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ABSTRACT

Motivation: The description of a metabolic network in terms of
elementary (flux) modes (EMs) provides an important framework
for metabolic pathway analysis. However, their application to large
networks has been hampered by the combinatorial explosion in the
number of modes. In this work, we develop a method for generating
random samples of EMs without computing the whole set.
Results: Our algorithm is an adaptation of the canonical basis
approach, where we add an additional filtering step which, at each
iteration, selects a random subset of the new combinations of modes.
In order to obtain an unbiased sample, all candidates are assigned
the same probability of getting selected. This approach avoids the
exponential growth of the number of modes during computation,
thus generating a random sample of the complete set of EMs
within reasonable time. We generated samples of different sizes for
a metabolic network of Escherichia coli, and observed that they
preserve several properties of the full EM set. It is also shown that
EM sampling can be used for rational strain design. A well distributed
sample, that is representative of the complete set of EMs, should be
suitable to most EM-based methods for analysis and optimization of
metabolic networks.
Availability: Source code for a cross-platform implementation in
Python is freely available at http://code.google.com/p/emsampler.
Contact: dmachado@deb.uminho.pt
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
The description of a metabolic network in terms of elementary
(flux) modes (EMs) provides an important framework for metabolic
pathway analysis (Schuster et al., 1999). Elementary mode analysis
identifies all minimal functional pathways connecting substrates
with biomass and products inherent to a metabolic network. EMs
have been used to understand the cellular metabolism through
analysis of the network structure, regulations and characterization
of all possible phenotypes (Çakır et al., 2007; Schuster et al.,
1999, 2000, 2002; Stelling et al., 2002). Examples of other
recent applications of pathway analysis are in the determination of
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minimum medium requirements (Schilling and Palsson, 2000) and
in the development of reduced kinetic models (Provost and Bastin,
2004). They also play an essential role in the development of model-
based metabolic engineering strategies for strain optimization by
identification of suitable intervention targets (Hädicke and Klamt,
2010, 2011; Trinh et al., 2008). A comprehensive review on
elementary mode analysis and other applications of EMs can be
found in (Trinh et al., 2009).

EMs are also closely related to the problem of identifying all
transition invariants (t-invariants) in Petri net theory (Chaouiya,
2007). In fact, if all reactions are irreversible, the set of EMs is
equivalent to the minimal t-invariants of a Petri net. Thus, it is
not surprising that the algorithms for computation of EMs and
t-invariants have evolved closely [see Schuster et al. (2002) for a
comparison of both concepts].

Despite recent improvements in the algorithms for computation
of EMs (Klamt et al., 2005; Terzer and Stelling, 2008), their
application to real world metabolic networks has been hampered by
the combinatorial explosion in the number of modes as the size of
the networks increase. The enumeration of the complete set of EMs
for genome-scale networks has been infeasible so far, and perhaps
even undesirable due to the hardly manageable number of modes
that would be generated.

An attractive approach is the enumeration of a subset of pathways
representing the complete system. Several approaches have been
proposed hereto, though none of them provides a purely random
sample of EMs. Current state of the art approaches typically
enumerate EMs with a certain objective or constraint; like the
enumeration of the shortest pathways (De Figueiredo et al., 2009;
Rezola et al., 2011), the enumeration of pathways including a
specific target reaction (Kaleta et al., 2009b), enumeration based on
available measurements (Jungers et al., 2011; Soons et al., 2011),
enumeration of all possible pathways through selected reactions that
satisfy the steady-state flux of the entire network (elementary flux
patterns) (Kaleta et al., 2009a), or decomposition of the network
in modules (Schuster et al., 2002; Schwartz et al., 2007). These
approaches do not represent the full solution space and hence a
number of potentially interesting solutions may be missed.

One of the key requirements for successful understanding of the
cellular metabolism based on EMs is the ability to enumerate a
representative subset of modes. In this work, we develop a method
for generating random samples of EMs without computing their
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whole set. The goal is to obtain a well-distributed sample, which is
representative of the complete set of EMs, and suitable to most EM-
based methods for analysis and optimization of metabolic networks.

2 METHODS

2.1 Algorithm
The EM sampler was implemented as an adaptation to the canonical basis
approach by Schuster and Hilgetag (Schuster and Hilgetag, 1994). The
algorithm begins with a matrix containing the transposed stoichiometric
matrix augmented with the identity matrix. Then, for each metabolite, all the
non-zero entries in the corresponding column are detected and replaced with
all possible combinations that annul the respective entries. The combinatorial
nature of the pairwise input/output reaction combination for each metabolite
is the key to the exponential growth of the number of modes during the
execution of the algorithm. Therefore, we add an additional filtering step
which, at each iteration, selects only a subset of the possible combinations.
This selection is based on a given probability function that randomly selects
among the candidates. The algorithm is described as follows:

• initialize the matrix T =[ST |In]
• for i∈{1,...,n} :

– let R={j |Tj,i �=0}
– delete all rows R from T

– let Tnew =[]
– for (j,k)∈combinations(R) :

∗ t =add(Tj,•,Tk,•)

∗ rev(t)= rev(Tj,•)∧rev(Tk,•)

∗ if minimal(tm+1:m+n) : append t to Tnew

– Tnew =filter(Tnew)

– append Tnew to T

• get E from T =[0|ET ]
where S ∈R

m×n is the stoichiometric matrix, In is the identity matrix of
size n and E is the elementary mode matrix. In order to find all possible row
combinations, the following function is defined:

combinations(R)={(j,k) | j∈R,k ∈R,k > j,

rev(Tj,•)∨rev(Tk,•)∨Tj,i ·Tk,i <0}.
Function rev keeps track of the reversibility of the candidate modes so that

reversible modes can be freely combined, and irreversible modes can only
be combined in the appropriate direction. A candidate mode is reversible if it
only contains reversible reactions. In order to combine candidate modes such
that column i is annulled (i.e. metabolite i is balanced), it is important to make
sure that they are combined in the proper direction. This is implemented by
the following function:

add(Tj,•,Tk,•)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Tj,i ·Tk,• −Tk,i ·Tj,• if rev(Tj,•)∧rev(Tk,•)

sgn(Tj,i)(Tj,i ·Tk,• −Tk,i ·Tj,•) if rev(Tj,•)∧¬rev(Tk,•)

sgn(Tk,i)(Tk,i ·Tj,• −Tj,i ·Tk,•) if ¬rev(Tj,•)∧rev(Tk,•)

|Tk,i|·Tj,• +|Tj,i|·Tk,• if ¬rev(Tj,•)∧¬rev(Tk,•).

For a mode to be elementary, it must have minimal support (Schuster
et al., 1999). There are two methods to check if a mode is elementary,
the combinatorial test and the rank test (Terzer and Stelling, 2008). The
combinatorial test compares the support vector of the new mode with the
support of all modes computed at that point. However, this method is not
appropriate in our case because we do not have the full set of elementary
modes required for the test. On the other hand, the rank test is based only

on the support vector of the candidate mode. Therefore, we opted to use this
test in our implementation:

minimal(e)≡ rank(S1:i,s(e))=|s(e)|−1

where s(e)={i |ei �=0} is the support of t, and S1:i,s(e) is a submatrix of the
stoichiometric matrix composed by the metabolites that have been processed
so far, and the reactions that belong to the support of e. We also verify if
the new candidate mode contains any reversible reaction occurring in both
directions simultaneously. In that case, the candidate can be disregarded
without performing the test.

The filtering step is the novelty of the method proposed in this work
(Fig. 1). In order to prevent the exponential growth in the number of candidate
modes, we randomly select a sample of the new candidate modes at each
step. This is implemented by the following function:

filter(T )=T{i|i∈{1,...,N},X≤P},•

where N is the number of new candidate modes, X ∼U (0,1) and P is a
given selection probability.

The selection probability is a critical aspect of the algorithm. A low
probability may cause the elimination of vital connections in the network,
whereas a high probability may not prevent the combinatorial explosion.
Ideally, one would want a high selection probability for low connectivity
nodes, and a low selection probability at high connectivity nodes. Therefore,
we opted to define the selection probability as a function of the number of
candidate modes. Furthermore, we can observe that the selection of modes
follows a binomial distribution with an average selection size equal to N ·P.
Hence, at each step we define P= K

N+K , such that:

lim
N→∞N ·P= lim

N→∞N · K

N +K
= lim

N→∞K · N

N +K
=K

where K is a given constant that determines a maximum upper bound in
the number of new candidate modes at each step.

2.2 Implementation
The algorithm was implemented in Python and uses the open libraries
NumPy/SciPy (Jones et al., 2012) for numerical computations, and libSBML
(Bornstein et al., 2008) for reading SBML (Systems Biology Markup
Language) model files. All tests were performed on an Intel Core 2 Duo 2.13
GHz processor with 3 GB RAM, running Linux Kernel 3.0 and Python 2.7.

2.3 Model
The algorithm was tested using a condensed genome-scale metabolic
reconstruction of Escherichia coli (Orth et al., 2009). The model contains
72 metabolites (52 internal, 20 external) and 95 reactions (75 internal, 20
drains). Glucose was set as the external carbon source and flux variability
analysis (FVA) (Mahadevan and Schilling, 2003) was performed in order
to detect blocked reactions, which were then removed from the model. The
simplified model contains 68 metabolites and 87 reactions. The EMs for this
model were calculated with efmtool (Terzer and Stelling, 2008), resulting in
a total of 100.274 EMs.

3 RESULTS

3.1 Sampling
The selection probability is controlled by the constant K , the only
adjustable parameter in the algorithm (see Section 2). Therefore,
we performed several tests using different values for this parameter.
For each value of K , a total of 10 trials were run, and the individual
samples were merged into a larger set. Additionally, we verified that
all modes obtained are truly elementary modes contained within the
full set of EMs for the tested model.
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Fig. 1. The computation of elementary modes consists on iteratively removing all internal metabolites, and combining every pair of input/output reactions. For
highly connected nodes, this results in a combinatorial explosion of new connections (expansion phase). To avoid the exponential growth along the iterations,
caused by the accumulation of this effect, we add an additional filtering step that randomly samples the new combinations (contraction phase)

Table 1. Size of the EM samples obtained and respective computation times
for different values of K

K No EMs Time (s)

102 (1.1±0.6)×101 (9.5±4.9)×10−1

103 (9.9±3.3)×101 (4.1±1.7)×101

104 (9.3±0.6)×102 (2.4±0.8)×103

105 (8.8±0.2)×103 (1.5±0.2)×105

The data represent the mean values and standard deviation for 10 trials per experiment.

The first test is the sample size and computation time as a function
of K . By controlling the selection probability, it is expected that
the resulting sample size will be affected and, consequently, the
computation time as well. Results for these experiments are shown
in Table 1. By performing linear regression of these values on a log–
log scale, it is possible to observe that the number of modes obtained
grows linearly with K , whereas the computation time grows nearly
quadratically (Fig. 2).

In order to obtain a well-distributed sample it is important to
guarantee that the reaction participation (i.e. the fraction of EMs
in which a reaction participates) is preserved by the sampling
procedure. Otherwise we would obtain a biased sample of the full
EM set. We compared the reaction participation of the generated
samples against the respective values in the full set of EMs (Fig. 3).
It is possible to observe that for lower values of K , there is a weaker
correlation between the reaction participation of the samples and
the reaction participation of the full EM set. This is likely due to
the fact that the sample size is too small to obtain a good coverage
of the solution space. However, it is possible to observe that, as
K increases, the Pearson correlation coefficient (r) also increases.
For K =105 we observe a high correlation (r =0.986) between the
reaction participation that is estimated by the sampling approach and
the true values. In all cases, the dispersion seems to be homogeneous,
showing no observable bias, hence the degree of correlation is only
affected by the sample size.

Furthermore, we analyzed the EM samples regarding their
distribution within the flux solution space. For that matter, we plotted
the EMs distribution within the phenotypic phase plane for oxygen
uptake and cellular growth normalized by glucose uptake (Edwards

Fig. 2. Sample size (No EMs) and computation time (s) as a function of K
(log–log scale). The number of EMs grows linearly with K (slope �1.0),
whereas the computation time grows nearly quadratically (slope �1.7)

et al., 2002). Figure 4 shows the distribution for the full set compared
with the samples for different values of K . It can be observed that the
samples are unbiased relatively to the full set, and that the coverage
of the solution space improves with the size of the samples.

We also evaluated how the sampling procedure affects the
pathway length distribution (Fig. 5). It is possible to observe that
the full EM set has a skewed Gaussian-like distribution with a
maximum frequency of pathways with 50 reactions. However, we
observe that as K decreases, the distribution shifts towards smaller
pathway lengths. This is not surprising since the EMs with larger
support vectors will undergo more sampling steps. Nonetheless,
it is observed that for K =105, the distribution of the sample is
considerably close to the distribution of the full set.

3.2 Case study: rational strain design
One of the applications of elementary mode analysis is the rational
design of mutant strains for industrial production of chemical
compounds (Hädicke and Klamt, 2010, 2011; Trinh et al., 2008).
The enumeration of the EMs of a metabolic network, allows the
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Fig. 3. Reaction participation in the full EM set versus the participation in samples of different sizes, and the respective Pearson correlation coefficients (r)

Fig. 4. Comparison of the phenotypic phase planes for oxygen uptake and cellular growth normalized by glucose uptake (full set and different samples)

determination of the most efficient pathways for production of
the selected compound. Then, one can find the best knockout
candidates that eliminate the maximum number of competing
pathways, channeling the metabolic fluxes to the desired pathways
(Trinh et al., 2008).

In order to understand if the utilization of EM samples is
appropriate for rational strain design, we compared the knockout
strategy obtained with the full EM set, using the method of (Trinh
et al., 2008), against the strategies obtained with different samples
(for K =105). Succinate production was used as the case study, all
experiments were constrained to a maximum of 8 knockouts, and
only strategies with viable biomass production were allowed. In
order to have an estimate of the production rate for each case, we
used the method of minimization of metabolic adjustment (MOMA)
to predict the flux distribution of the mutants (Segrè et al., 2002).

The results are presented in Table 2. It is possible to observe
that the knockout strategies found for the samples differ from that
of the full EM set (see Supplementary Fig. S1 for a clustering
analysis). Nonetheless, all the knockouts predicted with the full
set appear frequently in the other knockout strategies. Also, the
succinate production rates estimated with MOMA are high in most
cases. Only in one case (Sample 8) there was no production, although
it predicted 4 knockouts common to the full EM set.

4 DISCUSSION

4.1 Sampling quality
The main goal of this work is the creation of a sampling approach
for computing EMs in large-scale networks without computing their

whole set. For that matter, it is important to guarantee that the
sampling approach provides a uniform coverage of the complete
solution space. Our method is controlled by a single parameter that
influences the number of computed EMs, by adjusting the selection
probability during the execution of the algorithm. Our results show
that the sample size obtained is directly proportional to K .

For most EM-based applications, it is important to obtain a sample
that preserves the reaction participation (the fraction of EMs in
which a reaction participates). The results show that the sampling
is unbiased in that aspect. However, the correlation of the estimated
values with the true values is affected by the size of the sample. The
larger the sample size, the better will be the correlation obtained.
This is also reflected in the analysis of the phenotypic phase plane for
oxygen uptake and cellular growth. The samples present an unbiased
representation of the solution space, although the coverage obtained
will depend on the sample size.

Regarding the pathway length distribution of the EMs, the results
show that there can be a bias towards smaller pathway lengths
for low values of K . The importance of this bias depends on the
application for which the sample will be used. One may argue
that shorter pathways are more efficient, hence more likely to carry
higher fluxes. For a large value of K , we can observe that the bias is
not significant. However, for larger networks, the demands in terms
of computational time and memory may not allow for arbitrarily,
large values of K and the effect may become more significant.
One way to compensate for such effect would be to give larger
selection probabilities to modes with larger support vectors. In that
case, additional testing is required in order to check if that artificial
selection would cause any bias in other properties of the samples.

i518



Copyedited by: MANUSCRIPT CATEGORY: ECCB

[12:48 6/8/2012 Bioinformatics-bts401.tex] Page: i519 i515–i521

Random sampling of elementary flux modes

Fig. 5. Comparison of the pathway length distribution of the full set of EMs against the distribution for samples at different values of K and the correlation
coefficient (r) between the original frequency distribution and the latter

Table 2. Comparison of the optimal knockout strategies for succinate production for the full EM set and different EM samples

Test No Total EMs (suc) Reaction knockouts No EMs (suc) Est. rate

Full EM set 100 273 (48 602) ACALD, G6PDH2r, GLUDy, LDH_D, NADTRHD, PFL, PYK, SUCDi 406 (320) 6.897
Sample 1 8745 (3962) ACALD, GLUSy, ICL, LDH_D, PFL, PGI, SUCDi, THD2 59 (34) 3.397
Sample 2 9001 (3979) ACALD, GLUSy, ICL, LDH_D, ME2, PFL, PGI, SUCDi 69 (30) 3.397
Sample 3 8607 (4011) ACALD, ATPS4r, GLUDy, ME1, PFL, PYK, SUCDi, TKT2 50 (37) 4.435
Sample 4 8682 (3838) ACALD, ACKr, GLUDy, ICL, LDH_D, PFL, RPE, SUCDi 48 (42) 6.647
Sample 5 8489 (3553) ACALD, ACKr, GLUSy, LDH_D, PFL, PGI, SUCDi, THD2 76 (52) 3.473
Sample 6 8453 (3574) ATPS4r, GLUSy, ME1, NADTRHD, PFL, PYK, SUCDi, TALA 44 (36) 2.004
Sample 7 9056 (4080) ACALD, GLUSy, ME1, ME2, PFL, PGI, SUCDi, THD2 81 (55) 3.473
Sample 8 8877 (4228) ACALD, ATPS4r, FBP, G6PDH2r, GLUSy, ME1, NADTRHD, PFL 38 (10) 0.000
Sample 9 8647 (4007) ACALD, G6PDH2r, GLUSy, ME2, NADTRHD, PFL, PYK, SUCDi 41 (30) 6.899
Sample 10 9097 (4129) ACALD, ATPS4r, GLUSy, LDH_D, NADTRHD, PFL, SUCDi, TALA 41 (31) 0.207

Total number of EMs (succinate producing); Optimal reaction knockouts; Number of remaining EMs (succinate producing); Estimated production rate (mmol/gDW/h) computed
from MOMA.

We tested our approach with a case study of rational strain design
for succinate production in E.coli. The results have shown that, using
an EM sample, it is possible to predict most of the best potential
reaction knockouts, and to obtain close to optimal solutions. The
utilization of heuristic methods to search for satisfactory solutions,
is a common approach in metabolic engineering for large metabolic
networks, when an exhaustive search becomes prohibitive (Patil
et al., 2005).

4.2 Performance
We implemented our sampling method as an adaptation to the
canonical basis approach (Schuster and Hilgetag, 1994). This
approach has a very simple and intuitive topological interpretation
in terms of the graph of the metabolic network (Fig. 1). However, it
is very inefficient compared to the more recent nullspace approach
(Klamt et al., 2005). There are very efficient implementations of
this approach (e.g. using bit pattern trees (Terzer and Stelling,
2008)). The efmtool software, which implements these state-of-the-
art methods (Terzer and Stelling, 2008), is able to compute the
full set of approximately a hundred thousand EMs in the order
of seconds to minutes. Our implementation of the canonical basis

approach, on the other hand, takes within minutes to hours to
compute a few thousand EMs. In our tests, we used a condensed
genome-scale reconstruction of E. coli (Orth et al., 2009), which
is a simplified version of the full genome-scale model (Feist et al.,
2007). In order to apply our method to the full model, it will be
necessary to analyze how this approach can be reformulated as a
modification to the nullspace approach and integrated into the most
recent implementations (Terzer and Stelling, 2008).

The most significant bottleneck in our algorithm is the
computation of a matrix rank for every candidate mode.As explained
earlier (see Section 2), the combinatorial test is not appropriate
for EM sampling because we do not have the full set of EMs to
compare with. Using this method in our approach would result in
the computation of a sample of modes that are elementary among
themselves but not truly elementary modes of the full set. Therefore,
the rank test must be used. However, computing the rank of a
large matrix is very expensive and hampers EM computation at
the genome-scale. This limitation may be overcome by improving
the efficiency of rank calculation. Note that we are constantly
computing the rank of matrices which are very similar (submatrices
of the stoichiometric matrix). Therefore, one may take advantage

i519



Copyedited by: MANUSCRIPT CATEGORY: ECCB

[12:48 6/8/2012 Bioinformatics-bts401.tex] Page: i520 i515–i521

D.Machado et al.

of methods with pre-computation such as the lazy rank updating
method proposed by (Terzer and Stelling, 2008).

Our results show that the computational time grows nearly
quadratically with the size of the sample. Therefore, it would seem
advantageous to use a divide-and-conquer strategy to compute a
sample of size N by appending together P independent samples of
size N/P. However, in order to obtain smaller sample sizes, one has
to decrease the selection probability (by adjusting K), which affects
the quality of the samples regarding the pathway length distribution.
Note that it is possible to take advantage of multiple CPUs to run
several samplers in parallel and combine the samples into one larger
set. However, it must be kept in mind that this does not provide the
same sampling quality as a sample of the same size obtained with a
higher selection probability.

One of the advantages of elementary mode analysis, when
compared with methods based on flux balance analysis, is the
fact that the EM set needs to be computed only once. Once
the EM set is computed, the analysis and optimization of the
metabolic network is quite straightforward. On the other hand,
bi-level optimization frameworks require expensive computational
time at every utilization (Burgard et al., 2003; Patil et al., 2005).
Therefore, even if the computation of an EM sample, large enough
to obtain an unbiased coverage of the solution space, is highly time
consuming at the genome-scale, this effort is compensated on the
long term.

5 CONCLUSION
As more data are collected, metabolic models keep constantly
growing in size. This increases the challenge for EM-based analysis
of metabolic networks, as the number of EMs grows exponentially
with the network size. For that matter, the development of EM
sampling approaches will become increasingly important. This work
is a contribution in that direction. We developed a method that
prevents the combinatorial explosion of the number of EMs during
computation, by adding a filtering step that randomly samples among
the candidate modes at each iteration. Unlike other methods for
obtaining reduced sets of EMs (De Figueiredo et al., 2009; Jungers
et al., 2011; Kaleta et al., 2009b; Rezola et al., 2011), our approach
does not use any objective functions or experimental flux constraints.

EFMEvolver (Kaleta et al., 2009b) is the approach most similar
to ours. It samples the EMs that contain a target reaction, rather
than the whole solution space. It uses linear programming (LP) to
find a single EM, and a genetic algorithm (GA) to search different
solutions. It has the advantage that the procedure can be stopped
after a desired number of modes have been collected, whereas our
approach only yields valid EMs after completion. On the downside,
it requires tuning the parameters for the GA and selection of a proper
fitness function, whereas or method is tunable by a single parameter.
Our method can show a bias towards smaller EM pathway lengths
if the selection probability is too low. Given its formulation, it is
likely that EFMEvolver exhibits the same bias, although it is not
evaluated how strong that bias can be.

Despite the current shortcomings, EM sampling is a promising
approach for computation of EMs at the genome-scale, and opens
the possibility for application of EM-based metabolic engineering
methods for optimizing metabolic networks at this scale.
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