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The rupture of aneurysms is the main cause of spontaneous subarachnoid hemorrhage
(SAH), which is a serious life-threatening disease with high mortality and permanent
disability rates. Therefore, it is highly desirable to evaluate the rupture risk of aneurysms.
In this study, we proposed a novel semiautomatic prediction model for the rupture risk
estimation of aneurysms based on the CADA dataset, including 108 datasets with 125
annotated aneurysms. The model consisted of multidimensional feature fusion, feature
selection, and the construction of classification methods. For the multidimensional
feature fusion, we extracted four kinds of features and combined them into the feature
set, including morphological features, radiomics features, clinical features, and deep
learning features. Specifically, we applied the feature extractor 3D EfficientNet-B0
to extract and analyze the classification capabilities of three different deep learning
features, namely, no-sigmoid features, sigmoid features, and binarization features. In
the experiment, we constructed five distinct classification models, among which the
k-nearest neighbor classifier showed the best performance for aneurysm rupture risk
estimation, reaching an F2-score of 0.789. Our results suggest that the full use of
multidimensional feature fusion can improve the performance of aneurysm rupture risk
assessment. Compared with other methods, our method achieves the state-of-the-art
performance for aneurysm rupture risk assessment methods based on CADA 2020.

Keywords: intracranial aneurysm, risk estimation, feature fusion, machine learning, radiomics

INTRODUCTION

An intracranial aneurysm is an abnormal local dilatation of the cerebral artery due to the weakness
of the vessel wall. It occurs in approximately 2–5% of the population and is the main cause
of non-traumatic subarachnoid hemorrhage (SAH) (Xu et al., 2019). SAH caused by aneurysm
rupture is a serious neurological disease with high mortality and morbidity. Despite treatment
technology advances and imaging technology improvements currently, the death rate of SAH is
approximately 40–50% and leaves approximately half of survivors with permanent neurological
deficits (Boulouis et al., 2017; Roked and Reddy, 2020). Therefore, early detection of aneurysms
and rupture risk assessment of unruptured aneurysms are clinically significant for the treatment
and prognosis of patients.
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Aneurysmal morphology such as shape and size, patient-
specific clinical factors such as hypertension, smoking, a history
of SAH, sex, and population, as well as hemodynamics of
aneurysms are known to be risk factors associated with
intracranial aneurysm rupture (Abboud et al., 2017; Boulouis
et al., 2017). At present, digital subtraction angiography
(DSA), computed tomography angiography (CTA), and magnetic
resonance angiography (MRA) are primary imaging techniques
clinically for rupture risk assessment of aneurysm. Doctors
comprehensively assess the rupture risk of aneurysm mainly
based on the high-resolution angiographic images and patient-
specific clinical factors. However, due to the variations in the level
of experience and proficiency among physicians, the evaluation is
highly subjective and lacks consistency among experts. Therefore,
it is necessary to develop a computer-aided diagnosis system for
assessing the rupture risk of the aneurysm to assist doctors in
diagnosis and decision-making to avoid overtreatment and risks
associated with surgery.

As an important branch of artificial intelligence, machine
learning (ML) enables to identify and process complex
relationships between features in big data sets and can be rapidly
applied to unknown data for prediction (Senders et al., 2018).
Some recent studies have shown that ML plays an important
role in the rupture risk assessment of aneurysm. Silva et al.
(2019) demonstrated the ability of ML to distinguish ruptured
and unruptured aneurysms based on conventional radiographic
characteristics of aneurysms and patient-specific clinical
features. Tanioka et al. (2020) constructed ML classification
models for the identification of ruptured aneurysms by
applying manually measured morphological variables and
hemodynamic parameters. However, for the assessment of
the rupture state of aneurysms, incorporating abundant
variables into the classification model is the key to affecting the
assessment performance.

Radiomics refers to the technology of analyzing and mining
high volumes of quantitative features extracted from medical
images and then developing a robust model based on the key
information that works to support the clinical decision ultimately
(Limkin et al., 2017). It has shown considerable potential in many
medical challenges, such as auxiliary diagnosis, classification,
and grading of diseases (Yun et al., 2019; Peeken et al., 2021).
Recently, the application of radiomics combined with ML in
the rupture assessment of intracranial aneurysms has shown
initial results. A preliminary study (Ou et al., 2021) employed
conventional morphological features and radiomics features to
construct an ML classification model, which proves the potential
use of radiomics signatures in predicting aneurysm rupture.
Alwalid et al. (2021) developed a radiomics classification model
on CTA images to identify patients with ruptured aneurysms.
However, the ability of radiomics features characterizing regions
of interest is subject to low-level properties to some extent (Hua
et al., 2020). In recent years, deep learning methods, especially
convolutional neural networks (CNNs), have achieved excellent
results in dealing with the tasks of classification, segmentation,
and detection in medical imaging (Zeng et al., 2020; Yang et al.,
2021). The convolution and pooling operations in the network
automatically learn and capture the local details as well as more

complex information and structure features of images, so as to
obtain the abstract representation of the image at various scales.

Thus, we deemed that the complementary advantages of
deep learning and radiomics technologies could enrich feature
representations of medical images and further improve the
prediction performance for the rupture risk of the aneurysm.
In this study, we explored multidimensional features derived
from both high-resolution angiographic images and high-
quality three-dimensional aneurysm modeling data to build a
semiautomatic prediction model for rupture risk estimation
of the aneurysm.

MATERIALS AND METHODS

Dataset
The challenge for aneurysm rupture risk estimation is task 3 in
cerebral aneurysm detection and analysis (CADA) challenge. The
challenge organizers provided 110 datasets with 128 annotated
aneurysms. The image data of patients were acquired utilizing the
digital subtraction AXIOM Artis C-arm system by a rotational
acquisition time of 5 s with 126 frames. Postprocessing was
performed using LEONARDO InSpace 3D (Siemens, Forchheim,
Germany). All segmentation masks provided by a skilled
annotator were checked by an experienced neurosurgeon later.
Figure 1 shows the example of the two types of segmentation
masks (stereolithography files and image files) for the same
aneurysm. In addition, the rupture state and rupture information
of each aneurysm are provided. After removing 3 cases with
missing information, the remaining 125 cases are included for
model training and validation.

Feature Extraction
In this study, we extracted multidimensional features derived
from both angiographic images and three-dimensional aneurysm
modeling data, consisting of radiomics features, morphological
features, deep learning features, and clinical information. Details
are described as follows.

Radiomics Features
Before radiomics feature extraction, image preprocessing with
intensity normalization to the grayscale range of [0, 100]
and isotropic resampling to a uniform pixel dimension of
0.5 × 0.5 × 0.5 mm3 was performed. We extracted radiomics
features including aneurysm intensity, shape-based, and texture

FIGURE 1 | An example case for angiographic image of the aneurysm and
corresponding two types of segmentation masks.
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features from regions of interest defined by the angiography
images and segmentation masks (image files) using the open-
source PyRadiomics package (version 3.0.1) (van Griethuysen
et al., 2017). Texture features are visual features that reflect the
uniformity of the image and the slow or periodic changes on the
surface of the object. Specifically, these extracted characteristics
were divided into the following seven groups, including first-
order statistics (18 features), shape 3D-based (14 features),
gray-level co-occurrence matrix (24 features), gray-level run-
length matrix (16 features), gray-level size zone matrix (16
features), neighboring gray-tone difference matrix (5 features),
and gray-level dependence matrix (14 features). Most features
listed above were in accordance with the recommendations
of the Imaging Biomarker Standardization Initiative (IBSI)
(Zwanenburg et al., 2020).

Morphological Features Based on Stereolithography
Files
Currently, shape-based features have shown to be beneficial
in assessing the rupture risk of the aneurysm (Abboud et al.,
2017; Silva et al., 2019; Tanioka et al., 2020). Therefore, we
extracted morphological features of the aneurysm based on the
three-dimensional modeling data for a more reliable estimation,
including the length, width, height, surface area, and volume.
In addition, we considered that curvature features provided
additional representations for describing the morphology of
aneurysms. The extracted curvature features of aneurysms
included the principal curvature, Gaussian curvature, and
mean curvature. The maximum, minimum, mean and standard
deviation of curvature were calculated, respectively. In this study,
25 morphological features were extracted for each case.

Deep Learning Features
To acquire high-level image features, we employed the
convolutional neural network method to mine the abstract
features. In this study, we selected and trained a 3D EfficientNet-
B0 as the feature extractor (Tan and Le, 2019), which balanced
the depth, width, and resolution of the model with a highly
effective compound coefficient, thereby achieving satisfactory
accuracy. Figure 2 shows the network architecture, and its
main building block is MBConv (Sandler et al., 2018) with
squeeze-and-excitation optimization (Hu et al., 2020), as shown
in Figure 3. We, respectively, took the image and mask as
the input of the convolutional neural network and explored
three various deep learning features from convolutional neural
network outputs.

1) No-sigmoid features: outputs of the feature maps only
through the final fully connected layer.

2) Sigmoid features: outputs of the feature maps
through the final fully connected layer and sigmoid
function successively.

3) Binarization features: outputs of the feature maps through
the final fully connected layer, sigmoid function, and
binarization operation successively. Binarization operation
can be calculated as follows:

f (x) =
{

1, x ≥ 0.5
0, x < 0.5

(1)

In summary, we combined the multidimensional features
above to enrich the feature representation of rupture risk. All the
feature sets are shown in Figure 4.

We obtained three types of feature sets as original
multidimensional feature sets, namely, no-sigmoid type,
sigmoid type, and binarization type. Each original feature set
contained four parts of features, which were morphological
features (25 features), radiomics features (107 features), the
corresponding type of deep learning features (2 features,
different feature sets have different deep learning features), and
patient-specific clinical factors (2 features, sex, and age). That is,
each of the three types of original multidimensional feature sets
contained 136 features.

Nested Cross-Validation
Cross-validation can evaluate the generalization ability of ML
algorithms to data sets independent of training data and
prevent over-fitting effectively (Arlot and Celisse, 2010). Stratified
sampling was used in this study to perform cross-validation
to ensure that the proportion of samples in each target class
in the training set and validation set is the same as the full
set. Considering that this traditional cross-validation method
cannot solve the problem of optimal model selection and
model parameter tuning well, we used nested cross-validation
(Varoquaux et al., 2017) in order to search for hyperparameters
by estimating the generalization error of the basic model to
obtain the best parameters of the model. The process of 8-
fold cross-validation is shown in Figure 5, which contains a
two-loop nested cross-validation scheme. Hyperparameters were
optimized using grid search as part of the inner loop. The optimal
hyperparameters were then used for testing on the outer loop.

FIGURE 2 | EfficientNet-B0 structure.
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FIGURE 3 | Mobile inverted bottleneck convolution (MBConv) module
structure. It mainly consists of depthwise convolution and
squeeze-and-excitation block.

Feature Selection
We uniformly standardized all the features by removing the
mean and scaling to unit variance. To improve the stability
and generalization performance of the model, it is critical to
select discriminative features. We chose the random forest (RF)
(Genuer et al., 2010) and XGboost (Chen and Guestrin, 2016)
methods for feature selection. Both methods could generate a

ranking of the feature importance after training and further select
some profitable features by setting the threshold. In this study, the
following two feature selection steps were applied.

Step 1: We took the features selected simultaneously by
RF and XGboost based on the training set of the original
multidimensional feature set of each cross-validation fold and
merged the features retained by all 8 folds to get the feature set M.

Step 2: We accumulated the important scores of the features
in each fold and counted the top 1/2 features of the RF and
Xgboost methods in the M set to obtain feature set Mr and
Mx, respectively. Mr represented feature selection by RF. Mx
represented feature selection by Xgboost. The feature subset N
was obtained by N = Mr∩Mx.

Therefore, the corresponding feature subsets were obtained
from the three original feature sets, among which 22 features were
retained for the no-sigmoid type feature subset, 24 features for
the sigmoid type feature subset, and 24 for the binarization type
feature subset. The selected features in the three types of feature
subsets are shown in Supplementary Table 1.

Classification Model
To find an optimal classifier for the classification task of ruptured
and unruptured aneurysms, five distinct ML models were used
to build the classification model using the selected features,
respectively, including support vector machine (SVM) (Cortes
and Vapnik, 1995), RF (Breiman, 2001), k-nearest neighbor
(KNN) (Fix and Hodges, 1989), logistic regression (LR) (Berkson,
1946), and XGBoost (Chen and Guestrin, 2016) classifiers. To
ensure the robustness of the experimental results, we adopted 8-
fold cross-validation and then took the average of classification
metrics as the final result.

Model Evaluation
Considering that the identification of aneurysms at risk is more
important than the avoidance of false-positive risk classification,
F2-score was selected as the final score metric in the rupture
risk estimation challenge. The F2-score integrates two indicators
of recall and precision, and it is considered that recall is twice
as important as precision, as shown in Eq. 2. In addition, we
also calculated other metrics including accuracy (ACC), the area
under the curve (AUC), recall, and precision.

F2 =
5 ∗ Precision ∗ Recall

4 ∗ Precision + Recall
(2)

RESULTS

Implementation Details
For the EfficientNet-B0 feature extractor, we trained this model
on an NVIDIA GeForce RTX 3090 GPU with 24 GB memory. All
the images were employed spacing normalization to a common
spacing of 0.5 × 0.5 × 0.5 mm3 and intensity normalization
to the grayscale range of [0, 1]. We resized all the images to
128 × 128 × 128 and set total epochs to 100 for each fold
of cross-validation, with the learning rate 3e-4 and batch size
4. The AdamW algorithm was adopted to optimize the feature
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FIGURE 4 | Multidimensional feature set consists of four groups. (A) Morphological features extracted from stereolithography files. (B) Radiomics features extracted
from the angiography images and segmentation masks. (C) Deep learning features extracted from the angiography images and segmentation masks. (D)
Patient-specific clinical factors.

FIGURE 5 | Model training and nested cross-validation. (A) General overview. (B) 8-fold cross-validation.

extraction network. We also used weight decay with 1e-8. Our
other experiments were implemented on an AMD Ryzen 5 5600H
CPU @3.30 GHz with 16 GB RAM.

Rupture Risk Estimation Results
After feature selection, we constructed five different
classification models with the three feature subsets, and
the final results are shown in Table 1. It can be seen
that the KNN model based on the sigmoid type feature
set achieved the best mean performance on the F2-score.
Thus, we chose the sigmoid feature subset as the final
feature subset. A heat map was constructed to show

the association between selected features and aneurysm
rupture status based on the feature subset, as shown in
Supplementary Figure 1.

Table 2 shows the comparison of results among different
classifiers constructed with this feature set. Based on the F2-
score, the KNN model shows the best result with a mean F2-
score of 0.789 on the test set. Thus, the KNN algorithm was
chosen as the final model. For the presented five classification
models, the KNN classifier shows the best performance on most
metrics for aneurysm rupture risk estimation. Evaluating the
performance of accuracy, the KNN model shows the best result
with a mean of 0.791.
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TABLE 1 | The mean F2-score for different feature sets and classification methods
on the test set.

Classifier Binarization Sigmoid No-sigmoid

SVM 0.730 0.724 0.609

LR 0.747 0.731 0.644

RF 0.695 0.675 0.707

XGBoost 0.708 0.715 0.698

KNN 0.752 0.789 0.580

The best results for each specified classifier are highlighted in bold red.

TABLE 2 | Comparison of the results of different classifiers based on the
sigmoid feature set.

Classifier F2-score ACC AUC Precision Recall

SVM 0.724 0.775 0.820 0.779 0.732

LR 0.731 0.776 0.834 0.761 0.732

RF 0.675 0.751 0.810 0.771 0.660

XGBoost 0.715 0.767 0.803 0.773 0.714

KNN 0.789 0.791 0.811 0.755 0.803

The best results for each of these metrics are highlighted in bold red.

In addition, the corresponding mean receiver operating
characteristic (ROC) curve over all outer folds based on the
optimal model is shown in Figure 6. The KNN model shows a
good performance in the classification of aneurysm rupture with
a mean AUC of 0.811 on the test set.

Ivantsits et al. (2021) and Liu et al. (2021), respectively,
proposed two excellent semiautomatic aneurysm rupture risk
estimation methods on the CADA dataset. Table 3 shows
the comparison on the metrics of our approach with two
related works. It is observed that our approach achieved better
performance than both related works on the CADA dataset.
Under the condition of using the same classifier, our methods
performed better, which proves that the features we extracted
were more suitable and effective for this task.

DISCUSSION

Intracranial aneurysm rupture is a catastrophic medical event
with high mortality and permanent disability risk. A timely
and accurate rupture risk estimation of aneurysms is necessary
for clinical treatment. At present, the widespread availability
of vascular neuroimaging has allowed more unruptured
aneurysms to be discovered incidentally, but the treatment
decision-making for aneurysms is still a challenge that the
clinic needs to face because doctors are required to weigh the
risk of SAH along with the risks of surgical or endovascular
treatments and subsequent complications with discretion
(Boulouis et al., 2017).

The morphology of the intracranial aneurysm is considered
to be associated with the rupture state of the aneurysm (Abboud
et al., 2017; Boulouis et al., 2017). Most of the previous

FIGURE 6 | The mean receiver operating characteristic (ROC) curve of the k-nearest neighbor (KNN) classifier based on 8-fold cross-validation.
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TABLE 3 | Aneurysm rupture risk estimation performance of our method and two
related works based on CADA dataset.

Classifier Method F2-score ACC AUC Precision Recall

XGBoost Liu et al., 2021 0.673 0.652 n/a 0.583 0.700

Ours 0.715 0.767 0.803 0.773 0.714

KNN Ivantsits et al., 2021 0.690 0.660 n/a n/a n/a

Ours 0.789 0.791 0.811 0.755 0.803

RF Ivantsits et al., 2021 n/a 0.690 n/a n/a n/a

Ours 0.675 0.751 0.810 0.771 0.660

SVM Ours 0.724 0.775 0.820 0.779 0.732

LR Ours 0.731 0.776 0.834 0.761 0.732

Better results for each specified classifier are highlighted in bold black. The best
results for each of these metrics are highlighted in bold red.

reports employed manually measured morphological indicators
to identify the rupture risk (Liu et al., 2018; Silva et al., 2019;
Tanioka et al., 2020), which did not fully explore the rich
information of angiography images.

In this study, we proposed a classification method based
on diverse types of risk factors for the assessment of aneurysm
rupture state, so as to promote timely management of patients
and provide some guidance for follow-up treatment decisions.
In the pipeline for assessing the rupture risk of aneurysm,
our proposed method consisted of multidimensional feature
fusion, feature selection to capture the discriminative variables,
and followed by the construction of classification models.
We combined multidimensional feature representations
related to rupture risk factors of aneurysms including
radiomics features, morphological features, deep learning
features, and patient-specific clinical factors. Considering
the powerful feature extraction capability of deep learning
for images, we took the deep learning network as a
feature extractor to extract and analyze the classification
capability of three different deep learning features. The
results indicate a great potential of the sigmoid type
feature subset as a risk factor for intracranial aneurysm
rupture estimation.

The sigmoid type feature subset included deep learning
descriptors, shape descriptors, first-order histogram descriptors,
and texture descriptors. As high-level semantic features, the
deep learning features proposed in this study could learn
complex information patterns and structural features in image
data, which are invisible to human eyes. Curvature features
represented as additional morphological features may reflect
changes related to the aneurysm rupture state. Radiomics
features are calculated in a pixel-by-pixel manner, which can
quantitatively describe the morphology of the 3D lesion. In
this study, nine radiomics features were finally retained. It
proves the potential of radiomics features for the classification
of aneurysm rupture, which is consistent with previous
studies (Alwalid et al., 2021; Ou et al., 2021). Texture
patterns within the aneurysm region especially the aneurysmal
lumen may be caused by the uneven distribution of contrast
agents, which were thought to be related to turbulence
flow (Ou et al., 2021). It is generally considered that
turbulent flow could activate inflammatory mechanisms and

could be associated with higher-risk lesions (George et al.,
2016). This further explains why texture features could be
used as the risk factor for assessing aneurysm rupture. For
clinical variables, both sex and age were not included in
the final feature subset. It could be due to its complicated
mechanism on aneurysm rupture and the experiment being
based on a small data set, and further studies are needed
to prove the relationship between clinical variables and
rupture outcome.

Our study has some limitations that are worth noting.
One is that it takes some computational cost to extract
deep learning features due to the large size of angiographic
images. The other is that due to the limited amount of
data provided, further verification is required on external
data. In the future, we plan to collect clinical data to verify
the robustness of our approach and take steps to further
optimize the performance of our model to achieve a more
efficient automatic aneurysm rupture risk assessment. Recent
studies have shown that computer-aided diagnosis algorithms
for aneurysm detection have the potential to shorten reading
times and enhance the performances of radiologists (Shi et al.,
2020). A further idea is considered to effectively integrate this
work with aneurysm detection to build a complete automatic
aneurysm diagnosis system, which may improve efficiency in the
radiology department (Alwalid et al., 2021) and promote timely
management for patients.

CONCLUSION

In this study, we assumed that multidimensional feature fusion
and feature selection strategies are necessary to enhance the level
of aneurysm rupture risk assessment. Based on the inspiration,
we combined morphological features, radiomics features, clinical
features, and deep learning features with the feature extractor 3D
EfficientNet-B0 to propose a novel semiautomatic ML algorithm
for aneurysm rupture risk assessment. Our results demonstrate
that the multidimensional risk factors we proposed could
improve the ability to identify the ruptured state of the aneurysm.
Compared with other methods, our method outperforms the
state-of-the-art aneurysm rupture risk assessment method based
on CADA 2020, which shows the good prospect of application in
decision support systems for patients with aneurysms.
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