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Abstract: The development of flower and pollen is a complex biological process that involves multiple
metabolic pathways in plants. In revealing novel insights into flower and pollen development
underlying male sterility (MS), we conducted an integrated profiling of gene and protein activities in
developing buds in cytoplasmic male sterile (CMS) mutants of mustard (Brassica juncea). Using RNA-
Seq and label-free quantitative proteomics, 11,832 transcripts and 1780 protein species were identified
with significant differential abundance between the male sterile line 09-05A and its maintainer line
09-05B at the tetrad stage and bi-nucleate stage of B. juncea. A large number of differentially expressed
genes (DEGs) and differentially abundant proteins (DAPs) involved in carbohydrate and energy
metabolism, including starch and sucrose metabolism, tricarboxylic acid (TCA) cycle, glycolysis,
and oxidoreductase activity pathways, were significantly downregulated in 09-05A buds. The low
expression of these DEGs or functional loss of DAPs, which can lead to an insufficient supply of critical
substrates and ATP, could be associated with flower development, pollen development, and changes
in fertility in B. juncea. Therefore, this study provided transcriptomic and proteomic information of
pollen abortion for B. juncea and a basis for further research on the molecular regulatory mechanism
of MS in plants.

Keywords: mustard; transcriptomic analysis; proteomic analysis; cytoplasmic male sterility;
carbohydrate; energy metabolism

1. Introduction

Male sterility (MS) refers to the inability to produce functional anthers or pollens,
which plays an important role in developing high yielding and vigorous cultivars as an
economical and effective system for pollination control [1]. Based on the inheritance, MS
is classified into cytoplasmic male sterility (CMS) and genetic male sterility (GMS) [2].
CMS, which has been reported in more than 150 plant species, is a maternally inherited
defect of higher plants in the production of functional pollen and it has wide application
for hybrid production in crops [3,4]. In general, CMS can occur at different stages during
reproductive development and CMS lines have stable sterility, adequate flowering, and
crossing abilities [5]. To date, many CMS systems, including oxa CMS, ogu CMS, nap CMS,
tour CMS, pol CMS, hau CMS, and orf220-type CMS [6–9], have been found and widely used
in different Brassica crops, such as mustard (Brassica juncea), cabbage (Brassica oleracea), and
oilseed rape (Brassica napus).
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In plants, CMS is determined by the mitochondrial genome and associated with
a pollen sterility phenotype that can be suppressed or counteracted by nuclear genes
known as fertility-restorer genes [10]. Recently, great progress has been made in CMS
theoretical research and application of different CMS systems in Brassica crops. MutS
HOMOLOG1, a nuclear gene can control illegitimate recombination in plant mitochondria,
whose silencing can mediate mitochondrial orf220 substoichiometric shifting and cause MS
in B. juncea [11]. In addition, BjuA017917, a non-PPR fertility restoration gene encoding a
guanosine nucleotide diphosphate dissociation inhibitor, was proposed to be the candidate
gene for fertility restoration of the oxa CMS line in B. juncea [12]. Studies have also shown
that the retrograde signal from the mitochondrial genes such as orf288 could arrest the
differentiation of archesporial cells and caused MS in the hau CMS line of B. napus [13].
In the SaNa-1A CMS line of B. napus, active oxygen is greatly accumulated disturbing
ROS balance, and the increase in peroxidase activity in the CMS line might inhibit the
biosynthesis of auxin and affect anther development [14]. Furthermore, the protein encoded
by the orf138 gene would accumulate on the mitochondrial membrane, which may interfere
with the expression of some key genes, such as atp6, atp8, and cox I, in the electron-transport
chain, and inhibit the normal development of anthers in B. oleracea [15]. However, key genes
and proteins involved in metabolic pathways regarding CMS must be further investigated.

In recent years, transcriptomic sequencing and proteomic integrated analysis have
been widely used in plants on pollen development, fertility transition, and biological
and abiotic stress responses to gain high-resolution data with great accuracy and effi-
ciency [16–18]. They have also been applied to obtain key information regarding pollen
development in various CMS mutants of cabbage, cotton, rice, and other crops [19–21].
Xing et al. [22] found that the key differentially expressed genes (DEGs) participating in
gibberellin-mediated tapetum-programmed cell death (PCD) pathways and sporopollenin
biosynthesis were significantly related to the sterility phenotype in Ogu CMS line R2P2CMS
using integrated RNA-seq and isobaric tags proteomic analysis. By transcriptomic and
proteomic analyses, Tang et al. [23] deduced that the low expression of DEGs and differen-
tially abundant proteins (DAPs) involved in energy metabolism, such as psbS, psaD, and
ATPF1G, may result in pollen abortion in the male sterile mutant MS2-2 of Tagetes erecta.
Hao et al. [24] identified several critical regulatory genes including orf279 which may lead
to delayed tapetum PCD, causing pollen abortion in AL18A of a wheat CMS line through
combined transcriptomic and proteomic analysis. Using transcriptomic and proteomic
analysis, Ning et al. [25] showed that transcription factors related to early anther differenti-
ation, such as SPOROCYTELESS, MYB80, and ABORTED MICROSPORES, at the young
bud stage, were downregulated, which affected early anther development in Shaan2A CMS
lines. Therefore, combined transcriptomic and proteomic analyses can be a good research
method to facilitate the understanding of the molecular regulatory mechanism underlying
MS and nuclear mitochondrial interaction in plants.

Mustard (2n = 36, AABB) is an allopolyploid derived from interspecific hybridization
between B. rapa (2n = 20, AA) and Brassica nigra (2n = 16, BB), which is widely grown as a
food crop because of its adaptation to varying growth conditions [26,27]. In addition, it
is used for medicinal and industrial purposes because of its rich nutrients and bioactive
components [28]. Oxa CMS was first observed in B. juncea, and it is now widely used in
increasing the genetic diversity of CMS and promoting the use of heterosis in Brassica crops.
In the oxa CMS of stem mustard, anthers are surrounded by unfolded petals, resulting
in early stigma exposure, male sterile pollen grains, and failed self-pollination [8]. The
abortive stage of anther development in oxa CMS is initiated at the late uninucleate stage
and abnormally vacuolated microspores can cause MS [8]. A spring stem mustard CMS
line system, named as 09-05A/B, was established using the oxa CMS winter mustard and
spring mustard maintainer line, and the male sterile line 09-05A shows a stable sterility
characteristic with shriveled anthers, and entirely abortive and abnormally degraded
pollen grain produced in floral developments [8]. Thus, this CMS system serves as an
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ideal material to study the molecular regulatory mechanism of pollen development and
metabolic pathways regarding CMS in Brassica plants.

In order to identify a set of key candidate genes, biological processes, and pathways
underlying the MS in B. juncea, a systemic understanding of the molecular regulator mech-
anism and metabolic networks during the pollen development is urgently needed. In
the present study, transcriptomic sequencing and label-free proteome were performed
using flower buds during the tetrad (TE) stage and bi-nucleate (BI) stage between the
male sterile line 09-05A and the maintainer line 09-05B of B. juncea, to identify critical
DEGs and DAPs related to pollen development. Our research found several key biologi-
cal processes related to MS, such as “carbohydrate metabolic process”, “oxidoreductase
activity”, “sucrose metabolic process”, and “TCA cycle”. The results lay the foundation
for exploring the genetic and molecular mechanisms of B. juncea pollen development, and
provide further knowledge for the development of germplasm innovation and heterosis
utilization in plants.

2. Results
2.1. Phenotypic and Cytological Characterization in 09-05A/B Lines of B. juncea

The morphological and cytological features of 09-05A and 09-05B were compared
during flowering. Morphologically, light microscopy showed that 09-05A had a similar
flower pattern to its maintainer line 09-05B, and corolla at the blossom stage from 09-05A
grew smaller than those from 09-05B (Figure 1A,D). Compared with the yellow and plump
anthers of 09-05B, the anthers of 09-05A were longer and shrunken, with no evident pollen
grains on the surface (Figure 1B,C). Other floral tissues of 09-05A, such as sepals, petals, and
pistil, remained normal (Figure 1D–F). The observation of semi-thin sectioning under the
microscope showed that tetrads were formed normally between 09-05A and 09-05B at the TE
stage (Figure 2A,F). However, at the BI stage, visible abnormalities appeared in the anther
of 09-05A, in which most microspores were shrunken and deformed (Figure 2G) compared
with those from 09-05B (Figure 2B). The transverse section observation of anthers showed
that, with the morphological abnormalities of microspore cell in 09-05A, a significant
microscopic phenotype developed, indicating that the BI stage was the vital period of
microspore abortion in 09-05A.
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Figure 1. Morphological observation of floral organ between the male sterile line 09-05A and its
maintainer line 09-05B of B. juncea at the blossom stage. (A) The flower bud of 09-05B. (B) Comparison
of stamens and pistils of 09-05A/B lines. (C) Comparison of stamens of 09-05A/B lines. (D) The
flower bud of 09-05A. (E) Comparison of petals of 09-05A/B lines. (F) Comparison of pistils of
09-05A/B lines. Bars = 2 mm.
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Figure 2. The cross-section analysis observation of anthers and microspores at the TE and BI stages of
B. juncea from 09-05B and 09-05A. (A,F) Semi-thin section of anthers at the TE stage; (B,G) semi-thin
section of anthers at the BI stage; (C,H) TEM micrographs of microspores at the TE stage; (D,I) TEM
micrographs of microspores at the BI stage; (E,J) TEM micrographs of pollen exine at the BI stage.
Ba—baculum; Ex—exine; M—microspore; N—nucleus; Td—tetrad; Te—tectum; V—vacuole. Arrows
in (G) showed the remnants of the aborted microspores. (A–D,F–I) Bars = 10 µm; (E,J) Bars = 0.5 µm.

Transmission electron microscopy (TEM) was applied to obtain high-resolution images,
comparatively analyze the pollen grains from 09-05A and 09-05B at the TE and BI stages,
and comprehensively understand the cellular defects of pollen grains in 09-05A anthers.
Consistent with the abovementioned results, the structure of tetrads in 09-05A (Figure 2H)
was normal and similar to that in 09-05B (Figure 2C) at the TE stage. The cell nucleus in
pollen grains was evident in 09-05B (Figure 2D); however, the cell nucleus and other cellular
components were degraded in 09-05A at the BI stage (Figure 2I). Moreover, the bacula
and tectum on the pollen exine wall in the microspore of 09-05B were normal (Figure 2E),
whereas their morphology was significantly altered in the 09-05A CMS line (Figure 2J).

Based on these results, we concluded that the abortive stage of anther development
in 09-05A was initiated after the TE stage, and most pollen grains showed abortion at
the BI stage during the mitotic phase. Shrunken and deformed microspores and the lack
of viable pollen grains could cause MS during anther development in 09-05A. Therefore,
flower buds from the TE and BI stages were used as the transcriptomic and proteomic
sequencing material.

2.2. Transcriptomic Analysis and Assembly

We selected the TE and BI stages for transcriptomic analysis to explore the molecular
regulatory mechanism underlying microspore abortion in 09-05A. Raw reads were filtered
to remove low-quality reads, and a total of 552,293,954 clean reads were ultimately used.
The percentage of sequences with nucleotide mass fraction Q30 values greater than 30
was 93.73% in all samples, and the GC content was 46.72% (Table S1). By comparing the
reads with the reference genome, the genome alignment of each sample was obtained, and
the comparison rate was 81.05–95.52%. An overview of the statistics on transcriptomic
sequencing and assembly of two stages of pollen development between 09-05A and 09-05B
with three biological repeats is presented in Table S1. After directly comparing the density
and discrete distribution of the expression levels for different samples, we found that the
sequencing quality was the same (Figure S1). Thus, the results indicated that the quality
of the data obtained by sequencing was sufficient, and the data could be analyzed in the
next step.

2.3. Functional Distribution of DEGs in 09-05A/B Lines of B. juncea

The expression level of each gene in 09-05A was compared with that in 09-05B sep-
arately at the TE and BI stages to explore the CMS molecular mechanism in 09-05A of
B. juncea. Compared with 09-05B, a total of 11,832 DEGs at the TE and the BI stages were
identified (Table S2), of which 289 DEGs (93 upregulated and 196 downregulated) were
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shared between the two groups (Figure 3A,B). A total of 1343 and 3277 upregulated genes
were differentially expressed at the TE and BI stages, respectively (Figure 3A). A total of
2792 and 4131 downregulated genes were, respectively, identified at the TE and BI stages
(Figure 3B). Notably, the number of DEGs showed an increasing trend at the BI stage
compared with the TE stage, and more downregulated genes than upregulated genes were
found at the two stages.
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Figure 3. Functional distribution of identified genes in 09-05A and 09-05B flower buds at the TE and
BI stages of B. juncea. RNAs were extracted, sequenced, and analyzed. Genes in flower buds in 09-05A
were compared with those in 09-05B at the two stages, respectively. “↑” represents upregulation;
“↓” represents downregulation. (A) Comparison of upregulated DEGs identified in 09-05A/09-05B.
(B) Comparison of downregulated DEGs identified in 09-05A/09-05B. (C) Predicated and categorized
functions of DEGs.

Based on functional analysis, DEGs related to hydrolase activity, membrane, oxidore-
ductase activity, transferase activity, and catalytic activity were differently enriched in
09-05A compared with 09-05B both at the TE and BI stages (Table S3). In addition, the
number of genes related to those pathways in 09-05A was increased more at the BI stage
than in 09-05B (Figure 3C). Furthermore, genes associated with cell wall, hexosyltransferase
activity, and glycosyltransferase activity were specifically enriched in 09-05A compared
with 09-05B at the TE stage. At the BI stage, DEGs were specifically annotated to the cate-
gories including hydrolase activity, carbohydrate metabolic process, transporter activity,
transmembrane transport, transmembrane transporter activity, signal transduction, and
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signaling pathway in 09-05A compared with 09-05B. These results indicated that multiple
complex metabolic pathways, enzyme activity, and transporter activity were involved
in pollen development in 09-05A/B lines of B. juncea, and a remarkable difference was
observed from the TE stage to the BI period of 09-05A/B lines, which was consistent with
our cytological observations.

2.4. Functional Distribution of DAPs in 09-05A/B Lines of B. juncea

Label-free proteomic analysis was performed in 09-05A compared with 09-05B at
the TE and BI stages to complement the transcriptomic study. The relative abundance
of proteins from 09-05A was compared with that from 09-05B at two stages. A total of
955 upregulated and 825 downregulated proteins were identified in 09-05A compared with
09-05B at the TE and BI stages (Table S4). In addition, a total of 134 DAPs (68 upregulated
and 66 downregulated) were shared among the two groups (Figure 4A,B). Among DAPs
with upregulated expression, a total of 384 DAPs at the TE stage and 503 DAPs at the BI
stage were identified in flower buds in 09-05A compared with 09-05B (Figure 4A). Among
proteins with reduced expression, 330 and 429 DAPs were uniquely identified at the TE
and BI stages, respectively (Figure 4B). Consistent with the RNA-seq data, the number of
DAPs also showed an increasing trend at the BI stage.
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Figure 4. Functional distribution of DAPs in male sterile line 09-05A and its maintainer line 09-05B of
B. juncea. Flower buds of B. juncea were collected at the TE and BI stages. Proteins were extracted,
reduced, alkylated, digested, and analyzed by nanoLC-MS/MS. Proteins in flower buds of 09-05A
were compared with those in 09-05B at the TE and BI stages, respectively. “↑” represents upregulation;
“↓” represents downregulation. (A) Comparison of up-accumulated DAPs identified in 09-05A/09-
05B. (B) Comparison of down-accumulated DAPs identified in 09-05A/09-05B. (C) Predicated and
categorized functions of DAPs.

Based on functional analysis, the DAPs in the 09-05A CMS line, which were related to
protein binding, cytoskeleton organization, enzyme regulator activity, and catalytic activity
at the TE stage compared with those in 09-05B (Figure 4C; Table S5). Furthermore, DAPs in
09-05A, which were related to hydrolase activity, sucrose metabolic process, oxidoreductase
activity, calcium ion binding, lipid metabolic process, and TCA cycle, were particularly
enriched at the BI stage in 09-05A compared with those in 09-05B (Figure 4C; Table S5).
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2.5. MS Related DEGs and DAPs in Carbohydrate Metabolism and Energy Metabolism of
09-05A/B Lines of B. juncea

Carbohydrates provide a material basis for anther and pollen development, and
they are also an important component of the cell wall. In determining the exchange in
carbohydrate metabolism of 09-05A, DEGs and DAPs related to carbohydrate metabolism
were primarily mapped onto the starch, sucrose, and glycolysis pathways using the KEGG
database (Table 1). The regulatory pattern of related DEGs and DAPs in the starch and
sucrose metabolic pathways as well as the glycolysis pathway between 09-05A and 09-05B
is shown in Figure 5. During starch synthesis, the protein quantity of starch synthase
(SS) was decreased in 09-05A at the TE and BI stages compared with 09-05B. The protein
quantity of ADP-glucose pyrophosphorylase (AGPase) was increased at the TE stage, but
genes encoding AGPase were downregulated at the BI stage. During starch degradation in
09-05A compared with 09-05B, genes encoding α-amylose were downregulated, whereas
the protein quantity of α-amylose was increased at the BI stage. During sucrose synthesis,
the gene expression of sucrose synthase (SUS) and UDP-glucosepyro phosphosphprylase
(UGPase) were downregulated at the TE and at BI stages in 09-05A compared with 09-05B.
The gene expression and protein quantity of sucrose phosphate phosphatase (SPPase)
were downregulated and decreased at the TE and BI stages, respectively. During sucrose
degradation, the gene expression and protein quantity of invertase were downregulated
and decreased in 09-05A at the BI stage.

Table 1. List of DEGs and DAPs associated with carbohydrate metabolism in 09-05A/B lines of
B. juncea.

TE Stage Gene ID KO ID KO Description Annotation Regulation

DEG BjuA029507 K01176 alpha-amylase - DOWN
DEG BjuB037515 K00695 sucrose synthase AT5G49190 DOWN
DEG BjuB030962 K00695 sucrose synthase - DOWN
DEG BjuO008945 K00695 sucrose synthase - DOWN
DEG BjuA046136 K00963 UTP–glucose-1-phosphate uridylyltransferase - DOWN
DEG BjuB005071 K07024 sucrose-6-phosphatase – DOWN
DEG BjuB047043 K00844 hexokinase AT1G50460 DOWN
DEG BjuA021412 K00844 hexokinase - DOWN
DEG novel.400 K00850 6-phosphofructokinase 1 AT4G26270 DOWN
DEG BjuB040267 K00873 pyruvate kinase AT3G49160 DOWN

DAP BjuA041438 K00975 Glucose-1-phosphate adenylyltransferase large
subunit 1 AT5G19220 UP

DAP BjuA023577 K00703 Starch synthase, chloroplastic/amyloplastic AT5G24300 DOWN
DAP BjuA037309 K00844 Phosphotransferase AT1G47840 DOWN
DAP BjuB028137 K01810 Glucose-6-phosphate isomerase AT5G42740 UP
DAP BjuA006306 K00134 Glyceraldehyde-3-phosphate dehydrogenase AT1G13440 DOWN
DAP BjuA032999 K00927 Phosphoglycerate kinase AT1G79550 DOWN
DAP BjuB022100 K00927 Phosphoglycerate kinase AT1G79550 DOWN
DAP BjuA006685 K00873 Pyruvate kinase AT5G63680 DOWN

BI Stage Gene ID KO ID KO Description Annotation Regulation

DEG BjuB038490 K00975 glucose-1-phosphate adenylyltransferase AT4G39210 DOWN
DEG BjuB030220 K00695 sucrose synthase AT1G73370 DOWN
DEG BjuO006586 K00695 sucrose synthase AT4G02280 DOWN
DEG BjuB015313 K00695 sucrose synthase AT5G20830 DOWN
DEG BjuB037515 K00695 sucrose synthase AT5G49190 DOWN
DEG BjuB030962 K00695 sucrose synthase - DOWN
DEG BjuO008945 K00695 sucrose synthase - DOWN
DEG BjuA041856 K00963 UTP–glucose-1-phosphate uridylyltransferase AT5G17310 DOWN
DEG BjuA046136 K00963 UTP–glucose-1-phosphate uridylyltransferase - DOWN
DEG BjuO002531 K01193 beta-fructofuranosidase AT2G36190 DOWN
DEG BjuB047043 K00844 hexokinase AT1G50460 DOWN
DEG BjuA021412 K00844 hexokinase - DOWN
DEG novel.6397 K00850 6-phosphofructokinase 1 AT5G56630 UP
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Table 1. Cont.

BI Stage Gene ID KO ID KO Description Annotation Regulation

DEG BjuB016068 K00850 6-phosphofructokinase 1 - DOWN
DAP BjuB038082 K00703 Starch synthase, chloroplastic/amyloplastic AT5G24300 DOWN
DAP BjuB030962 K00695 Sucrose synthase AT1G73370 DOWN
DAP BjuO008945 K00695 Sucrose synthase AT5G20830 DOWN
DAP BjuO007590 K07024 SPP1 AT1G51420 DOWN
DAP BjuO002531 K01193 CwINV4 AT2G36190 DOWN
DAP BjuB026743 K01193 Beta-fructofuranosidase AT2G36190 DOWN
DAP BjuB042433 K00134 Gp_dh_N domain-containing protein AT3G04120 UP
DAP BjuB022100 K00927 Phosphoglycerate kinase AT1G79550 DOWN
DAP BjuB048068 K19893 X8 domain-containing protein AT5G58090 UP

Gene ID, according to B. juncea database. Annotation, according to Arabidopsis thaliana database. “-”—no
homologous gene in A. thaliana database. UP—A/B fold-change > 1.5; DOWN—A/B fold-change < 0.667.
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Figure 5. Integrated pathway of starch and sucrose metabolic process, glycolysis, TCA cycle,
and respiratory chain pathway based on DEGs and DAPs identified in flower buds of B. juncea.
(A) DEGs and DAPs involved in the integrated pathway in 09-05A/B lines at the TE stage.
(B) DEGs and DAPs involved in the integrated pathway in 09-05A/B lines at the BI stage.
DEGs and DAPs involved in these pathways in 09-05A were compared with those in 09-05B
at the TE and BI stages, respectively. Red circle, blue circle, red square, and blue square indi-
cate upregulated gene, downregulated gene, increased protein, and decreased protein, respec-
tively. Abbreviations are as follows: ACO—aconitase; ADPG—adenosine diphosphate glucose;
AGPase—ADP-glucose pyrophosphorylase; CA—citric acid; CS—citrate synthase; F-1-6-Bisp—
Fructose-1-6-bisphosphate;—; F-6-P—fructose-6-phosphate; GAPD—glyceraldehyde-3-phosphate
dehydrogenase; G-1-P—glucose-1-phosphate; G3P—glyceraldehyde 3-phosphate; G-6-P—glucose-
6-phosphate; GPI—glucose-phosphate isomerase; HK—hexokinase; IDH—isocitrate dehydroge-
nase; MDH—malate dehydrogenase; PA—pyruvic acid; PDH—pyruvate dehydrogenase; PEP—
phosphoenolpyruvate; PGK—phosphofructokinase; PK—pyruvate kinase; SDH—succinate de-
hydrogenase; SPPase—sucrose phosphate phosphatase; SS—starch synthase; Suc-6-P—sucrose-6-
phosphate; SUS—sucrose synthase; Susy—succinyl-CoA synthases; UDPG—uridine diphosphate
glucose; UGPase—UDP-glucosepyro phosphosphprylase.

In the glycolysis pathway, the key DEGs and DAPs were identified at the TE and
BI stages in 09-05A compared with 09-05B. The gene expression and protein quantity of
hexokinase (HK) were differentially downregulated and decreased at the TE and BI stages,
respectively (Figure 5). The gene expression and protein quantity of 6-phosphofructokinase
(PFK) were downregulated and decreased at the TE and BI stages, respectively. However,
a gene-encoding PFK was upregulated at the BI stage. The gene expression and protein
quantity of pyruvate kinase (PK) were downregulated and decreased at the TE stage.
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In addition, the expression of glyceraldehyde-3-phosphate dehydrogenase (GAPD) was
downregulated at the TE stage but upregulated at the BI stage. Notably, the expression of
pyruvate dehydrogenase (PDH) was increased at the TE stage, but the gene-encoding PDH
was downregulated at the BI stage in the pyruvic acid (PA) biosynthesis pathway.

In investigating the exchange in energy metabolism in flower buds of 09-05A, the DEGs
and DAPs related to energy metabolism were mapped onto the TCA cycle and oxidative
phosphorylation pathways using the KEGG database (Table 2). Among TCA -cycle-related
enzymes, citrate synthase (CS), aconitase (ACO), isocitrate dehydrogenase (IDH), succinyl-
CoA synthase (SUC), succinate dehydrogenase (SDH), and malate dehydrogenase (MDH)
differentially responded to MS in 09-05A compared with 09-05B at the TE and BI stages,
respectively (Figure 5). Genes encoding ACO and MDH were downregulated at the TE
and BI stages, respectively; the expression of MDH was decreased at the BI stage. The gene
expression of CS was downregulated and decreased at the TE and BI stages, respectively;
the protein quantity of CS was decreased at the TE stage. The protein quantity of SUC was
decreased at TE and BI stages. Compared with 09-05B, genes encoding SDH and MDH
were specifically downregulated in 09-05A at the BI stage. However, the protein quantity
of IDH was increased at the BI stage.

Table 2. List of DEGs and DAPs associated with energy metabolism in 09-05A/B lines of B. juncea.

TE Stage Gene ID KO ID KO Description Annotation Regulation

DEG BjuA041635 K03940 NADH dehydrogenase (ubiquinone) AT5G11770 UP
DEG BjuA017841 K01647 citrate synthase - DOWN
DEG novel.10587 K01647 citrate synthase AT2G42790 DOWN
DEG BjuA012893 K01681 aconitate hydratase - DOWN
DEG BjuB043684 K01681 aconitate hydratase AT4G26970 DOWN
DEG BjuA015174 K00417 ubiquinol-cytochrome c reductase subunit 7 AT5G25450 DOWN
DEG novel.1027 K01535 H+—transporting ATPase - DOWN
DEG BjuA047355 K02133 F-type H+—transporting ATPase subunit beta - DOWN
DEG BjuB036256 K02133 F-type H+—transporting ATPase subunit beta AT5G08690 DOWN
DEG BjuA033276 K02150 V-type H+—transporting ATPase subunit E - DOWN
DEG BjuB029476 K02150 V-type H+—transporting ATPase subunit E AT3G08560 DOWN
DEG BjuO006984 K02154 V-type H+—transporting ATPase subunit a - DOWN
DEG novel.8077 K02154 V-type H+—transporting ATPase subunit a - DOWN
DAP BjuB029356 K00627 Acetyltransferase component of pyruvate AT1G54220 UP
DAP BjuB040953 K01899 dehydrogenase complex AT5G08300 DOWN
DAP BjuO005963 K01214 Succinate—CoA ligase AT2G39930 DOWN
DAP BjuA013768 K02267 ISA1 AT5G57815 UP
DAP BjuB028190 K03953 Cytochrome c oxidase subunit AT2G20360 UP
DAP BjuB004697 K02154 V-type proton ATPase subunit a AT4G39080 DOWN
DAP BjuA015211 K02138 ATP synthase subunit d, mitochondrial AT3G52300 UP
DAP BjuO008600 K02154 V-type proton ATPase subunit a AT4G39080 UP

BI Stage Gene ID KO ID KO Description Annotation Regulation

DEG BjuA038905 K00627 pyruvate dehydrogenase E2 component - DOWN
DEG BjuA017841 K01647 citrate synthase - DOWN
DEG novel.10587 K01647 citrate synthase AT2G42790 DOWN
DEG BjuA015968 K00026 malate dehydrogenase AT2G22780 DOWN
DEG BjuA023314 K00234 succinate dehydrogenase AT2G18450 DOWN
DEG BjuA026416 K00235 succinate dehydrogenase AT5G40650 DOWN
DEG BjuB043684 K01681 aconitate hydratase AT4G26970 DOWN
DEG BjuA012893 K01681 aconitate hydratase - DOWN
DEG novel.1027 K01535 H+—transporting ATPase - DOWN
DEG BjuA047355 K02133 F-type H+—transporting ATPase subunit beta - DOWN
DEG BjuB036256 K02133 F-type H+—transporting ATPase subunit beta AT5G08690 DOWN
DEG BjuA033276 K02150 V-type H+—transporting ATPase subunit E - DOWN
DEG BjuB029476 K02150 V-type H+—transporting ATPase subunit E AT3G08560 DOWN
DEG BjuO006984 K02154 V-type H+—transporting ATPase subunit a - DOWN
DEG novel.8077 K02154 V-type H+—transporting ATPase subunit a - DOWN
DEG novel.10278 K02146 V-type H+—transporting ATPase subunit d - DOWN
DEG novel.4259 K02147 V-type H+—transporting ATPase subunit B - DOWN
DEG BjuA013499 K02152 V-type H+—transporting ATPase subunit G - DOWN
DEG BjuB014179 K02152 V-type H+—transporting ATPase subunit G - DOWN
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Table 2. Cont.

BI Stage Gene ID KO ID KO Description Annotation Regulation

DEG BjuB048951 K02152 V-type H+—transporting ATPase subunit G - DOWN
DEG novel.397 K02152 V-type H+—transporting ATPase subunit G - DOWN
DAP BjuA004114 K02152 V-type H+—transporting ATPase subunit G - DOWN
DAP BjuA029659 K00030 isocitrate dehydrogenase (NAD+) AT4G35650 DOWN
DAP BjuB024174 K00026 Malate dehydrogenase AT2G22780 DOWN
DAP BjuA003018 K00030 IDH1 AT4G35260 UP
DAP BjuA003018 K00030 IDH1 AT4G35260 UP
DAP BjuB019661 K00026 Malate dehydrogenase, chloroplastic AT3G47520 UP
DAP BjuB040953 K01899 Succinate—CoA ligase AT5G08300 DOWN
DAP BjuB027452 K03963 Uncharacterized protein AT2G02050 UP
DAP BjuA012602 K03966 Uncharacterized protein AT3G18410 UP
DAP BjuA004528 K03966 Uncharacterized protein AT3G18410 UP
DAP BjuB003649 K02266 Uncharacterized protein AT4G37830 DOWN
DAP BjuA001747 K02152 V-type proton ATPase subunit G AT4G23710 UP
DAP BjuB004697 K02154 V-type proton ATPase subunit a AT4G39080 DOWN
DAP BjuO008600 K02144 V-type proton ATPase subunit a AT4G39080 DOWN
DAP BjuA034730 K02150 VHA-E2 AT3G08560 DOWN
DAP BjuB029476 K02150 VHA-E2 AT3G08560 DOWN

Gene ID, according to B. juncea database. Annotation, according to Arabidopsis thaliana database. “-”—no
homologous gene in A. thaliana database. UP—A/B fold-change > 1.5; DOWN—A/B fold-change < 0.667.

We found that DEGs and DAPs involved in the oxidative phosphorylation pathway,
including respiratory chain complex I (NADH dehydrogenase), cytochrome c, complex III
(cytochrome reductase), complex IV (cytochrome oxidase), and complex V (ATP synthase),
were primarily downregulated in 09-05A (Table 2). In addition, the protein quality and gene
expression of complex I were increased and upregulated in 09-05A compared with 09-05B
at the two stages. During this process, ATP was produced because of the participation
of V-type proton ATPase, ADP, and Pi; H+ entered the membrane under the action of
ATPase along the proton channel. The DEGs and DAPs were primarily downregulated in
cytochrome reductase, cytochrome oxidase, and ATPase in 09-05A compared with 09-05B
at the TE and BI stages. Thus, the rate of ATP production and H+ transport was influenced
by downregulated genes encoding ATPase. These results indicated that 09-05A may have a
decreased energy-generation capacity at the TE and BI stages.

2.6. Metabolic Products and Enzyme Activity Analyses in 09-05A/B Lines of B. juncea

The contents of PA, acetyl-CoA, CA, and ATP and the activity of PDH were measured
in the buds of 09-05A and 09-05B at the TE and BI stages, respectively, to reveal the
carbohydrate and energy metabolic pathways of B. juncea involved in MS (Figure 6).
Compared with 09-05B, the results showed that the content of PA in the buds of 09-
05A was differentially decreased by 43% and 24% at the TE and BI stages, respectively
(Figure 6A,F). The activity of PDH in the buds of 09-05A significantly increased 1.7-fold
compared with those of 09-05B at the TE stage but decreased by 25% at the BI stage
(Figure 6B,G). The contents of acetyl-CoA and CA increased 2-fold and 1.2-fold at the
TE stage in 09-05A compared with 09-05B but decreased by 34% and 22% at the BI stage,
respectively (Figure 6C,D,H,I). The content of ATP slightly decreased with no evident
difference at the TE stage but decreased by 46% at the BI stage in 09-05A compared with
09-05B (Figure 6E,J). These results indicated that the substance and energy metabolism
in the buds of 09-05A were significantly affected particularly at the BI stage, which was
consistent with transcriptomic and proteomic analyses (Figure 6).
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and BI stages of B. juncea. (A,F) Determination of PA content. (B,G) Determination of PDH activity.
(C,H) Determination of acetyl-CoA content. (D,I) Determination of CA content. (E,J) Determination
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at p < 0.01 level was marked with “**”; at p < 0.05 level it was marked with “*”; while at p > 0.05 level
it was no marker which meant no significant difference between those samples.

3. Discussion

In flowering plants, the development of stamens and pollen requires high energy [29,30].
Carbohydrate and energy metabolism are basic metabolic pathways, which primarily
provide energy and carbon sources [31]. In this study, the conjoint transcriptomic and
proteomic analyses showed that most of the pathways included DEGs and DAPs related to
carbohydrate and energy metabolism, such as starch and sucrose metabolism, glycolysis
pathway, TCA cycle, and oxidative phosphorylation pathway (Tables 1 and 2). In plants,
sugar metabolism, including sugar biosynthesis, degradation, transport, and its regulation,
plays an essential role in male reproduction [32]. Inhibiting enzymes in starch and sucrose
metabolism decreases the amount of glucose entering glycolysis pathway. Consequently,
this change will affect the TCA cycle by reducing PA content as a respiratory substrate.
Damage of the TCA cycle will affect the mitochondrial respiratory chain indirectly and
previous research has shown that defects in sugar metabolism and TCA cycle often result
in MS [33]. Furthermore, when the respiratory chain is inhibited, excess electrons interact
directly with oxygen molecules to produce ROS, which may trigger PCD to cause MS [34,35].
Therefore, our analysis provided important information for identifying genes/proteins
related to MS and further exploring the molecular regulation mechanism of MS in 09-05A
of B. juncea.

3.1. Microspores Are Defective with Degraded Cellular Components and Altered Pollen Wall
in 09-05A

After the morphogenesis of the anther, the microspores are enclosed by the tapetum,
which could secrete sporopollenin and provide essential nutrients for microspore devel-
opment by secreting vesicles and self-degradation [36,37]. Studies have shown that the
abnormal PCD of tapetum will affect pollen exine pattern formation and microspore devel-
opment, thereby leading to pollen abortion and MS [38,39]. Che et al. [40] suggested that
over-vacuolization and premature death could cause defective functions of the tapetum,
which affected later anther development in the pepper sterile line. In addition, organelles,
particularly the chloroplast and mitochondrion, play an essential role in microspore devel-
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opment. In chloroplasts, starch accumulation is necessary for microspore development, and
it is a vital feature of fertile pollen [7]. Previous research has demonstrated that perturbed
polysaccharide metabolism can lead to unusual starch storage and cause poor pollen wall
formation [41,42]. The genes encoding glycosyltransferase enzyme families have also been
reported to be associated with cell wall synthesis and degradation [43]. The mitochondrion
is a crucial organelle for metabolic pathways such as respiratory electron transfer, ATP
synthesis, and TCA cycle [44,45]. Considerable research has showed that the mitochondria
might be involved in triggering death of male reproductive organs by affecting the level of
ATP or ROS production [46]. In our study, the anthers of 09-05A compared with 09-05B
became longer, and shriveled with no evident pollen grains on the surface (Figure 1C), and
pollen grains were deformed because of the abnormal development at the BI stage (Fig-
ure 2G). Further TEM observation found that cellular components were evidently degraded
with a defective pollen wall (Figure 2J) in 09-05A compared with 09-05B at the BI stage.
Based on these results, we concluded that the abnormal degraded cellular components and
morphologically altered pollen exine wall may cause the abnormalities of microspores and
MS in 09-05A of B. juncea.

3.2. Damage to Starch–Sucrose Metabolism and Glycolysis Pathway May Inhibit the Production of
Respiratory Substrate in 09-05A

During pollen development, sugars provide energy and nutrition for pollen matura-
tion [43]. The absence of starch and sucrose in pollen grains was found to be associated
with MS [47,48]. Recent analyses have also indicated that downregulated genes encoding
sucrose synthesis, transport, and degradation, such as SPP2, CsSUT1, and invertase in
a male sterile line, could trigger MS through the resultant perturbation in carbohydrate
metabolism [43,49,50]. Among starch and sucrose metabolic pathways, four key enzymes,
including AGPase, SS, UGPase, and invertase, have crucial roles in starch and sucrose
metabolism. The research has shown that the lack of AGPase and SS in male sterile line
might directly result in the reduction in starch, disturbing male reproduction and pollen
sterility [51,52]. Based on previous reports, UGPase catalyzes the reversible production
of glucose-1-phosphate (G-1-P) and UTP to UDP-glucose and pyrophosphate, and the
inactivation of the UGPase1 gene may lead to MS in rice [53,54]. The significantly reduced
activity of invertase can cause an inability to metabolize incoming sucrose to hexoses,
which may lead to pollen-developmental lesion in the wheat K-CMS line [55]. In addition,
the glycolysis pathway is used as a respiratory substrate through the conversion of glucose
to PA [56]. HK catalyzes the first step in glycolysis, and deficiency of hexokinase HXK5
impairs the utilization of starch in pollen grains and cause MS in rice [57]. PK plays a role
in regulating cell metabolism by catalyzing the conversion of phosphoenolpyruvate (PEP)
and ADP to ATP and PA as a respiratory substrate in glycolysis [58]. In a previous study,
the downregulation of a PK-responsive gene might decrease carbohydrate accumulation
in the flowers of broccoli CMS line [59]. In our study, a series of DEGs/DAPs, including
the four aforementioned key enzymes that regulate the metabolism of starch and sucrose
used for energy supply, was downregulated in 09-05A compared with 09-05B (Figure 5 and
Table 1). In addition, HK, PFK, and PK, which were included in glycolysis as rate-limiting
enzymes, catalyzing irreversible chemical reactions, were differentially downregulated in
09-05A (Table 1). The conjoint analysis also showed that the protein quantity of phospho-
fructokinase (PGK) was decreased in 09-05A (Figure 5). Furthermore, we measured the
content of PA found in the buds of 09-05A were significantly lower than that of 09-05B at
the TE and BI stages (Figure 6A). These findings indicated that the downregulation of key
enzymes involved in the starch–sucrose metabolism and glycolysis pathway may greatly
reduce the amount of PA as a respiratory substrate entering the TCA cycle, thereby affecting
the mitochondrial respiratory chain indirectly and probably inducing MS in 09-05A of
B. juncea.
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3.3. Damage to the TCA Cycle and Respiratory Chain May Inhibit the Production of ATP
in 09-05A

In previous studies, defects in the TCA cycle may cause MS [60]. Among these
enzymes, PDH plays a role in regulating cell metabolism by catalyzing the conversion
of PA to acetyl-CoA and NADH entering TCA [58]. A previous study has shown that
inhibiting the activity of PDH in anthers could cause MS in sugar beet [61]. CS is the
initial enzyme of the TCA cycle, which plays an essential role in energy supply for pollen
development [62]. In pepper, transcriptional analysis revealed that the gene expression of
CS in anthers of the CMS line was lower than that in the maintainer [63]. IDH catalyzes the
oxidative decarboxylation of isocitrate to produce α-ketoglutarate and CO2, which is an
irreversible and rate-limiting step in the TCA cycle. In addition, dysfunctional SDH could
lead to abnormal gametophyte development, aborted pollen, and decreased seed quantity
in Arabidopsis [64]. Mitochondrial ATP synthesis is driven by electron transport in the inner
membrane and the demand for ATP is highly increased during pollen development in
higher plants. NADH dehydrogenase is the first enzyme in the mitochondrial electron
transfer chain, which is a major site of premature electron leakage to oxygen, and it plays
a significant role in triggering apoptosis [65,66]. Previous studies have shown that the
alteration of mitochondrial-encoded subunits of ATPase may inhibit ATP production and
induce MS in plants [67]. In our present analysis, other downregulated enzymes apart from
CS and SDH, including ACO, succinyl-CoA synthases (Susy), and MDH, were identified
in the TCA cycle (Figure 5). Moreover, we found that the protein quantity of IDH was
increased in 09-05A at the BI stage, which was consistent with the results of a previous
study; that is, the overexpression of the maize IDH gene Zm00001d008244 could disturb
plant fertility [68]. Furthermore, the activity of PDH in the buds of 09-05A was decreased
at the TE stage compared with those of 09-05B (Figure 6B). These studies indicate that all of
these changes may have reduced the amount of coenzymes (NADH and FADH2) produced
in the TCA cycle; thus, fewer coenzymes will enter the respiratory chain, and the formation
of ATP will decrease. Most DEGs and DAPs regulating cytochrome reductase, cytochrome
oxidase, and ATPase were downregulated in the respiratory chain in 09-05A compared with
09-05B (Table 2). Moreover, we found that the content of ATP was increasingly reduced at
the BI stage in 09-05A (Figure 6J), and many studies have detected lower ATP production
in some CMS flowers [69,70]. Therefore, the change in the abundance of these proteins
might result in abnormal energy metabolism pathway, which leads to an insufficient supply
of critical substrates, thereby reducing the efficiency of the energy supply during pollen
development, and leading to MS in 09-05A of B. juncea.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

The CMS line 09-05A and its maintainer line 09-05B were cultivated in the same
experimental plot in Ningbo Academy of Agricultural Sciences, Zhejiang, China. The
plants were grown in the greenhouse (25 cm × 20 cm in plant spacing) under the normal
environmental conditions with regular fertilizer and water management. This CMS line 09-
05A was developed via multiple backcrosses between the winter stem mustard oxa CMS line
and spring stem mustard maintainer line. After flowering, the sterile and fertile plants were
identified, and the buds at the TE and BI stages were collected (three biological replicates)
from the individual plants for transcriptomic and proteomic analyses. The collected plant
materials were frozen in liquid nitrogen and stored at −80 ◦C for further analysis.

4.2. Morphological and Cytological Observation

Floral buds at the TE and BI stages separately from 09-05A and 09-05B were fixed with
2.5% glutaraldehyde in phosphate buffer (pH 7.0) overnight, and post-fixed with 1% OsO4
in phosphate buffer for 1 h. Then, the specimens were dehydrated through a graded series
of ethanol and embedded in Spurr resin. Semi-thin sections (1 µm) were sliced under an
ultramicrotome (LKB 11800, Stockholm, Sweden), stained with 0.5% toluidine blue, and
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photographed with a fluorescence microscope (DMLB, Leica, Germany). For TEM, ultrathin
sections (70 nm) were obtained and stained with uranyl acetate, followed by alkaline lead
citrate, and observed in a transmission electron microscope (H-7650, Hitachi, Japan).

4.3. RNA Extraction for Transcriptomic Analysis

Total RNA was isolated from 100 mg of buds from 09-05A and 09-05B at the TE
and BI stages, respectively, using the RNAprep pure Plant Kit (Tiangen Biotech, Beijing,
China) according to the supplier’s instruction. Total RNA was treated with RNase-free
DNase I (Tiangen Biotech). Three independent biological replicates for each sample were
included. DNA-free total RNA was used for Illumina Tru-seq library preparation according
to the manufacturer’s instruction. RNAs from three biological replicates were sequenced
separately at Beijing Novogene Bioinformatics Technology Co., Ltd. (Beijing, China), using
Illumina Hiseq X-Ten.

4.4. Transcriptomic Sequencing, Data Processing, and Transcriptomic Analysis

Total RNA was submitted to Novogene in Beijing (Novogene. https://en.novogene.
com/; accessed on 1 May 2022) for library construction and RNA sequencing. Messen-
ger RNA was enriched by oligo(dT)-attached magnetic beads for cDNA synthesis. Then,
size-selected and adaptor-ligated cDNA fragments were purified for library construction.
The cleaved RNA fragments by fragmentation buffer were transcribed into first-strand
cDNA using reverse transcriptase and random hexamer primers. Subsequently, second-
strand cDNA synthesis was performed using DNA polymerase I and RNase H. After
purification and end-repair, the fragments were ligated to sequence adaptors and ampli-
fied by polymerase chain reaction (PCR). PCR products were purified with AMPure XP
system (Beckman Coulter, Beverly, CA, USA) Amplified cDNA libraries were evaluated
by using an Agilent 2100 Bioanalyzer (Agilent, Palo Alto, CA, USA). Library prepara-
tions were sequenced on an Illumina HiSeq X-Ten platform and 150 bp paired-end reads
were generated.

Raw reads were cleaned by removing reads containing adapter, ploy-N, and low-
quality reads from raw data. The Q20 (the percentage of bases with a Phred value of
>20), Q30 (the percentage of bases with a Phred value of >20), and GC (base G and C)
content of clean data was calculated. All downstream analyses were based on clean, high-
quality data. All clean reads were mapped onto B. juncea reference genomes (Brassica juncea.
http://brassicadb.org/brad/datasets/pub/Genomes/Brassica_juncea/V1.5/; accessed
on 1 May 2022). An index of the reference genome was built, and paired-end clean reads
were aligned to the reference genome using Hisat2 v2.0.5. FragmentsPer Kilobase Per
Million (FPKM) was used to show the expression value. The fold-change was calculated
by 09-05A/09-05B. DESeq2R package was applied to identify the DEGs with a p-value of
<0.05 and fold-change of >1.5 or <0.667.

4.5. Total Protein Extraction and Peptide Preparation

In brief, samples were individually milled to powder in a mortar with liquid nitrogen
and then mixed with lysis buffer (containing 50 mM Tris-HCl−pH 8, 8 M urea, and 0.2%
SDS). Then, the homogenate was incubated through ultrasonication on ice for 5 min
and centrifuged at 12,000× g for 15 min at 4 ◦C. Protein concentration was determined
using a Bradford assay (Beyotime Biotechnology, Shanghai, China) after transferring the
supernatant to a clean tube. The supernatant was reduced by adding 2 mM of DTT at
56 ◦C for 1 h. Afterward, sufficient iodoacetic acid was added to the sample, and the
mixture was incubated in darkness for 1 h. Next, sufficient iodoacetamide was added to
the sample, and the mixture was incubated for 1h at room temperature in the dark. A
fourfold volume of precooled acetone was mixed with the samples and incubated at−20 ◦C
for at least 2 h; the samples were then centrifuged to collect precipitation. The extracts
were centrifuged at 12,000× g for 15 min at 4 ◦C. The pellets were collected, washed two
times with cold acetone, and dissolved in a buffer containing 0.1 M triethylammonium
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bicarbonate (TEAB, pH 8.5) and 8 M urea. Protein concentration was determined using
the Bradford assay (Beyotime Biotechnology) with bovine serum albumin as the standard.
Supernatant from each sample containing 0.1 mg of protein was digested with Trypsin
Gold (Promega, Madison, WI, USA) at 37 ◦C for 16 h. The peptide was dried by vacuum
centrifugation after the removal of urea using a C18 desalting cartridge.

4.6. LC–MS/MS Analysis

LC–MS/MS analyses were performed using an Orbitrap Q Exactive HF-X mass spec-
trometer (Thermo Fisher Scientific, Bremen, Germany) combined with an EASY-nLC™
1200 UHPLC system (Thermo Fisher Scientific, Waltham, MA, USA). The dried fractions
were resuspended in 0.1% formic acid (FA) and then loaded onto an Acclaim PepMap 100
C18 Nano-Trap column (2 cm × 100 µm, 5 µm). Peptides were separated on a Reprosil-Pur
120 C18-AQ analytical column (15 cm × 150 µm, 1.9 µm) using a 60 min linear gradient
from 5% to 100% eluent B (0.1% FA in 80% acetonitrile in eluent A (0.1% FA in H2O) at a
flow rate of 600 nL/min. The solvent gradient was as follows: 5–10% B, 2 min; 10–30% B,
49 min; 30–50% B, 5 min; 50–90% B, 1 min; and 90–100% B, 5 min.

The separated peptides were analyzed by using a Q Exactive HF-X mass spectrometer
(Thermo Fisher Scientific, Bremen, Germany) equipped with a Nanospray Flex™ iron
sucrose (ESI), spray voltage of 2.3 kV, and ion transport capillary temperature of 320 ◦C.
Full MS scans from 350 to 1500 m/z were acquired at a resolution of 60,000 (at 200 m/z),
automatic gain control (AGC) target value of 3 × 106, and a maximum ion injection time
of 20 ms. Based on the full MS scan, 40 of the abundant precursor ions were selected for
high-energy collisional dissociation fragment analysis at a resolution of 15,000 (at 200 m/z),
an AGC target value of 1 × 105, a maximum ion injection time of 45 ms, a normalized
collision energy of 27%, an intensity threshold of 2.2 × 104, and a dynamic exclusion
parameter of 20 s.

4.7. Protein Identification from Mass Spectrometry Data

Proteins were identified using Proteome Discoverer 2.2 (PD 2.2, ThermoFisher Scien-
tific) with B. juncea database (Brassica juncea. http://brassicadb.org/brad/datasets/pub/
Genomes/Brassica_juncea/V1.5/; accessed on 1 May 2022). The search parameters were
set as follows: a mass tolerance for precursor ion scans and product ion scans were 10 ppm
and 0.02 Da, respectively. Carbamidomethyl was used as fixed modifications in PD 2.2.
Variable modifications in PD 2.2 included lysine, N-terminus acetylation, and methionine
oxidation. With regard to identification, at the peptide and protein levels, the false discov-
ery rate was less than 1.0%, and proteins were identified with at least one unique peptide.
DEPs between 09-05A and 09-05B samples were identified in accordance with the criteria of
p-value of less than 0.05 and fold-change of >1.5 (significantly upregulated) or fold-change
of <0.667 (significantly downregulated).

4.8. Functional Annotation

A summary of GO annotation categories, including molecular function, biological
process and cellular component, was generated using TBtools made in-house (TBtools.
https://github.com/CJ-Chen/TBtools/releases; accessed on 1 May 2022). Pathway map-
ping of identified proteins and genes was performed using a genomes (KEGG) database
(KEGG. http://www.genome.jp/kegg/; accessed on 1 May 2022).

4.9. Metabolic Products and Enzyme Activity Analyses

The content of PA, acetyl-CoA, and ATP was measured using a commercially available
PA Content Assay Kit (Geruisi, Suzhou, China), acetyl-CoA Content Assay Kit (Geruisi,
Suzhou, China), and ATP Content Assay Kit (Geruisi, Suzhou, China). In brief, flower buds
were ground into a homogenate and then centrifuged for 10 min at 12,000 rpm and 4 ◦C.
The absorbance of the collected supernatant of PA, acetyl-CoA, and ATP was measured
at 520, 340, and 700 nm using UV spectrophotometry, respectively. Total PA, acetyl-CoA,
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and ATP levels were expressed as µg·g−1, nmol·g−1, and µmol·g−1 fresh weight (FW), and
three biological replicates were performed.

The content of CA and PDH activity were assayed using a CA Assay Kit (Solarbio,
Beijing, China) and a PDH Assay Kit (Solarbio, Beijing, China), respectively. In brief, flower
buds were ground into a homogenate and then centrifuged for 10 min at 11,000× g and
4 ◦C. The absorbance of the collected supernatant of CA and PDH was measured at 545 and
605 nm using UV spectrophotometry, respectively. Total CA and PDH levels were expressed
separately as µmol·g−1 and U·g−1 FW. The experiments were repeated three times.

4.10. Statistical Analysis

SPSS statistical software (version 22.0; IBM, Armonk, NY, USA) was used for sta-
tistical evaluation. Statistical significance was evaluated by Student’s t-test or one-way
ANOVA when only two groups were compared. A p-value of less than 0.05 was considered
statistically significant.

5. Conclusions

In exploring the molecular mechanism of MS of B. juncea, the buds at the TE and
BI stages of 09-05A and its maintainer line 09-05B were collected for transcriptomic and
proteomic analyses. A total of 11,832 transcripts and 1780 protein species were identified to
have a significantly changed pattern at the transcriptomic and proteomic levels, respectively.
Functional annotation analyses indicated that these DEGs/DEPs were involved in flower
development and pollen development, and they may be related to the reduction in fertility
in B. juncea. Several key biological processes such as sucrose metabolism, TCA cycle, and
oxidoreductase activity were found to be closely related to MS in 09-05A. Among these
pathways, the downregulated expression of key genes/proteins, leading to an insufficient
supply of critical substrates and ATP, might result in the damage of carbohydrate and
energy metabolism and eventually lead to MS in 09-05A. Therefore, the conjoint analysis
of the transcriptome and proteome will improve our understanding of genes and path-
ways associated with MS in B. juncea and provide insights into the molecular regulatory
mechanism of MS in plants.
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