEuclidean distance between the test sample and the diseased class centroidÞ

Thus, the index expresses the difference between the distances to the average
healthy and diseased populations for a given microbiota sample. To be disease specific,
the Euclidean distance was calculated based on quantification by quantitative PCR
(qPCR) of seven carefully selected taxa that were shown to be significantly correlated
with CE. An index of zero indicated that the sample had an equal distance to the center
of both (healthy and diseased) populations. An index above zero designated deviation
from the normal healthy state. This index achieved 74% sensitivity and 95% specificity
for separation of healthy and CE dogs. Due to this good performance, numerous
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following studies utilized this index to quantify microbial dysbiosis for dogs or cats
with CE (47, 48), response to food (49, 50), anthelmintic treatment (51), FMT (52), and
alterations after intensive physical activity (53).

Montassier et al. (54) introduced a test named “CLOUD” to look for outliers within
a given set of microbiota samples. Although the test was not directly intended to be
a measure of dysbiosis, the log2-transformed CLOUD statistic was used as a dysbiosis
score (55) (index 3.3). The normalization of taxon abundances depends on the dis-
tance matrix used to determine the CLOUD statistic. Here, normalization based on
geometric means of pairwise ratios (GMPR) was used (56). A sample was considered
dysbiotic if the CLOUD distance between the test sample and the healthy reference
set was more than two standard deviations (SD) larger than the CLOUD distance
mean within the healthy reference set. The CLOUD is a nonparametric test and makes
no assumptions about the distribution of the reference sample set; thus, it may prove
useful to identify less healthy microbial signatures under different conditions, dis-
eases compared to healthy controls, or assessment of the restoration of microbiota
following FMT.

Category 4: random forest prediction. The output from the machine learning
algorithm random forest (out-of-bag probability, an internal estimation of prediction
performance for samples left out of the bootstrap), fed with microbiota data from
patients suffering from small intestinal bacterial overgrowth (SIBO) and healthy con-
trols, has been suggested as a dysbiosis index (designated “symptom index”) (55)
(index 4). This index was based on the operational taxonomic unit (OTU) abundances
normalized by GMPR (56). This index ranges from 0 to 1, where values approaching 1
indicate high likelihood of the gut microbiota coming from symptomatic patients. The
index successfully differentiated patients with SIBO from healthy controls (AUC, 0.896).
Additionally, the index was observed to be associated with specific patient characteris-
tics, such as age and antibiotics use.

Category 5: combined alpha and beta diversity. Alpha and beta diversity have
routinely been used in sequencing-based microbiota studies and provide a general
description of microbial communities. Alpha diversity, applied for describing the
amount of unique taxa (richness) and their distribution (evenness) within a microbial
community, is often considered a biomarker of health, since a low gut bacterial alpha
diversity in adults is known to be associated with risk markers related to metabolic
health (57, 58). Beta diversity, used for assessing differences in microbial community
composition between individuals, is also commonly applied to assess differences
between patients and healthy controls. Recently, a study combined alpha (Shannon
index) and beta diversity (Jensen Shannon divergence, or JSD) and created a dysbiosis
index for patients with Clostridioides difficile treated with FMT (1). The dysbiosis index
of a sample (index 5) was defined as

average difference in Shannon index between the test sample and each of the donorsð Þ �
ðaverage JSD between the test sample and each of the donorsÞ

This index generally ranged from 0 to 5. Healthy controls usually have an index
between 0 and 1, and patients with dysbiosis have index values larger than 1. This
index achieved an AUC of 0.922 at differentiating pre-FMT samples from post-FMT
samples.

APPLICATIONS OF DYSBIOSIS INDEXES

Here, we reviewed existing methods to determine and quantify dysbiosis, including
large-scale bacterial marker profiling, relevant taxon-based methods, neighborhood
classification, random forest prediction, and combined alpha and beta diversity. These
approaches all successfully captured the differences between microbiota related to
specific conditions of disease or intervention and those present in healthy patients or
at baseline (before an intervention).
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The large-scale bacterial marker profiling measures a large group of bacterial
markers to assess the divergence of a sample from the healthy controls. The GA-map
dysbiosis test was specifically designed to diagnose IBD and IBS and has been widely
used. However, confounding factors, such as obesity, need to be considered when
using this test to avoid misleading conclusions (24). The indexes 1.2 and 1.3 represent
modifications of the GA-map dysbiosis test and show the potential to reformulate the
basic GA-map dysbiosis test scores for specific purposes.

The relevant taxon-based methods were also developed to be disease specific.
Because the relevant taxa can be readily identified under any deviating conditions,
they can easily be adapted to different diseases or conditions. Relevant taxon-based
methods are convenient dysbiosis index alternatives when next-generation sequenc-
ing data are available, such as 16S rRNA gene amplicon sequences or shotgun metage-
nomic sequences. While the relevant taxon-based dysbiosis index 2.1 was developed
in a large sample set, subsequently validated in a different cohort of patients with CD,
and prevalently used in other studies, the remaining indexes were much less validated
and often developed and utilized to explain the same data set upon which they were
based. Thus, the specifically chosen relevant taxa may not be valid in other studies due
to the differences in sequencing techniques, statistical analysis, individual differences,
and confounding factors.

The neighborhood classification methods utilize distance or dissimilarity matrices to
quantify if a test sample is significantly different from a set of healthy controls. Index
3.1 is a simple way of using the distance matrices by subjectively choosing a threshold
of distance to distinguish between dysbiotic and nondysbiotic samples. Index 3.2
assesses the closeness of a test sample to the groups of diseased and healthy samples,
respectively, in a more complicated way. Because the distance matrix is based on
seven carefully selected taxa, index 3.2 is restricted to the disease CE, but generalizing
this approach to other conditions remains a possibility. Index 3.3 is a robust, nonpara-
metric outlier test, which makes it an appropriate index for many different conditions.

Random forest is a popular choice for researchers that use machine learning techni-
ques for large and complex biological data sets (59), such as gut microbiota sequence
data. Index 4 uses the original out-of-bag probability from random forest as the dys-
biosis index to quantify the similarity between a test sample and the dysbiotic samples.
This index is not restricted to a specific disease and can be used to differentiate dysbi-
otic samples from healthy controls. However, index 4 basically is the same as a binary
classification of samples by random forest and does not provide much additional infor-
mation, although the continuous index value potentially can be correlated with clinical
characteristics (55).

The combined alpha and beta diversity takes advantage of the commonly used
alpha and beta diversity and quantifies the difference between samples originating
from patients and from donors of FMT. More validations are needed, because the defi-
nitions of dysbiosis and nondysbiosis are not clearly defined in the study.

CONCLUSIONS

Several dysbiosis indexes have been successfully applied to characterize the gut
microbiota in patients with different diseases or conditions. They may have important
applications in the context of given diseases and treatments.

However, it is important to emphasize that the existence of dysbiosis as measured
by a specific index does not imply that the dysbiosis is in any way causal to the given
disease. In fact, the altered microbiota characterizing a given disease or intervention
often results from alterations in factors such as diet, medication, oxygen availability, or
immune reactions (14, 60–63), in which case a dysbiosis index is applicable as a diag-
nostic marker but not necessarily as a predictor. Difficulties in inferring general princi-
ples for the assessment of dysbiosis are, to a large extent, attributed to the huge varia-
tion between healthy individuals, leading to a lack of a clear definition of a “normal”
gut microbiota. In fact, the existence of a balance of the microbiota that can suddenly
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tip over remains to be proven and is highly debated (12). It is important to note that
dysbiosis indexes are not standalone measurements and have to be interpreted in the
context of the clinical findings. Nevertheless, the value of dysbiosis indexes as sim-
ple tools to describe complex differences between intestinal microbial communities
remains.
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