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Abstract 
Xenopus laevis tadpoles exhibit an avoidance behavior when they encounter a moving visual 
stimulus. A visual avoidance event occurs when a moving object approaches the eye of a free-
swimming animal at an approximately 90-degree angle and the animal turns in response to the 
encounter. Analysis of this behavior requires tracking both the free-swimming animal and the 
moving visual stimulus both prior to and after the encounter. Previous automated tracking soft-
ware does not discriminate the moving animal from the moving stimulus, requiring time-consum-
ing manual analysis. Here we present X-Tracker, an automated behavior tracking code that can 
detect and discriminate moving visual stimuli and free-swimming animals and score encounters 
and avoidance events. X-Tracker is as accurate as human analysis without the human time 
commitment. We also present software improvements to our previous visual stimulus presenta-
tion and image capture that optimize videos for automated analysis, and hardware improve-
ments that increase the number of animal-stimulus encounters. X-Tracker is a high throughput, 
unbiased, and significant time-saving analysis system that will greatly facilitate visual avoidance 
behavior analysis of Xenopus laevis tadpoles, and potentially other free-swimming organisms. 
The tool is available at https://github.com/ClineLab/Tadpole-Behavior-Automation. 
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Introduction  
 

Animal behavior is a valuable endpoint to as-
sess brain function in healthy and disease 
states. From insects to rodents to non-human 
primates, behavioral outputs have been instru-
mental in assessing brain function and explor-
ing the underlying neuronal circuitry (Bala et 
al., 2020; Budick and O'Malley, 2000; Gal et 
al., 2020; Hubel and Wiesel, 1959, 1962, 1968; 
Lust and Tanaka, 2019; Neuhauss, 2003; 
Niell, 2015; Portugues and Engert, 2009; 
Storchi et al., 2020; Zhu, 2013). Behaviors in 
frogs have been used extensively to evaluate 
brain function. For instance, altered fly 

catching behavior following the famous eye-ro-
tation experiments by Roger Sperry demon-
strated fundamental principles of visual system 
connectivity (Sperry, 1944), and similar studies 
in the African clawed frog Xenopus laevis 
demonstrated the impact of visual input on vis-
ual circuit plasticity (Udin, 1985). More re-
cently, establishment of a range of reproduci-
ble and quantifiable behaviors in Xenopus tad-
poles has greatly expanded the use of this ex-
perimental system (Dong et al., 2009; Gambrill 
et al., 2019; Khakhalin et al., 2014; Liu and 
Cline, 2016; Liu et al., 2018; McKeown et al., 
2013; Pratt and Khakhalin, 2013; Shen et al., 
2014; Shen et al., 2011; Truszkowski et al., 
2016). In the developing Xenopus tadpole, vis-
ually-guided behaviors have been particularly 
useful in demonstrating adverse effects on 
brain function in models of neurodevelop-
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mental disorders such as autism, seizure, and 
brain injury (Bell et al., 2011; James et al., 
2015; Liu and Cline, 2016; McKeown et al., 
2013; Spawn and Aizenman, 2012; 
Truszkowski et al., 2016). Tadpoles exhibit a 
visual avoidance behavior when they encoun-
ter a moving stimulus (Dong et al., 2009; 
McKeown et al., 2013; Shen et al., 2011). Al-
terations to visual system circuitry by genetic 
manipulation (Gambrill et al., 2019; Liu and 
Cline, 2016; Liu et al., 2018; Shen et al., 2014; 
Truszkowski et al., 2016), drug treatment 
(James et al., 2015; Khakhalin et al., 2014; 
Spawn and Aizenman, 2012), or brain injury 
(McKeown et al., 2013) result in deficits in the 
visual avoidance response, which can be re-
versible, highlighting the importance of study-
ing these behaviors to neurodevelopment re-
search. 

Despite the value of behavioral assays in 
neuroscience research (Datta et al., 2019; 
Krakauer et al., 2017; Tully et al., 1994), anal-
ysis of the complex datasets collected during 
naturalistic behavior experiments has been 
challenging and time-consuming, potentially 
involving subjective investigator-based analy-
sis (Mathis et al., 2018). Automated analysis of 
behavior including optimized video and other 
quantifiable endpoints, as well as computer-
based analysis of datasets, increases the effi-
ciency and reproducibility of behavioral assays 
(Bala et al., 2020; Batty E, 2019; Gal et al., 
2020; Storchi et al., 2020). Moreover, high-res-
olution imaging coupled with automated anal-
ysis has resulted in the identification of new 
behaviors that would otherwise have been 
missed by the human experimenter (Batty E, 
2019; Card and Dickinson, 2008; Creton, 
2009; Pereira et al., 2019; Storchi et al., 2020). 
Nonetheless, the immense power of behav-
ioral research is often bypassed due to the 
time commitment of the experiments and the 

complexity of the data (Krakauer et al., 2017), 
a problem that can be addressed by auto-
mated analysis of behavior data (Datta et al., 
2019; Gal et al., 2020; Storchi et al., 2020). 

Here we present X-Tracker, an automated 
behavior tracking code that can detect and dis-
criminate moving visual stimuli and free-swim-
ming animals and score encounters and avoid-
ance events. We also present software im-
provements to our previous visual stimulus 
present-ation and video capture to optimize 
image data for automated analysis and hard-
ware improvements that increase the number 
of animal-stimulus encounters. X-Tracker in-
creases resolution of specific events contrib-
uting to the behavior, speeds analysis and de-
creases inter-investigator variability compared 
to manual analysis. X-Tracker is as accurate 
as manual human analysis without the human 
time commitment. These tools greatly facilitate 
visual avoidance behavior analysis of Xenopus 
laevis tadpoles, and potentially other free-
swimming organisms.  
 
Methods 
 

Animals 
Albino Xenopus laevis tadpoles of either sex 
were obtained by in-house breeding or pur-
chased from Xenopus Express (Brooksville, 
FL). Tadpoles were reared in vivarium water 
(pH 7.0), on a 12h:12h light-dark cycle at 22°C. 
Tadpoles were assessed for visual avoidance 
behavior at stage 47 (Nieuwkoop and Faber, 
1967), as described previously (McKeown et 
al., 2013). We found that animals are more 
likely to swim if there are other animals present 
in the chamber, therefore we test 5 animals per 
video in open field tests and 2 animals per lane 
in the channel chamber tests (Table 1). All an-
imal protocols have been approved by the 
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Institutional Animal Use and Care Committee 
of the Scripps Research Institute. 
 

Behavior Rig Specifications and System 
Requirements  
Chamber 
Channel chambers were machined out of 8mm 
thick optically transparent acrylic. The cham-
bers are 108mm x 165mm (4.25 x 6.5 inches) 
with 5 evenly spaced grooves (spaced 10mm 
apart) that are 8mm wide and 6mm deep, curv-
ing up to 4mm deep on the sides. To avoid dif-
fraction and shadows from the well edges, it is 
advisable to fill the wells to the rim for behavior 
assays.  
 

Lighting 
To visualize tadpoles, the behavior chamber is 
backlit with 4 infrared (850nm/ 940nm) Single 
Chip Flexible LED lighting strips (SMD3528-
600-IR, LED Lights World, Huake Limited, 
Guangdong, China) evenly spaced below the 
platform and flanking the projector (Figure 
1A,B). 
 

Projector 
Visual stimuli are presented using a micropro-
jector (3M, MPro110) positioned below a clear 
Plexiglass platform fitted with a translucent 
sheet of 3M (St. Paul, MN) projector screen 
(Figure 1A,B), as described previously 
(Gambrill et al., 2019; McKeown et al., 2013; 
Shen et al., 2011). 
 

Presentation Computer 
For presenting the visual stimulus, a Windows 
10 or later computer, capable of running 
Matlab 2014b and Psychtoolbox-3, is required. 
Matlab 2014b installations of Psychtoolbox-3, 
Image Acquisition Toolbox, and Image Pro-
cessing Toolbox software are all required to 
run the stimulus presentation. The system 
must be equipped with a NVIDIA graphics card 
to control the camera through Matlab using 

Psychtoolbox-3. At least 12 GB of RAM is rec-
ommended to run the stimulus presentation 
program. 
 

Camera 
X-Tracker is designed to utilize the Hamama-
tsu Electron Multiplier CCD Digital Camera 
C9100-50, which captures 28.1 frames per 
second at 1000x1000 pixel resolution. The 
DCAM-API Firebird Phoenix driver allows it to 
interface with the computer, while the Hama-
matsu adaptor for Image Processing Toolbox 
allows it to be controlled by Matlab. If another 
camera is utilized, it must be able to record at 
least 28-30 frames per second and be sup-
ported by Image Processing Toolbox; a list of 
supported cameras and required adaptors, if 
any, are listed on the Matlab website. 
 

Analysis Computer 
To run X-Tracker, a Windows 7 or later com-
puter, capable of running Matlab R2017b, is 
required. The system needs the Matlab Image 
Processing Toolbox to extract and analyze 
video frames. At least 32 GB of RAM are rec-
ommended, particularly when frequently utiliz-
ing the batch input functionality. 
 

User Instructions 
A detailed user manual is included in the Cline 
Lab GitHub repository. Briefly, after performing 
behavior assays, users will compile video data 
into a single folder. Then users will launch X-
Tracker in this folder using MatLab 2017b and 
select the X-Tracker code. The user will be 
asked to input selections for tadpole eye-gut 
distance, avoidance angle tolerance, speed 
and direction variability, and detection thresh-
old settings, and then run the program. The 
code will provide progress updates but is com-
pletely hands-free from this point. Data will be 
deposited in the form of Microsoft Excel 
spreadsheet file (.xls) and saved into the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2024. ; https://doi.org/10.1101/2024.10.10.617688doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.10.617688
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
McKeown, et al. X-Tracker Automated Visual Avoidance Behavior Software 

4 

original data folder. For detailed instructions, 
please see the User Manual in the ReadMe 
document in the Cline Lab GitHub repository at 
https://github.com/ClineLab/Tadpole-Behav-
ior-Automation. 
 
 
Results 
 

We will first describe the typical experimental 
design and analysis of visual avoidance be-
haviors currently used and then describe how 
we implemented improvements. We use visual 
avoidance behavior as an assay for visual sys-
tem function in Xenopus laevis tadpoles (Dong 
et al., 2009; Gambrill et al., 2019; McKeown et 
al., 2013; McKeown et al., 2017; Shen et al., 
2011). In typical behavior experiments, 
groups of 5 tadpoles were placed in a 
clear plexiglass open field chamber fit-
ted with a translucent 3M projector 
screen. Visual stimuli of randomly ar-
rayed 0.4cm diameter moving dots 
were created by a custom-written 
MatLab code and presented with a mi-
croprojector below the chamber (Fig-
ure 1A). Tadpoles were visualized with 
an array of infrared LEDs and video re-
cordings of tadpole movements and 
visual stimuli were captured with a Ha-
mamatsu ORCA-ER digital camera 
(McKeown et al., 2013). The entire 
system is enclosed in a light-tight com-
partment.  

Tadpole visual avoidance behavior was 
analyzed manually by post-hoc frame-by-
frame viewing and scoring of encounters and 
avoidance responses. An encounter is defined 
as a dot moving perpendicularly (within 90±15 
degrees) across the tadpole’s eye and an 
avoidance response is scored when a tadpole 
displays a sharp turn within 500ms of an 

encounter (McKeown et al., 2013; Shen et al., 
2011). Animals swim in an open field chamber, 
making the random occurrence of a 90 degree 
encounter rare. We scored responses to 10 
encounters per animal; therefore, animals 
were filmed for 1 minute to ensure that at least 
10 encounters occurred. Because of clutch-to-
clutch variation, every experiment included un-
treated control animals which also allowed 
evaluation of overall clutch health. Experi-
ments include multiple timepoints per animal 
and are repeated at least 3 times from inde-
pendent clutches. Overall, a typical experi-
mental design requires hundreds of animals 
per experiment, with thousands of encounters 
and avoidance responses counted (Table 1).  

 

 

In an effort to simplify and automate this 
visual avoidance behavior analysis, we have 
made 3 significant alterations to our behavior 
assay: 1) modified the behavior chamber to in-
crease the number of encounters, 2) modified 
the image capture resolution and lighting to in-
crease the quality and consistency of the vid-
eos, and 3) developed software to track both 
animals and dots and automatically score 
avoidance events. These are described below. 

Table 1. Comparison of Parameters between different behavior analysis methods   
(*typical experiment) 
 

 Open Field 
Manual 

Lap Channel 
Manual 

X-Tracker 
Automated 

Video Length (frames) 825-975 825-975 1800 
Video Length (seconds) 55-65 55-65 60 
Animals per video 5 10 10 
Animals per condition* 20 20 20 
Videos per condition per day 4 2 2 
Conditions per experiment* 5 5 5 
Timepoints per experiment* 8 8 8 
Total videos per experiment* 160 80 80 
Total animals per experiment* 100 100 100 
Events scored per animal 10 10 unlimited/all 
Events scored per experiment* 8,000 8,000 unlimited/all 
Analysis time per animal ~70s ~30s 2min 
Analysis time per video ~6min ~5min 20min 
Analysis time per experiment* ~16h ~6.7h n/a 
Biological replicates* 3 3 3 
Total analysis time ~48h ~20h n/a 
Total hands-on analysis time ~48h ~20h ~30s 
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Behavior chamber modifications – Channel 
System 
Tadpole eyes are on the sides of their heads 
and they respond most consistently to looming 
visual stimuli, a dot, approaching the eye per-
pendicularly (Dong et al., 2009; Khakhalin et 
al., 2014). Consequently, scoring visual avoid-
ance behavior in free-swimming tadpoles in 
large open field chambers was inefficient be-
cause requisite encounters were relatively rare 
(Figure 1C). To increase the frequency of tad-
pole encounters with the dot stimuli, we cre-
ated a chamber with channels that force ani-
mals to swim in a trajectory that is always per-
pendicular to the moving stimuli. The channel 
chamber is a custom 108mm x 165mm block 
of acrylic machined with 5 evenly-space 
grooves that are 140mm long, 8mm wide, and 
6mm deep (Figure 1D). The width of the chan-
nels is large enough for a tadpole to execute 
an avoidance response turn and is sufficient 
for 2 tadpoles to pass each other (Figure 2B). 
Because tadpoles tend to remain stationary in 
sharp corners, the channels were machined 
with a rounded bottom (8mm curving up to 
6mm) and rounded ends (140mm long chan-
nels curving to 135mm in length) to encourage 
the tadpoles to continue swimming. We ob-
served no obvious change in overall swimming 
behavior between animals in the channel 
chambers versus animals in the open field 
chamber, and animals in the channels were 
confirmed to exhibit an avoidance response to 
an approaching visual stimulus, detected as a 
rapid change in trajectory (Figure 2A, B). To 
evaluate whether the channels alter behavior, 
we tested the avoidance behavior of the same 
group of animals in both the open field and 
channel system over the course of several 
days, and scored avoidance events using 
manual analysis. While we saw a significant in-
crease in the number of scorable encounters 

per animal and the number of scorable animals 
per video using the channel chamber, we saw 
no significant difference in the average avoid-
ance responses between the open field and 
the channels (Figure 2C). By directing the ani-
mals to move perpendicularly to the visual 
stimuli, the channels increase the number of 
scorable encounters, resulting in both in-
creased speed and ease of analysis (Table 1). 
These data indicate that the channel chamber 

 
 
Figure 1. Xenopus visual avoidance behavior apparatus  
A) Behavior rig set-up showing the imaging chamber in the middle 
with the projector and lighting below and the camera above to rec-
ord video. B) Zoom of A showing the platform with IR LED lighting 
strips. Note that the lighting has to be placed slightly below the pro-
jector so as not to interfere with the visual stimulus projection. C) 
Image of Open Field assay showing 6 tadpoles in the arena and 
dot stimuli projected on the bottom of the chamber. This image was 
taken showing the IR LED arrays used previously (McKeown et al., 
2013). D) Image of the Channel assay showing 6 tadpoles, 2 per 
channel, and dot stimuli projected on the bottom of the chamber. 
This image was taken using the new IR LED strips. E) Heat map of 
the lighting from the Open Field image shown in C after filtering out 
the dots. Note the uneven field illumination from the IR LED arrays. 
F) Heat map of the lighting from the Channel image shown in D 
after filtering out the dots. Note the improved evenness of field illu-
mination using the distributed IR LED strips.  
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does not affect swimming or avoidance behav-
iors but does increase encounters, simplifying 
the analysis.  
 

Visual stimuli presentation/capture modifi-
cations  
Previously, we used 4 IR LED arrays to back-
light the behavior chamber to visualize the tad-
poles. This lighting system is sufficient for 
manual behavior analysis, but it creates an un-
even field illumination as shown by the heat 
map generated in Matlab (Figure 1E). This un-
even illumination is problematic for automated 
tracking software that relies on fixed threshold-
ing to identify objects. We created a more uni-
form illumination using 4 evenly spaced 

Infrared LED strips 
(SMD3528-600-IR, 

LED Lights World) 
(Figure 1B, F). In ad-
dition, we improved 
the captured images 
by upgrading the 
camera to a Hama-
matsu C9100-50 
which has increased 
sensitivity and reso-
lution, and a higher 
frame rate of 28.1 
frames per second. 
Utilizing the MP4 in-
stead of AVI video 
container format en-
abled us to improve 
the camera capture 
resolution of rec-
orded videos from 
80% to 95% quality 
while maintaining a 
manageable file size 
of 120MB.  

Changing out the 
camera required a concurrent change to the 
computer and the stimulus presentation and 
capture code. The computer hardware specifi-
cations are listed in the System Requirements 
section below and the Stimulus Presentation 
Code is available on the Cline Lab GitHub. 
Lastly, we modified the acquisition settings to 
collect a fixed number of 2250 frames of video 
in order to standardize the video length for 
analysis; the initial 450 frames are not scored 
by X-Tracker to ensure consistency regarding 
stimulus presentation start-up time (Table 1). 
Together these modifications allow for a higher 
quality uniform image which creates an optimal 
input for automated detection software. 

  

Figure 2. Channel system vs. Open Field for animal behavior 
A) Example avoidance response in the Open Field chamber. The animal is swimming toward the right 
when it visually encounters a moving dot approaching from the bottom of the image. The panels are shown 
in succession over 500ms total time. A trace of the avoidance response is provided in the last panel. B) 
Example avoidance response in the Channel system. The animal is swimming toward the right when it 
visually encounters a moving dot approaching from the bottom of the image. The panels are shown in 
succession over 500ms total time. A trace of the avoidance response is provided in the last panel. Note 
that the dots are presented as the same size (0.2um radius) in both systems, however they appear different 
due to camera differences described in the text, and likely due to differences in the density and refractive 
index of the acrylic chambers. C) Manual analysis of avoidance indices comparing Open Field (grays) vs. 
Channels (blues) over several days in the same group of animals. Data are shown as average ± SEM 
overlaid with individual data points. There is no significant difference between the groups by ANOVA with 
post hoc Tukey’s for multiple comparisons. 
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X-Tracker: Automated Behavior Analysis 
Software  
To automate the visual avoidance behavior 
analysis, we were tasked with creating a pro-
gram that would be able to track the moving 
visual stimuli (white dots on a dark back-
ground) while also simultaneously track mov-
ing animals (dark tadpoles on an alternating 
white/dark background), and then overlay the 
two and report both encounters and avoidance 
events. While it is possible to filter out the vis-
ual stimuli so that the tadpoles can see them 
but the camera does not, doing so would pre-
clude the investigator from being able to man-
ually check the data and it 
would exclude any post-
hoc re-analysis of years of 
pre-existing data. To ad-
dress these needs, we de-
veloped X-Tracker, a 
Matlab code that digitally 
extracts the visual stimuli 
from the video data, 
tracks the tadpoles, iden-
tifies the stimuli, and then 
subsequently overlays the 
visual stimuli back onto 
the tadpole tracks to score 
encounters and avoid-
ance events.  

As shown in the 
flowchart (Figure 3), X-
Tracker first calculates the 
mean background and 
then subtracts the stimu-
lus dots from each frame. 
To obtain the mean back-
ground, the program aver-
ages the dot-containing 
frames together, and then 
subtracts each frame from 
this mean background so 

that only moving objects (dots and tadpoles) 
remain. It removes the stimulus dots by thresh-
olding, as the tadpoles are darker than the 
mean background while the dots are lighter. 
The program then uses Blob Filtering methods 
contained within Matlab to extract the locations 
of the tadpoles based on the density of their 
gut and assigns each tadpole a location based 
on distance to the next location. At each frame, 
for each extracted tadpole, X-Tracker uses 
Kalman filtering to predict where the tadpole 
may swim in the subsequent frame. It then 
uses the Hungarian algorithm to connect tad-
pole detections in this subsequent frame to 

 
 
Figure 3. Computational flow-chart of X-Tracker automated behavior analysis code 
The left side of the flow-chart describes the preliminary sequence of steps X-Tracker performs to obtain 
the coordinates of the dots and tadpoles at each video frame. The boxed portion depicts the logic used 
to assess when an encounter occurs and how to score it when one does occur. A tadpole must both 
be within range of a dot and be swimming at an angle within 15° degrees of perpendicular to the dot’s 
trajectory in order for an encounter to be scored; the tadpole must then turn 90±20° from its prior tra-
jectory for the encounter to be scored as an avoidance. Total avoidances and encounters are summed 
at the end of the program. 
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tadpoles in the current frame based on these 
predictions, thus creating a continuous swim-
ming trajectory for each tadpole. Animals are 
only scored if they are moving at a minimum 
rate of 50 pixels/second. Tadpoles must be 
moving to be scored for an avoidance re-
sponse. Any animal that is not moving will be 
considered part of the background and will not 
be assigned or scored. 

X-Tracker determines the location of radius 
of each oncoming stimulus dot using the origi-
nal video. Images annotated with the output of 
these calculations are shown as a biological 
flowchart in Figure 4. Stimulus dots are pre-
sented in a random array at a uniform size and 
speed, and are detected by X-Tracker via im-
age thresholding to extract the lighter dots fol-
lowed by morphological opening with a disk-
shaped structuring element. The dot presenta-
tion software is also available in the Cline Lab 
GitHub repository. Partial dot artifacts created 
by edge-effect diffraction are filtered out using 
a circularity threshold so that only round stimuli 
are tracked (Figure 4, asterisks). Using the lo-
cations of the tadpoles and the locations and 
radii of the dots, the data is analyzed to identify 
frames in which a tadpole comes into contact 
with, or encounters, a dot. 

Encounters between a tadpole and a dot 
are determined as follows. To estimate the co-
ordinates of the field of view, X-Tracker ex-
pands the previously determined tadpole loca-
tion to include the eyes. We determined that at 
stage 47, the average distance between the 
tadpole’s gut and eyes is approximately 15 pix-
els, or ~250um. Using this distance as a ra-
dius, points in a semicircle around the head 
and eyes are defined and assigned as new co-
ordinates for the tadpoles. This value can be 
adjusted to accommodate tracking of larger or 
smaller animals as needed. At stage 47 
(Nieuwkoop and Faber, 1967), when tadpoles 

 
 
Figure 4. Biological flow-chart of X-Tracker automated analysis  
Images are shown from different stages throughout the automated anal-
ysis. A small field of view is shown for presentation purposes. The dots 
are extracted, and tadpoles are identified by Blob Detection methods. 
Locations for both dots and tadpoles are identified, saved, and then 
overlaid to determine the number of encounters and the fraction of avoid-
ance events. Asterisks denote partial dot artifacts created by edge-effect 
diffraction that are subsequently filtered out using a circularity threshold 
in the software, as indicated by the dotted red outlines. 
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first begin to exhibit a visual avoidance re-
sponse (Dong et al., 2009; McKeown et al., 
2013), the visual focal distance is approxi-
mately 250um (Richards et al., 2012), there-
fore we set the software to define an encounter 
when a dot and an eye are juxtaposed, in ad-
jacent pixels. 

Once the program has detected a tadpole-
dot encounter, it will then determine whether 
the animal exhibited an avoidance reaction in 
response to the dot stimulus. Based on set cri-
teria from previous manual analysis protocols, 
we define an avoidance as a change in trajec-
tory within 500ms of an encounter between the 
eye of a moving tadpole and a perpendicularly 
approaching dot (Dong et al., 2009; McKeown 
et al., 2013; Shen et al., 2011). In both the 
open field and the channel chambers, an 
avoidance response is scored when it results 
in a turn of 90±20 degrees (Figure 2A, B) 
(Dong et al., 2009; McKeown et al., 2013; 
Shen et al., 2011). 

To facilitate the usage of X-Tracker for 
high-throughput analysis, we have streamlined 
the analysis of multiple videos with a batch in-
put function. Utilizing this function, X-Tracker 
can be run within a folder containing multiple 
video recordings. The program will then exe-
cute with same preset settings for each file in 
sequence, saving the results in a single sum-
mary file. This batch input feature allows for the 
automated analysis of a large number of vid-
eos without any additional input required from 
the user for each file. The batch input code for 
X-Tracker is also available in the Cline Lab 
GitHub repository. 

To validate the data generated by X-
Tracker, we tested a manually scored dataset 
against the code. The avoidance index for this 
clutch was identical between the human man-
ual scoring with an average ± SEM of 
0.214±0.024 for manual vs. 0.202±0.036 for X-

Tracker (Figure 5). The difference lies in the 
number of events that can be scored using the 
X-Tracker automated analysis (Table 1). As in 
previous experiments, the human scoring was 
limited to the first 10 encounters (Gambrill et 
al., 2019; McKeown et al., 2013; McKeown et 
al., 2017; Shen et al., 2011), scoring between 
6-10 events per animal in this particular da-
taset, whereas X-Tracker was unlimited, 
counting from 6 to 34 events per animal (Fig-
ure 5 and Table 1). It is important to note X-
Tracker has more stringent movement criteria, 
requiring animals spend less than 50% of the 
video in a single spot, therefore more animals 
are excluded from the analysis than by manual 
analysis (Figure 5). However, this creates a 
consistent and reproducible analysis that is not 
subject to user bias. Nonetheless, X-Tracker 
returns avoidance behavior data that is con-
sistent with manual analysis. 

 
Discussion 
 

Here we present X-Tracker, an automated be-
havior tracking code that can detect both mov-
ing visual stimuli and free-swimming animals, 
score encounters between animals and stim-
uli, and report avoidance events. X-Tracker re-
producibly standardizes behavior analysis, 
generating results indistinguishable from 

 

Figure 5. X-Tracker au-
tomated analysis is 
similar to manual hu-
man analysis 
Avoidance indexes com-
paring Human Manual 
Analysis (gray) vs. X-
Tracker Automated 
Analysis (orange) on 
identical videos. Data 
are shown as average ± 
SEM overlaid with indi-
vidual data points. 
There is no significant 
difference in the aver-
ages between the 
groups by ANOVA with 
post hoc Tukey’s for 
multiple comparisons.  
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manual analysis. X-Tracker is hands-off, high-
throughput, and makes behavior analysis ob-
jective and unbiased. To increase the number 
of animal encounters with the visual stimuli, we 
created a new channel chamber for testing be-
havior. This channel system forces animals to 
swim perpendicularly to the moving stimulus, 
thereby increasing the frequency of visual en-
counters. And lastly, we improved behavior rig 
illumination with LED strips and upgraded the 
detection camera, both of which generate 
higher quality uniform images to optimize input 
for automated detection software. Together 
these advancements increase the detection of 
visual encounters and avoidance events, de-
crease potential inter-investigator variance in 
scoring events, and significantly decrease 
time-consuming human involvement in the 
analysis, making visual avoidance behavior 
assays more accessible for researchers. 

Visually guided behaviors have been used 
to investigate brain function in various sys-
tems, yet automated analysis of certain visu-
ally guided behaviors has been difficult. While 
animal tracking analysis is relatively straight-
forward (Gal et al., 2020; Kohlhoff et al., 2011), 
and analysis packages are commercially avail-
able (Noldus EthoVision and Viewpoint Ze-
braLab being the most commonly used), sim-
ultaneous tracking of both animals and visual 
stimuli in naturalistic conditions has proven 
more difficult (Michaiel et al., 2020). In 
Xenopus, researchers have developed crea-
tive low through-put ways around this hurdle 
by testing one animal at a time (Khakhalin, 
2020; Khakhalin et al., 2014). In other free-
swimming species such as the Zebrafish, in-
vestigators have used filters to block out visual 
stimuli so that they only track the animals’ 
movements in response to a non-random stim-
ulus, making the automated analysis simpler, 
but limiting the variety of stimuli that can be 

used and creating additional concerns about 
habituation to the stimulus (Larsch and 
Pantoja, 2019; Lowe, 1987; Randlett et al., 
2019). X-Tracker allows a variety of stimuli to 
be tested (size, speed, shapes, patterns) with 
ease. In addition to visual avoidance behavior, 
Xenopus tadpoles exhibit schooling behavior 
(Truszkowski et al., 2016), wall-following be-
havior (Hanzi and Straka, 2018), startle re-
sponses (James et al., 2015), color preference 
(Moriya et al., 1996), and seizures (James et 
al., 2015). X-Tracker can be easily adjusted to 
automate the analysis of this increasing reper-
toire of Xenopus behaviors, aiding in the inves-
tigation of brain function in a developing sys-
tem. Lastly, X-Tracker can be readily modified 
to detect larger (and smaller) animals, making 
this software applicable to not only different 
developmental stages of Xenopus laevis, but 
also other species including Xenopus tropicalis 
and other amphibian tadpoles, Zebrafish, and 
teleost fishes. Because the background is sub-
tracted, X-Tracker can detect animals in any 
transparent chamber, making it adaptable to 
endless sizes of animals and visual stimuli. 

X-Tracker allows for unbiased, hands-free 
automated analysis of Xenopus visual avoid-
ance behavior. Previously, the rate-limiting 
factor for these experiments was the time-con-
suming manual analysis. However, X-Tracker 
frees up the analysis time, allowing for large 
high through-put experiments testing molecu-
lar pathways via drugs and genetic contribu-
tions to behavior. We expect that this software 
will significantly aid researchers in designing 
experiments to identify the molecular and cel-
lular components related to brain development 
and behavior in Xenopus and other free-swim-
ming animals.  
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Information Sharing Statement 
Software presented here is publicly available 
for non-commercial use in the Cline Lab 
GitHub repository at https://github.com/Cline-
Lab/Tadpole-Behavior-Automation. Note: 
Early versions of the X-Tracker software code 
were originally called TAD9000 which may be 
the title of some older drafts on GitHub. 2.  
The datasets generated during and/or ana-
lyzed in the current study are available from 
the corresponding author on reasonable re-
quest.  
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