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ABSTRACT

Motivation: Advanced technologies are producing large-scale
protein–protein interaction data at an ever increasing pace.
A fundamental challenge in analyzing these data is the inference
of protein machineries. Previous methods for detecting protein
complexes have been mainly based on analyzing binary protein–
protein interaction data, ignoring the more involved co-complex
relations obtained from co-immunoprecipitation experiments.
Results: Here, we devise a novel framework for protein complex
detection from co-immunoprecipitation data. The framework aims
at identifying sets of preys that significantly co-associate with the
same set of baits. In application to an array of datasets from yeast,
our method identifies thousands of protein complexes. Comparing
these complexes to manually curated ones, we show that our
method attains very high specificity and sensitivity levels (∼80%),
outperforming current approaches for protein complex inference.
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1 INTRODUCTION
Procedures such as yeast two hybrid and co-immunoprecipitation
(CoIP) (Mann et al., 2001) are routinely employed nowadays
to detect new protein–protein interactions, producing large-scale
protein interaction networks for various species. The networks
provide a step stone for finding protein complexes—the fundamental
units of macromolecular organization (Alberts, 1998).

The discovery of protein complexes based on yeast two hybrid
data is a challenging task, since a protein complex may share
common members with other complexes, and not all members
of a certain protein complex directly interact with one another.
CoIP data, however, can be used for finding complexes by itself
since co-immunoprecipitation experiments directly test complex
co-membership: a bait protein is tagged and a purification of its
complex co-members (prey proteins) is made followed by mass
spectrometry.

∗To whom correspondence should be addressed.

Surprisingly, most methods for detecting protein complexes are
based on treating protein interaction data as binary, i.e. interactions
are between pairs of proteins only. This is commonly done by
translating non-binary CoIP associations, of a bait to the set of
preys obtained by tagging it, into binary interactions using the spoke
model (Bader and Hogue, 2002), where a purification is translated
into a set of pairwise interactions between the bait and each of the
precipitated preys.

One of the most commonly used algorithms for this task is the
Molecular Complex Detection (MCODE) algorithm by Bader and
Hogue (2003). MCODE detects densely connected components of
the protein network. It is based on weighing vertices by the density of
their local neighborhoods. Starting from a high weight vertex, a local
expansion is done in a greedy fashion. Another common clustering
algorithm is the Markov clustering algorithm (MCL) (Enright et al.,
2002). MCL simulates random walks on the protein interactions
network. Random walks are performed iteratively; after sufficiently
many iterations, the probability that a walk that starts in a dense
area of the graph will end in the same dense area is high. In order
to magnify this effect, MCL applies, after each walk, an inflation
step that separates high probability connections from low probability
ones. Eventually, the process converges and a cluster structure of the
graph is formed. MCL was shown to outperform other clustering
algorithms for protein complex detection (Brohee and van Helden,
2006). Recently, Rungsarityotin et al. (2007) presented a new
clustering method based on Markov random fields (MRF). MRF
applies a statistical model that assumes that the membership of each
protein in a given cluster is only dependent on the membership
status of its neighbors. Finally, Friedel et al. (2009) presented
an unsupervised approach to find protein complexes that uses a
bootstrapping mechanism to derive reliability scores for interactions
between proteins. The resulting weighted network is then clustered
using MCL.

The only unsupervised approach we are aware of that uses CoIP
data directly is that of Scholtens et al. (2005). This approach is
called Local Modeling and is probabilistic in nature. It relies on
building a directed network of bait–prey relationships and searching
for subnetworks in which all protein pairs that were tested for a bait–
prey relation are connected. Such ‘fully’ connected subnetworks are
shown to correspond well to protein complexes.

Supervised methods for identifying protein complexes have also
been developed. Gavin et al. (2006) defined a ‘socio-affinity’scoring
system that measures the log ratio of the number of times two
proteins are seen together in CoIP purifications, relative to what
would be expected from their frequency in the dataset. These
scores are used for clustering the proteins employing various
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clustering algorithms and parameters. Result sets that exhibit poor
correspondence to manually curated complexes are discarded.
Complex cores are identified as those stable parts of complexes that
are not affected by the clustering algorithms/parameters. Collins
et al. (2007) devised another scoring system for protein pairs,
which combines the evidence in each purification for bait–prey
and prey–prey relationships. They applied hierarchical clustering
to these scores to produce putative complexes. Pu et al. (2007)
used the (Collins et al., 2007) scoring system together with the
MCL algorithm to produce complex predictions. Another scoring
system was used by Hart et al. (2007) in combination with the MCL
algorithm to derive protein complexes. Another scoring scheme was
developed by Zhang et al. (2008), who used a maximum clique
finding algorithm to derive complex predictions.

In this article, we propose a novel method for inferring protein
complexes from CoIP data, which we call CODEC (COmplex
DEtection from Coimmunoprecipitation data). We represent the
data using a bipartite graph, where one set of vertices corresponds
to the prey proteins, and the other one corresponds to the bait
proteins. Edges connect a bait to its associated preys. Ideally,
protein complexes should be manifested as fully connected bipartite
subgraphs of this graph, as also argued in Scholtens et al. (2005).
In practice, experimental noise results in false positive and false
negative associations in the CoIP data. In addition, for proteins that
occur both as baits and preys in the data, we expect that if the
bait (prey) instance is included in a complex, also its corresponding
prey (bait) instance will be part of the complex. Thus, a complex
is expected to appear as a dense bipartite subgraph such that every
participating protein has both its bait and prey instances present.

To identify those dense balanced bipartite subgraphs of the bait–
prey graph, we adapted the SAMBA biclustering algorithm (Tanay
et al., 2002). We applied CODEC to three datasets from three
large-scale experiments in yeast (Gavin, 2002; Gavin et al., 2006;
Krogan et al., 2006), identifying thousands of protein complexes. We
evaluated CODEC and compared it to extant approaches by using a
collection of manually curated complexes from the MIPS (Mewes,
2002) and GO (Cherry et al., 1998) databases. First, we compared
CODEC to the three clustering approaches: MCODE, MCL and
MRF. We show that CODEC outperforms these approaches on
two large-scale datasets, attaining higher values of specificity and
sensitivity. We did not include a comparison to the bootstrap method
of Friedel et al. (2009) as the software was not readily available.
Second, we show that CODEC can be useful even when supervised
approaches are applicable, comparing it to two representative
supervised approaches: those of Gavin et al. (2006) and Collins et al.
(2007). Remarkably, CODEC outperforms these approaches as well,
even though they use curated information in the protein complex
identification process. Finally, we show that CODEC compares
favorably to the Local Modeling approach (Scholtens et al., 2005),
and at the same time it is much more scalable, allowing the analysis
of much larger datasets.

2 METHODS

2.1 Data acquisition
We downloaded CoIP data for three datasets: (i) Gavin et al. (2006),
which contains 1993 bait proteins, 2670 prey proteins and 19 277 bait–prey
relationships; (ii) Krogan et al. (2006), which contains 2233 bait proteins,
5219 prey proteins [94 prey proteins were omitted from the raw data, since

they were suspected as non-specific contaminants (Krogan et al., 2006)] and
40 623 bait–prey relations; and (iii) Gavin (2002), which contains 455 bait
proteins, 1364 prey proteins and 3413 bait–prey relations.

MIPS complexes were obtained from the MIPS database (Mewes, 2002)
(February 2007 download). Only manually annotated complexes were used
(category 550 was excluded). From the 243 manually annotated MIPS
complexes, we considered only complexes at level 3 or lower. Higher
level complexes were collapsed to level 3. Overall, the data contained
229 complexes. Gene ontology (GO) complexes were obtained from the
Saccharomyces Genome Database (Cherry et al., 1998) (March 2007
download). The GO dataset contained 193 complexes.

2.2 Graph construction and statistical data modeling
We represent the CoIP data using a bipartite graph G= (U,V ,E), where
vertices on one side (U) represent purifications with specific baits, and
vertices on the other side (V ) represent the union of the set of preys detected
in all the purifications and the set of baits. For convenience, we name the
vertices according to the proteins they represent. Edges connect baits to their
associated preys. In addition, every purification with a bait u is connected to
u on the prey side. A candidate protein complex corresponds to a connected
subgraph H ′ = (U ′,V ′,E′) of this graph, where V ′ ⊆V is the set of member
proteins in the complex, and U ′ ⊆U is a set of purifications.

We use a likelihood ratio score to evaluate a candidate protein complex.
The score measures the fit of a subgraph to a protein complex model
versus the chance that the subgraph arises at random. The protein complex
model assumes that each edge in the subgraph occurs with high probability
pc, independently of all other vertex pairs. This assumption ignores
possible dependencies between bait–prey associations, but allows computing
candidate complex scores in an efficient manner. The null model assumes
that each edge (u,v) occurs with probability pu,v, independently of all other
vertex pairs, where pu,v is the probability of observing an edge between u and
v in a random bipartite graph with the same vertex degrees as G. In practice,
we use pc =0.9 as recommended in Tanay et al. (2002). pu,v is approximated
by d(u)d(v)

|E| (Itzkovitz et al., 2003), where d(v) denotes the degree of a vertex v.
Thus, the score of H ′ is:

L(H ′)=
∑

(u,v)∈E′
log

pc

pu,v
+

∑

(u,v)�∈E′
log

1−pc

1−pu,v

By setting the weight of each edge (u,v) to be log pc
pu,v

>0 and the weight of

each non-edge (u,v) to be log 1−pc
1−pu,v

<0, we have that the score of a subgraph
is the sum of weights of its vertex pairs.

There are two exceptions to setting the edge weights: (i) an edge of the
form (v,v) is assigned zero weight. (ii) We call a vertex whose corresponding
protein serves as a bait in some purification, but never detected as a prey,
artificial. For such a vertex, we consider two weighting schemes. The first,
which we call w0, sets all weights involving artificial vertices to 0, based on
the assumption that these cases represent proteins that cannot be detected as
preys due to experimental limitations. The second scheme, which we call w1,
treats such vertices the same as all other vertices, resulting in all the weights
involving artificial vertices being non-positive.

2.3 The algorithm
Our algorithm for protein complex identification employs a greedy search
heuristic, which starts from high weight seeds and expands them using local
search. We describe these phases below.

2.3.1 Seed definition. Recall that we seek heavy subgraphs of the bait–
prey graph with the additional requirement that these subgraphs are
consistent, namely that a bait instance of a protein is included if and only
if the prey instance of the same protein is included. As seeds, we use
complete bipartite subgraphs (bicliques) of the bait–prey graph, augmented
by additional vertices so that the consistency requirement is satisfied. For a
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prey v∈V , denote its corresponding bait (if such exists) by m(v). Similarly,
for a bait u∈U, denote its corresponding prey (which might be artificial) by
m(u). Then a prey subset S ⊆V with a set of common (bait) neighbors N(S)
induces the following consistent seed:

C(S)=S∪N(S)∪{m(v) :v∈S∪N(S)}

2.3.2 Seed identification. We start by identifying a high weight seed
around each protein. To find consistent seeds, we adapt the algorithm in Tanay
et al. (2002). Basically, as shown in Tanay et al. (2002), the heaviest biclique
in a bipartite graph can be identified by an iterative algorithm. At each
iteration, the neighborhood of a vertex u∈U is scanned, and each subset of its
neighbors is credited by the weight from u to the vertices of this subset. After
scanning all vertices in U, the subset that attained the highest weight induces
the heaviest biclique. In our case, we have a further consistency requirement.
Hence, we have to augment each of the possible seeds by appropriate vertices.
To this end, we add a post-processing step to the algorithm above which
updates the weight of every subset according to the consistent seed it induces.

For computational efficiency, we limit the size of the scanned subsets
to 2–4. We only scan subsets that contain the prey vertex that corresponds
to u. Each candidate seed is scored by its log-likelihood ratio. We retain
the 500 000 highest scoring candidates and store them in a heap to prevent
duplicates.

2.3.3 Greedy expansion. This phase iteratively applies modifications to
the seed so as to expand it and increase its weight. Seeds are sorted by their
log likelihood in a descending order. The greedy expansion is applied to the
seeds by that order. At each iteration, all possible vertex additions to the seed
and vertex deletions from the seed are considered, where baits are coupled to
their corresponding preys to maintain consistency under these modifications.
The modification that improves the score the most is accepted. This process
continues until the score of the subgraph cannot be further improved. For
efficiency reasons, this phase is applied only to seeds that were not contained
in previous expanded subgraphs.

2.3.4 Filtering the results. We focus on clusters with at least three
preys. We evaluate the significance of a cluster by comparing the score
of its corresponding subgraph to those obtained on randomized instances.
Specifically, we create random graphs with the same vertex degrees as G
by using the Maslov–Sneppen procedure (Maslov and Sneppen, 2002). The
procedure switches a pair of edges (u,v) and (u′,v′) with (u,v′) and (u′,v),
provided that the latter did not exist in the first place. The switches are done
100m times, where m is the number of edges in the original graph (Milo et al.,
2003). Our algorithm is applied to these randomized instances to compute
a null distribution of subgraph scores. We use this distribution to compute
a P-value for each of the clusters and retain only clusters whose P-value is
smaller than a threshold.

To avoid redundant solutions, we filter putative protein complexes
with high similarity to one another. The similarity is measured based on
the intersection of the prey sets of the compared clusters. Specifically,
for two putative complexes V1 and V2 we measure their similarity as
|V1 ∩V2|/min{|V1|,|V2|}. If the similarity exceeds a predefined threshold,
then the subgraph with the higher P-value is discarded. We used 80% as the
similarity filtering threshold [as in (Sharan et al., 2005)]; a lower value of
50% yielded a similar performance (see Supplementary Table S2).

2.3.5 Implementation and running time We implemented CODEC using
the microsoft .net framework 2.0 and the C# programming language. CODEC
was applied to three datasets, as detailed above, on a Intel core 2 duo
1.86 GHz processor with 1 GB memory. The running time ranged from
minutes to hours, depending on the size of the dataset. The running time
of CODEC on the smallest (Gavin, 2002) dataset was 5 min; the application
to the medium (Gavin et al., 2006) dataset took 3 h; finally, the run on the
largest (Krogan et al., 2006) dataset lasted 30 h.

2.4 Quality assessment
We assess the quality of the produced complexes by measuring their
specificity and sensitivity with respect to a set of gold standard (known)
complexes. To this end, for each output cluster we find a known complex with
which its intersection is the most significant according to a hypergeometric
score. The hypergeometric score is compared with those obtained for 10 000
random sets of proteins of the same size, and an empirical P-value is derived.
These P-values are further corrected for multiple hypothesis testing using the
false discovery rate procedure (Benjamini and Hochberg, 1995). We say that
a cluster is a significant match to a complex if it has a corrected P-value
lower than 0.05.

Let C be the group of clusters from the examined result set, excluding
clusters that do not overlap any of the true complexes. Let C∗ ⊆C be the
subset of clusters that significantly overlap a known complex. The specificity
of the result set is defined as |C∗|/|C |. Let T be the set of true complexes,
excluding complexes whose overlap with the examined dataset is less than
3 proteins and ensuring a maximum inter-complex overlap of 80%. Let
T∗ ⊆T be the subset of true complexes with a significant match by a cluster.
The sensitivity of the result set is defined as |T∗|/|T |. The F-measure is a
measure combining the specificity and sensitivity measures. It is defined as
the harmonic average of these two measures:

2∗ specificity∗sensitivity

specificity+sensitivity

In addition, we also used the Accuracy measure suggested by Brohee
and van Helden (2006). This measure also evaluates the quality of complex
predictions against a gold standard set. The accuracy measure is the geometric
mean of two other measures: positive predictive value (PPV) and sensitivity.
PPV measures how well a given cluster predicts its best matching complex.
Let Ti,j be the size of the intersection between the i-th annotated complex
and the j-th complex prediction. Denote

PPVi,j = Ti,j∑n
i=1 Ti,j

= Ti,j

Tj

where n is the number of annotated complexes, and Tj is the sum of the sizes
of all of cluster j intersection sizes. The PPV of a single cluster j is defined as

PPVj = n
max
i=1

PPVi,j

The general PPV of the complex prediction set is defined by

PPV=
∑m

j=1 TjPPVj∑m
j=1 Tj

where m is the number of complex predictions. The sensitivity measure used
by Brohee et al. (which is different from the one defined above) represents
the coverage of a complex by its best-matching cluster. Denote

Sni,j = Ti,j

Ni

where Ni is the number of proteins in the annotated complex i. Complex-wise
sensitivity is defined as

Sni = m
max
j=1

Sni,j

The sensitivity of a complex set is defined as

Sn=
∑n

i=1 NiSni∑n
i=1 Ni

The Accuracy measure can be influenced by small and insignificant
intersections of a predicted complex and an annotated one. For example, if
a predicted complex intersects only one annotated complex, and the size of
the intersection is 1, the PPV of that predicted complex will be 1.0. Thus, we
used a threshold to limit the effect of such small intersections, and evaluated
the different solutions under varying thresholds ranging from 0 to 10. For
each such threshold t, all intersections of size at most t were not included in
the Accuracy computation.
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2.5 Parameter tuning
The input for the MCL and MCODE clustering algorithms was the set of
interactions resulting from connecting a bait protein to its preys [the spoke
model (Bader and Hogue, 2002)] for each of the datasets. For setting the
parameters of the algorithms, we used the values recommended by Brohee
and van Helden (2006). Specifically, we used the inflation parameter 1.8
for MCL. For MCODE, we used the parameters depth = 100, node score
percentage = 0, Haircut = TRUE, Fluff = FALSE and percentage for complex
fluffing = 0.2. MRF was applied using the spoke model, using the parameters
suggested by Rungsarityotin et al. (2007), i.e. K =698 and ψ=3.5.

We obtained the Local Modeling implementation from the bioconductor
http://www.bioconductor.org. The parameters used to run Local Modeling
are the default parameters mentioned in Scholtens et al. (2005).

When creating complex estimates from Collins et al. (2007), we used
MCL with the same parameters as described above, and used the PE values
as the input to the MCL algorithm.

3 RESULTS AND DISCUSSION

3.1 CODEC overview
CODEC is based on reformulating the protein complex identification
problem as that of finding significantly dense subgraphs in a bipartite
graph. We construct a bipartite graph whose vertices on one side
represent prey proteins, and vertices on the other side represent bait
proteins. Edges connect a bait protein to its associated preys. Ideally,
a complex should appear as a fully connected bipartite subgraph
(biclique) in this graph. In practice, due to experimental noise, a
complex will appear as a dense bipartite subgraph. We note that
further experimentation using methods such as cross-linking and
sequential CoIP can improve the detection process, but is far more
costly.

In addition, we impose a consistency requirement: some proteins
occur in the data both as baits and as preys. For such proteins,
we require that if a certain prey (bait) vertex is included in the
subgraph, so must be the corresponding bait (prey). These definitions
are exemplified in Figure 1. The example dataset contains 10 proteins
marked as P1-P10 (Fig. 1a). Four purifications are made. The
proteins used as baits are P3, P4, P5 and P7. There are two sets of
preys that are supported by more than one bait: {P2,P3,P4,P5} and
{P5, P6, P7, P8}. It can be hypothesized that these sets correspond
to two protein complexes, shown in Figure 1b. In both cases, the
consistency requirement is satisfied. The missing edge between P5
and P2 is a likely false negative, since both P3 and P4 interact with
P2. There may be additional complexes in this toy example, but there
is only weak evidence for their existence since they are detected as
preys by a single bait protein.

We adapted the SAMBA algorithm (Tanay et al., 2002) to find
putative complexes, henceforth called clusters. As further detailed
in the Methods, the algorithm relies on a scoring component and
a search heuristic to identify high scoring subgraphs. The scoring
of a subgraph is based on a likelihood ratio score, which measures
the density of the subgraph versus the chance that its connections
arise at random. We experimented with two scoring variants: a
permissive one, w0, and a stricter one, w1 (see Section 2). In all the
applications below, we report on the results of both variants. The
search heuristic starts from small bicliques and expands them using
greedy search. Unlike SAMBA, the search procedure also ensures
that the consistency requirement is met by coupling together the
prey and bait instances of a protein.

Fig. 1. An example data set. (a) An input bait–prey graph. Baits are colored
in blue and preys are colored in red. (b) Two possible protein complexes and
their corresponding subgraphs.

The significance of the identified clusters is evaluated by
comparing their scores to those obtained on randomized instances,
where the edges of the bipartite graph are shuffled while maintaining
node degrees. We retain only significant clusters and further
eliminate redundant clusters with high overlap among them.

3.2 Application and evaluation
As a first test of CODEC, we applied it to two recently published
large-scale CoIP datasets in yeast. The first dataset from Gavin et al.
(2006) contains 1993 bait proteins and 2670 prey proteins, and its
edge density in the bipartite graph model is 0.006. The second dataset
from Krogan et al. (2006) contains 2233 bait proteins and 5219 prey
proteins, and its edge density in the bipartite graph model is 0.003.
This dataset has a much lower bait to prey ratio than the former one
and, thus, serves as a different test case for our method. CODEC
was applied to the two original datasets; no proteins were filtered.

The application of CODEC to the first dataset using the w0
weighting scheme yielded clusters with 12 baits and 22 preys on
average The average edge density within an output cluster was very
high (0.65). When using the stricter w1 scheme, a similar number of
clusters was obtained, but the clusters were much smaller (4.5 baits
and 13.5 preys on average).

The application of CODEC to the second dataset using the w0
weighing scheme produced clusters with 4 baits and 16 preys on
average. The average interaction density within the output clusters
was high (0.54). When using the w1 scheme, the number of clusters
dropped by 3-fold although their sizes remained similar to the w0
case.

The size distributions of the obtained protein clusters in each of
two applications are provided in Supplementary Table S1.

To assess the quality of our results, we measured their specificity
and sensitivity with respect to a collection of manually curated
complexes taken from the MIPS (Mewes, 2002) database (see
Section 2). Specificity is defined as the fraction of clusters that
significantly overlap a known complex; sensitivity is defined as the
fraction of known complexes that significantly overlap an identified
cluster. We computed receiver operating characteristic (ROC) curves
for the two datasets, which plot the sensitivity and (1−specificity)
values over a range of P-value cutoffs for the output clusters
(Figures 2 and 3). In each plot, we chose the point that maximizes
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Fig. 2. A comparison of protein complex identification approaches on the
data of Gavin et al. (2006). For each method shown is the sensitivity of
the output solution as a function of one minus its specificity. For CODEC
shown are two receiver operating characteristic (ROC) curves, corresponding
to different weighting strategies (w0 and w1). The evaluation is based on a
comparison to known protein complexes from the MIPS database (Mewes,
2002). The CODEC plots were smoothed using a cubic spline.

Fig. 3. A comparison of protein complex identification approaches on the
data of Krogan et al. (2006). See legend of Figure 2 for details.

the sum of sensitivity and specificity (Coffin and Sukhatme, 1997)
as the P-value cutoff for the output clusters. The results attained are
summarized in Table 1.

We compared CODEC to three clustering algorithms: MCODE,
MCL and MRF (Table 1 and Figures 2 and 3). On both datasets,
CODEC outperformed MCODE and MCL, yielding significantly

higher sensitivity values. The cluster set provided by Rungsarityotin
et al. (2007) was computed by applying MRF using the spoke model
to the Gavin et al. (2006) dataset (the MRF results with the matrix
model were inferior and, hence, were not used in the comparison).
CODEC and MRF achieved similar sensitivity scores, but at the
same time CODEC attained significantly higher specificity.

Qualitatively similar results were obtained when evaluating
the collections of protein complexes based on known complexes
from the GO (Cherry et al., 1998) database (see Supplementary
Figures S1 and S2). When using an alternative evaluation measure—
the Accuracy measure suggested by Brohee and van Helden
(2006)—CODEC was again shown to outperform MCL and
MCODE, while providing results that were only slightly better than
those of MRF (see Supplementary Figures S3 and S4). Notably,
all the tested methods perform worse on the data of Krogan et al.
because of its low bait to prey ratio.

3.3 Comparison to extant CoIP-based approaches
The results above demonstrate the utility of using CoIP data for
protein complex identification. Next, we compared CODEC to
extant protein complex inference methods that use such data. As a
first test, we compared CODEC to two other methods that use CoIP
data for scoring pairs of putatively interacting proteins. The first
(Gavin et al., 2006) computes cores of complexes based on ‘socio-
affinity’ scoring system that measures the log ratio of the number of
times two proteins are seen together in CoIP purifications, relative
to what would be expected from their frequency in the dataset.
The second (Collins et al., 2007) scores pairs of proteins using a
purification enrichment (PE) score, which combines the evidence
in each purification for bait–prey and prey–prey relationships. We
used these PE scores as input to the MCL algorithm [as suggested
in Brohee and van Helden (2006)]. Importantly, both methods
use manually curated information (known protein complexes from
MIPS) to tune their parameters.

We conducted the comparison on the the Gavin et al. (2006)
dataset, for which we had the complex cores from Gavin et al.
(2006). The results are summarized in Table 2 and depicted in
Figure 2. Notably, even though the methods of Gavin et al.
(2006) and Collins et al. (2007) use prior biological information in
the inference process, CODEC outperforms both, attaining higher
sensitivity and specificity values. The most pronounced difference
is with respect to the specificity of Gavin’s cores (78% versus 51%).

Our final comparison was to the Local Modeling method
(Scholtens et al., 2005). The available implementation of the method
could not run on the datasets of Gavin et al. (2006) and Krogan et al.
(2006) due to their relatively large size. Hence, we used a smaller
data set as a test case (Gavin, 2002), containing 455 bait proteins
and 1364 prey proteins. The protein complexes inferred by Local
Modeling are partitioned into three categories: complexes that are
supported by multiple baits (marked as MBME), complexes that
are supported by a single bait (marked as SMBH) and complexes
that contain two baits where only one of the baits identifies the
other bait as its prey. We focused on the 272 MBME complexes,
which represent the highest confidence predictions. As can be seen
in Table 3 and Figure 4, CODEC outperforms local modeling,
attaining higher specificity and sensitivity. When including in the
Local Modeling solution also the SMBH complexes (336 in total) the
sensitivity increased to 93%, at the price of a decrease in specificity
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Table 1. Comparison to MCODE, MCL and MRF

Gavin et al. (2006) Krogan et al. (2006)

Number of Specificity Sensitivity F-measure Number of Specificity Sensitivity F-measure
Complexes (%) (%) (%) Complexes (%) (%) (%)

CODEC using w0 1082 77.5 77 77 8348 30 76.2 43
CODEC using w1 1005 78.5 79 78.5 2973 46.5 72 56.5
MCODE 73 73.5 32 44.5 130 25 14 18
MCL 411 49.5 44.5 47 818 19.5 46 27.5
MRF 698 79.7 46.7 59 – – – –

A comparison of CODEC, MCODE, MCL and MRF on the datasets Gavin et al. (2006) and Krogan et al. (2006). The best result in each column appears in bold.

Table 2. Comparison to Collins et al. and Gavin et al. 2006

Number of Specificity Sensitivity F-measure
Complexes (%) (%) (%)

CODEC using w0 1082 77.5 77 77
CODEC using w1 1005 78.5 79 78.5
Gavin et al. 2006 480 51.5 70.5 59.5
Collins et al. 258 70 69.5 69.5

A comparison of CODEC and the methods of Collins et al. and Gavin et al. on the
dataset of Gavin et al. (2006). The best result in each column appears in bold.

Table 3. Comparison to Local Modeling

Number of Specificity Sensitivity F-measure
Complexes (%) (%) (%)

CODEC using w0 185 80 85 82.5
CODEC using w1 180 79.5 81 80
Local Modeling 272 73 67 70

A comparison of CODEC to the Local Modeling approach on the dataset of Gavin
(2002). The best result in each column appears in bold.

(to 69%). Overall, these results are comparable to those of CODEC,
although providing a slightly worse F-measure (79% compared with
CODEC’s 82.5%).

4 CONCLUSION
We have provided a novel algorithm for identifying protein
complexes from co-immunoprecipitation data, which is based on
reformulating the problem as that of finding heavy subgraphs
in a bipartite graph. We have shown that our approach,
which uses non-binary co-complex information, is superior to
clustering methods that dissect binary protein–protein interaction
data. Our algorithm was also shown to outperform existing
approaches for inferring protein complexes from CoIP data.
All complex predictions made by CODEC can be found at
http://www.cs.tau.ac.il/∼roded/CODEC/main.html. An interesting
open challenge is to combine yeast two-hybrid data into the
inference process. Such a combined approach is expected to become
increasingly important as protein–protein interaction databases
continue to grow in size and species coverage.

Fig. 4. A comparison of protein complex identification approaches on the
data of Gavin (2002). See legend of Figure 2 for details.
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