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Abstract: The growing incidence of skin cancer makes computer-aided diagnosis tools for this
group of diseases increasingly important. The use of ultrasound has the potential to complement
information from optical dermoscopy. The current work presents a fully automatic classification
framework utilizing fully-automated (FA) segmentation and compares it with classification using
two semi-automated (SA) segmentation methods. Ultrasound recordings were taken from a total of
310 lesions (70 melanoma, 130 basal cell carcinoma and 110 benign nevi). A support vector machine
(SVM) model was trained on 62 features, with ten-fold cross-validation. Six classification tasks were
considered, namely all the possible permutations of one class versus one or two remaining classes.
The receiver operating characteristic (ROC) area under the curve (AUC) as well as the accuracy (ACC)
were measured. The best classification was obtained for the classification of nevi from cancerous
lesions (melanoma, basal cell carcinoma), with AUCs of over 90% and ACCs of over 85% obtained with
all segmentation methods. Previous works have either not implemented FA ultrasound-based skin
cancer classification (making diagnosis more lengthy and operator-dependent), or are unclear in their
classification results. Furthermore, the current work is the first to assess the effect of implementing
FA instead of SA classification, with FA classification never degrading performance (in terms of AUC
or ACC) by more than 5%.

Keywords: skin ultrasound; computer vision; computer-aided diagnosis; skin lesion classification

1. Introduction
1.1. Motivation

Skin cancer is a disease that is causing a growing problem in the developed world.
For instance, one in five Americans are expected to get skin cancer during their lifetime,
with an estimated 5.8% rise in melanoma cases for 2021 and a 77% rise in the incidence
of non-melanoma skin cancer between 1994 and 2014 [1]. While malignant melanoma
(MM) is the most deadly form of skin cancer, thankfully it is about 20 times less common
than other forms of skin cancer, with basal cell carcinoma (BCC) being the most common
non-melanoma skin cancer [2]. Due to the relative shortage of dermatologists in the midst
of increases in skin cancer incidence, the role of computer aided diagnostic approaches is
gaining increasing prominence.

Deep neural network-based optical approaches using tens of thousands of clinical
records, including dermoscopy images, have achieved an accuracy of around 94% on auto-
mated skin lesion classification [3,4]. Despite the high accuracy of optics-based melanoma
detection, the addition of subsurface information from ultrasound imaging can further
improve classification accuracy [5].

In the last few decades, there has been increased interest in the use of dermatologic
ultrasound for skin lesion diagnosis. The appearance of different cancerous and noncancer-
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ous skin lesions on ultrasound images, as well as their quantitative acoustical parameters,
have been extensively reported [6–18]. In the following two subsections, ultrasound-based
lesion diagnostic methods in general are briefly presented, followed by a brief review of
the use of the aforementioned skin-specific features for skin cancer diagnosis.

1.2. Overview of Ultrasound-Based Lesion Diagnostic Methods

There are several lesion types, the automated classification of which is commonly
studied in ultrasound imaging. Some of these are: benign versus malignant breast lesion
differentiation [19–24]; thyroid cancer detection [25–28] or liver disease classification [29,30].
Lesion diagnosis techniques belong either to the traditional Computer-Aided Diagnostic
(CAD) class of methods, or to the relatively recent class of deep learning (DL) methods.
Both groups are briefly considered in turn, with the reader referred to the following review
articles for a more extensive overview [31–35].

Typically, the CAD system pipeline consists of four main steps, namely pre-processing,
segmentation, feature extraction, and classification. Unlike DL methods, CAD meth-
ods reduce the large size of the data input to a relatively small number of explicitly
defined features. In the context of ultrasound-imaged lesions, previous works [31,34]
have shown that promising features are: texture features, such as Laws’ texture energy,
local binary patterns, wavelet features, contrast of gray level values or gray level co-
occurrence matrices [21,22,25,26,29,30]; morphological features, such as spiculation, depth-
to-width ratio, elliptic-normalized circumference and skeleton, long axis-to-short axis
ratio [20–22]; statistical-model-based features such as those based on the Nakagami or
K-Distributions [19]; and finally, bioinspired or domain-knowledge-based descriptors, such
as those describing shape, calcifications, posterior shadow and echo, or echo characteris-
tics [23].

In contrast to traditional CAD methods, DL methods, which do not require predefined
features, have experienced an upsurge in popularity in virtually all areas of image process-
ing. Due to their considerable ability in approximating arbitrary functions, DL methods
can potentially replace any number of the above steps in the traditional CAD pipeline,
provided that a sufficient number of training data are made available. This requirement is
usually met in the case of “grand challenges” using popular lesion types, where anyone
can test their algorithm on publicly available datasets. Recent examples of the use of
DL in ultrasound-based lesion diagnosis are to be found in the classification of thyroid
nodules [27,28], breast lesion differentiation [24] and lung ultrasound for the detection of
COVID-19-associated lesions [36].

Despite their understandable popularity, since DL methods are based on large inter-
connected neural networks, their explainability (and thus the predictability of failure cases)
poses a challenge to their verification. Moreover, as hinted earlier, DL techniques require
large datasets (typically on the order of 1000 recordings). Due to the current relative lack of
large datasets for skin ultrasound, ultrasound-based skin lesion classification techniques
mostly rely on traditional CAD systems. This is the topic of the next subsection.

1.3. Ultrasound-Based Differential Diagnosis of Benign and Malignant Skin Lesions

Regarding the topic of skin cancer, the reader is first directed to two reviews of skin
cancer detection methods in general [37,38], followed by two reviews of ultrasound-based
skin cancer diagnosis [39,40]. These reviews of ultrasound methods highlight a number
of studies where a number of quantitative and semi-quantitative parameters—such as
echogenicity, homogeneity, shape, margins and location of the lesions, as well as the
posterior acoustic shadow and dermal echogenicity ratio—are shown to be promising
features in differential diagnosis [41–47]. These works, however, do not aim to provide
automated classification, as they require fully manual segmentation and examine the
diagnostic potential of features rather than combining them into a classification framework.
Therefore, lesion classification accuracy values are either missing, not detailed properly, or
do not reach the desired level (60%+) [40].
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A number of more recent studies have moved towards providing a skin cancer classifi-
cation framework. Csabai et al. [48] and Andrékuté et al. [49] combined an semi-automated
(SA) segmentation method with a fully-automatic feature extraction and classification
method based on acoustical, textural and shape features. Csabai et al. [48] examined three
kinds of lesion types, namely MMs, BCCs and benign nevi. Using a manually selected
seeding region, an active contour model (ACM) was used to segment the lesion. Five
shape features and seven first-order texture parameters were defined and their mean and
standard deviation were input as features into a support vector machine (SVM) model. In
terms of the area under the receiver operating characteristic (ROC) curve (AUC) metric,
they reported a classification performance of 86% for the differentiation between nevi
from cancerous lesions and 90% for BCC vs. nevi. Andrékuté et al. [49] used a somewhat
different approach: following a manual selection of those A-lines that contained the lesion,
the lesion boundaries were automatically calculated for each A-line independently (A-lines
are one-dimensional sections of the B-mode image in the depth direction, the direction of
propagation of the ultrasound pulse). From these A-lines, 29 features were extracted for
binary classification between MMs and benign melanocytic skin tumors (MST). An AUC
performance of 89.0± 0.6% was obtained.

In another strand of research, Kia et al. [50] presented an automatic classification
method for differentiating between healthy tissues, benign lesions, BCCs and melanomas.
Although 98% sensitivity was attained, this was achieved at the cost of the specificity
being only 5%, making the diagnostic value of the algorithm extremely limited. (Although,
judging from the context in which the performance values were reported, it is possible the
authors may have meant to write a specificity of 95%.) In addition, healthy skin without
lesions was included in the testing set, making a comparison with other classification
articles difficult, if they do not consider the differentiation of lesion-free skin necessary.
A more recent work from the group is based on tissue frequency analysis [51]. It uses
a 384-element-long feature vector from frequency space to train the above-mentioned
neural network. The algorithm calculated the features using the whole sonograms without
applying any kind of segmentation before it. Their work reached an accuracy of 95.9%
using 220 malignant and 180 benign lesions for training, testing and evaluation; a very
promising result. However, since the report did not specify the four classes of skin type
for which differential diagnosis was performed, more reports from their work are needed
before the method can be verified.

A final work worthy of mention is that of Tiwari et al. [5], where skin lesion clas-
sification is performed based on parameters collected and combined from a number of
different imaging modalities, namely ultrasonograpy, dermatoscopy and spectrophotome-
try. Although the results are outstanding (with an AUC of 99.9%), purely ultrasound-based
classification is unfortunately not proposed or evaluated in the work.

In the table below (Table 1), the performance of the most relevant ultrasound-based
classification methods is presented. They have been selected from the literature included
above on the basis of having clearly defined and documented performance measures
differentiating between skin lesions only.

1.4. Aims of Current Work

The current work aims to present a framework for ultrasound-based skin cancer
diagnosis that differentiates between three common skin lesion types: benign nevi, BCC and
MM. In contrast to techniques that require some form of manual segmentation, the use of an
automated segmentation method [52] makes skin cancer detection fully automatic, which,
considering the time limits imposed on dermatological visits [53], would significantly
improve the utility of the skin cancer detection method. Although many methods exist for
optical-based automated skin cancer diagnosis [3,4], as mentioned earlier, ultrasound has
the potential to improve on the accuracy of fully optical-based methods [5]. The aim of
the current work, therefore, is to assess how an fully-automated (FA) skin lesion detection
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method compares with reference SA methods and to compare with relevant results in the
literature.

Table 1. Comparison of ultrasound-based skin lesion differential diagnosis methods focusing on benign and malignant
skin lesion. In contrast to the current proposed method, none of the methods are fully automated since they do not employ
fully-automated (FA) segmentation. NA stands for Not Available.

Lesions Compared Features Used Performance Ref.AUC/Sens./Spec.

nevi vs. MM acoustic shadowing, dermal echo ratio NA/100%/<30% [44]mean & std echogenicity, entry echo line

BCC vs. others high frequency and Doppler ultrasound NA/91%/14% [45]

MM vs. others echostructure, homogeneity, lesion margin NA/100%/32% [46]
Color Doppler, intralesional vessels NA/100%/34% [46]

nevi vs. MM surface & intra-lesional reflectance NA/100%/55% [47]attenuation, param. relative uniformity

nevi vs. cancerous shape & texture features 86%/100%/19% [48]

BCC vs. nevi shape & texture features 90%/100%/45% [48]

MM vs. MST acoustical, textural & shape features 89%/85%/79% [49]

2. Materials and Methods

In the current section, the data processing pipeline is described from the point of data
collection to data processing using feature extraction, classification and, finally, measures to
evaluate classification performance. All the code used in the work is available to download
on GitHub (Available online: https://github.com/marosanp/skin-lesion-us, accessed on
20 June 2021).

2.1. Ultrasound Data Collection

Data were collected at the Department of Dermatology, Venereology and Dermatoon-
cology, Semmelweis University, Budapest, Hungary, as part of an ethically approved study.
Informed consent was obtained from the participating patients for the anonymised use of
the data for research and publication [52].

The source of the examined dataset was a commercial high-frequency ultrasound
imager (HI VISION Preirus with 5–18 MHz EUP-L75 transducer connected to Hitachi
Preirus, Hitachi, Tokyo, Japan). The current study involved N = 310 B-mode ultrasound
images, containing skin lesions with a thickness of 1–2 mm. Three different types of skin
lesions were distinguished, including 110 benign nevi, 130 BCCs and 70 recordings of MMs.
Figure 1 illustrates a representative ultrasound image of each examined lesion type.

2.2. Segmentation

Three different segmentation techniques were implemented and compared in the
current study: one was an FA algorithm to study the accuracy of ultrasound-based FA skin
cancer detection, while the other two were SA algorithms used as a reference. Note that
the same segmentation method was used for training and testing rather than selecting one
as the ground truth during training.

https://github.com/marosanp/skin-lesion-us
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Figure 1. Representative ultrasound images of the three examined lesion types. (a) Nevus; (b) BCC;
(c) MM. The primary layers of the skin are marked by the red (epidermis) and green (dermis) marks
on the sides of the images. The lesions are marked by a white letter ‘L’ placed above them on
the images.

The first technique performs FA lesion segmentation based on an initial seeding step
and a growing step, described in detail in [52], and described briefly below. The seeding
step begins with a pre-processing substep to make ultrasound images from different
machines similar to each other. This is followed by layer extraction substeps (above skin,
epidermis, and dermis), and a lesion detection substep within the dermis. Each layer
extraction substep first performs an intensity-based clustering or multilevel thresholding
method combined with prior geometric information to return an initial estimate of the
layer region; then performs a refinement of the region estimate based on an ACM and
morphological operations. The seeding step is concluded by a lesion detection substep
that incorporates information from the layer extraction substeps with prior geometrical
assumptions about the arrangement of the layers and lesions. The automated seeding is
followed by a growing step, using ACMs to extract the final lesion mask. To the best of our
knowledge, this is the only fully automatic segmentation algorithm for ultrasound images
of skin cancer-suspicious lesions that works on images from multiple imaging systems [52].

Two SA segmentation algorithms were also used for comparison purposes. Both of
them require manual seeding for lesion localization and execute an ACM-based growing
step on the initial seed masks for final boundary delimitation. The first, freehand seeding
method used a freehand drawing around the lesion borders (using the MATLAB command



Diagnostics 2021, 11, 1207 6 of 23

freehand). This freehand seeding method simulated a careful manual segmentation since
it allows any errors to be corrected using an ACM method. The second seeding method
generated the largest area rectangle (LAR) from the freehand drawing and used that
as the seed. This is similar to someone choosing a rectangular seed, as found in other
works [54,55], and preferred in practice to freehand seeding due to the higher selection
speed involved. We also have to mention that freehand seeding adds a significant variance
and impairs the reproducibility of the algorithm as was demonstrated in [52]. In the current
implementation, the difference was that the LAR was derived from the freehand seeding
itself to allow meaningful comparison between the two.

The above-defined three segmentation techniques were chosen based on the following
considerations. Our primary motivation of the work is to compare FA classification with
SA classification. To the best of our knowledge, our previous work [52] is the only FA
seeding-based method that was applied on more than one type of skin ultrasound image,
demonstrating its robustness; therefore, this was chosen as the FA segmentation algorithm.
Considering reference SA segmentation methods, freehand-seeding-based SA segmentation
was considered a good approximation to ground truth, combining human knowledge with
the filling in of spatially fine details. Since the freehand method is highly time-consuming,
the LAR-based SA segmentation is considered a good simulation of a rapid human input
into the segmentation workflow [52]. Since the freehand method was considered to be
the most reliable segmentation, this was treated as the ground truth segmentation. In
particular, the success rate of the FA segmentation was defined as the proportion of lesions
where the Dice coefficient between the FA and freehand SA exceeded 10%.

2.3. Feature Extraction

Using the segmentation described in the previous subsection, 93 features were ex-
tracted from the lesion, lesion boundary, and the area of the dermis under the lesion. Then,
feature selection was made by examining the SVM-based weights on the training set. In
this way, 62 features were selected from 93 examined (Table 2).

The 62 features were calculated using the following image regions:

• Lesion region: all the pixels inside the lesion mask;
• Dermis region: pixels of the region of the dermis being right under the lesion mask;
• Lesion boundary: a lane of pixels being located within a fixed distance from the lesion

mask boundary.

The features can be grouped into first-order textural, second-order textural, and
shape features. First-order textural features express information about the distribution
of individual pixel intensity values, while second-order textural features express spatial
correlation between pixel intensities [56], and, in the current work, are based on the gray
level co-occurrence matrix (GLCM) [57–59]. Lastly, some shape-based features were also
extracted. All three groups of features are presented below.

2.3.1. First-Order Textural Features

First-order textural features can be broadly categorized according to the properties
or regions concerned, hence the subgroups; attenuation, lesion contrast, lesion boundary,
and statistical.

Attenuation-based features, such as attenuation, contrast of attenuation and hetero-
geneity of attenuation, examine the lesion region and its shadowing in the dermis region
right under the lesion mask. Contrast parameters, such as lesion- contrast-based hetero-
geneity and the mean lesion contrast, examine the contrast of each boundary line emanating
radially from the inner edge of the lesion [48]. The above two subgroups, as well as the
mean boundary belonging to the boundary subgroup, were adopted from Csabai et al. [48].

Lesion boundary region-based features, such as mean boundary, boundary hetero-
geneity, boundary contrast, boundary heterogeneity contrast, boundary-lesion contrast,
dermis-lesion heterogeneity contrast and boundary-lesion heterogeneity contrast, are calcu-
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lated based on the expressions presented in Table 2. Statistical features, such as skewness,
kurtosis and entropy, were also selected.

2.3.2. Second-Order Textural Features

For most of the second-order (GLCM) textural descriptors (contrast, correlation I.
correlation II. dissimilarity, maximum probability, difference variance, difference entropy
and information measure of correlation I.), the descriptors were calculated in both the
vertical and horizontal directions, for both the lesion region and the dermis region of the
images. For some of the second-order descriptors (energy, entropy, homogeneity I & II, and
information measurement of correlation II) only the vertical GLCMs were calculated for
both regions.

Further details and calculations of the above listed GLCM-based co-occurrence texture
statistics are to be found in the work of Uppulari [59].

2.3.3. Shape Features

Shape features are derived from parameters describing the shape of the lesion bound-
ary. Some shape parameters, such as standard deviation of curvature and circularity, were
extracted by Csabai et al. [48]. Further shape features, such as axis ratio, perimeter-area
ratio and compactness (ratio of perimeter and the length of the major axis of the lesion
mask), are also extracted.

The feature names with corresponding indices in the feature set (idx) are presented in
Table 2, with references (to those taken from the literature) or with a short description (in
the cases of newly introduced descriptors).

2.4. Classification

To aid comparison, the approach for the classification methodology (training and test-
ing) closely resembled that of Andrékuté et al. [49]. Namely, an SVM-based classifier [60]
was used, with ten-fold classification implemented in the following manner. First, ten
separate groups were selected randomly, with the same ratios of lesion types. Then, each
group in turn was selected as the test group, with the remaining nine groups merged into
a training set. The classification performance was then averaged over the ten training in-
stances, using accuracy (ACC) and AUC as performance metrics for the binary classification.
In addition to binary classification (as implemented by Andrékuté et al. [49]), multiclass
classification was also carried out in the current work and evaluated using ACC.

The following classes were distinguished for both binary and multiclass classification:
‘Nevus vs. others’, ‘MM vs. others’, ‘BCC vs. others’, ‘Nevus vs. BCC’, ‘Nevus vs. MM’,
‘BCC vs. MM’. In the cases of the binary classifications, ‘Nevus vs. BCC’, ‘Nevus vs. MM’
and ‘BCC vs. MM’ classifications were performed on datasets containing only lesions
from the relevant two groups, while the corresponding multiclass classification results
were obtained using datasets containing all three lesion types. ‘Nevus vs. others’, ‘MM vs.
others’ and ‘BCC vs. others’ classifications were performed using datasets containing all
three types of lesions in both binary and multiclass cases. Here, the binary classification
training was conducted using two classes (a certain type of lesion versus all other lesions),
while the multiclass classifications used three lesion type classes for training.
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Table 2. Feature set used for ultrasound-based skin lesion classification.

Feature Idx Reference/Description

First-order textural features (Attenuation, Contrast, Boundary, Statistical features)

Attenuation [48]

Attenuation 1
Contrast of attenuation 2
Heterogeneity of attenuation 3

Contrast [48]

Lesion contrast-based heterogeneity 4
Mean lesion contrast 5

Boundary

Mean boundary 6 [48]
Boundary heterogeneity 7 std(LB)
Boundary contrast 8 avg(LB)/avg(L)
Boundary heterogeneity contrast 9 std(LB)/std(L)
Boundary-lesion contrast 10 [avg(LB)− avg(L)]/avg(LB)
Dermis-lesion heterogeneity contrast 11 [std(D)− std(L)]/std(D)
Boundary-lesion heterogeneity contrast 12 [std(LB)− std(L)]/std(LB)

Statistical features

Skewness 13
Kurtosis 14
Entropy 15

Shape features

Standard deviation of curvature 16 [48]
Circularity 17 [48]
Axis ratio 18 Ma/ma
PA ratio 19 P/A
Compactness 20 P/Ma

Second-order (GLCM) textural features [57–59]

Contrast 21, 29, 42, 50
Correlation I. 22, 30, 43, 51
Correlation II. 23, 31, 44, 52
Dissimilarity 24, 32, 45, 53
Energy 33, 54
Entropy 34, 55
Homogeneity I. 35, 56
Homogeneity II. 36, 57
Maximum probability 25, 37, 46, 58
Difference variance 26, 38, 47, 59
Difference entropy 27, 39, 48, 60
Information measure of correlation I. 28, 40, 49, 61
Information measure of correlation II. 41, 62

List of symbols

avg—average
std—standard deviation
L—Lesion region (all the pixels inside the lesion mask)
D—Dermis region (pixels of the region of the dermis being right under the lesion mask)
LB—Lesion boundary (a lane of pixels being located within a fixed distance from the
lesion mask edges)
Ma—length of major axis of the lesion mask
ma—length of minor axis of the lesion mask
P—perimeter of lesion mask
A—area of lesion mask
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The parameter set (Algorithm 1) and the entire workflow (Algorithm 2) of the current
work is presented as an algorithm in pseudo-code form at the end of the section, focusing
on the details of the classification method. Details of the FA segmentation algorithm are
presented in Marosán et al. [52], where figures of the procedure are also provided. Feature
extraction is detailed in Table 2 and Section 2.3, Feature extraction.

Algorithm 1: Skin lesion classification algorithm—Part I. Variables and Methods.

Inputs :
N // where N is the number of ultrasound images collected
I1, I2, ...IN // Ij is the jth image collected (images are indexed by j)
L1, L2, ...LN // Lj is the lesion class of the jth image

Outputs :
C1, C2, ...CN ,where Cj ∈ {N, BCC, MM, O} // Cj is the predicted class

label of the jth image (nevus, BCC, MM, other)

Parameters :
Seg // segmentation types: {FA, SA LAR, SA Freehand}
Class // classification types: {‘Nevus vs. BCC’, ‘Nevus vs. MM’,

‘BCC vs. MM’, ‘Nevus vs. others’, ‘MM vs. others’, ‘BCC vs.
others’}

maskL1, maskL2, ...maskLN // maskLj is the lesion mask of the jth image
maskD1, maskD2, ...maskDN // maskDj is the dermis mask of the jth image
F1, F2, ...FN // Fj is the feature vector of the jth image
FG

1 , FG
2 , ...FG

10 // FG
k is the kth group of feature vectors

CG
1 , CG

2 , ...CG
10 // CG

k is the kth group of label predictions of feature
vectors

Methods :
segmenti() // segmentation of lesion and dermis masks
f eature_extraction() // first and second order textural & shape feature

extraction, based on dermis and lesion crops
grouping() // selects randomly 10 groups, with the same ratios of

lesion types
labeling() // image labeling based on the following classification

types: ‘Nevus vs. others’, ‘MM vs. others’, ‘BCC vs. others’,
‘Nevus vs. BCC’, ‘Nevus vs. MM’, ‘BCC vs. MM’

svm_train() // train SVM model, based on feature vector & label pair
set

svm_predict() // predict label for feature vector, using pre-defined
SVM model

evaluate() // compute ACC & AUC values based on pre-defined and
predicted labels

2.5. Performance Metrics

The evaluation of classification methods was carried out using the performance metrics
listed below. Numerous works have applied [48,49] the following metrics previously.

The sensitivity Sens calculates the proportion of positive cases that are correctly detected:

Sens =
TP

TP + FN
, (1)

with TP, FN denoting the number of true positives and false negatives in the classifica-
tion, respectively.
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Algorithm 2: Skin lesion classification algorithm—Part II. Procedure.

// main framework of classification
Function classify(I1, I2, ...IN):

// segmentation types
1 foreach i ∈ Seg do
2 for j← 1, N do
3 maskLj, maskDj ← segmenti(Ij)

4 Fj ← f eature_extraction(Ij, maskLj, maskDj)

5 end
6 [FG

1 , FG
2 ...FG

10]← grouping(Fj)

7 // feature vector groups
8 for k← 1, 10 do
9 Ftrain,k = FG

1 ∪ FG
2 ∪ ...∪ FG

k−1 ∪ FG
k+1 ∪ ...∪ FG

10
10 Ftest,k = FG

k
11 // classification types
12 foreach l ∈ C lass do
13 Ltrain, Ltest ← labeling(L1...LN , k, l)
14 modelsvm ← svm_train(Ftrain,k, Ltrain)

15 CG
k ← svm_predict(modelsvm, Ftest,k)

16 ACCk, AUCk ← evaluate(CG
k , Ltest)

17 end
18 end
19 C1, C2, ...CN ← CG

1 , CG
2 , ...CG

10
20 ACCmean, AUCmean ← meank=1...10(ACCk), meank=I...X(AUCk)
21 end
22 return C1, C2, ...CN

end Function

The specificity Spec calculates the proportion of negative cases that are correctly detected:

Spec =
TN

TN + FP
, (2)

with TN, FP denoting the number of true negatives and false positives in the classifica-
tion, respectively.

The accuracy ACC describes the classification accuracy, namely, the ratio of the number
of correctly detected cases to the number of all examined cases

ACC =
TN + TP

TN + TP + FN + FP
. (3)

The receiver operating characteristic ROC curve is a graphical plot that displays how
Sens varies with 1− Spec. Considering ROC as a function, its definition can be stated as

Sens = ROC(1− Spec). (4)

Finally, using the above definition for the ROC, the area under the ROC curve AUC
can be defined as:

AUC =
∫ 1

0
ROC(x)dx, (5)

where x = 1− Spec.
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3. Results and Discussion
3.1. Overview of Classification Performance

The ROC curves of the various binary classifications for all three segmentation meth-
ods are presented in Figure 2. From these curves, the AUC can be calculated, the values of
which are summarized in Table 3.

Table 3. Area under the curve (AUC) values of binary classification. Values over 90% are highlighted.

AUC SA Segmentation SA Segmentation FA Segmentation
(Binary) (Freehand) (LAR)

Nevus vs. others 0.921 0.953 0.914
MM vs. others 0.786 0.758 0.750
BCC vs. others 0.857 0.858 0.840
Nevus vs. BCC 0.930 0.957 0.921
Nevus vs. MM 0.925 0.933 0.896
BCC vs. MM 0.764 0.735 0.783

Figure 2. Cont.
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Figure 2. Receiver operating characteristic (ROC) curves using (a) freehand-seeding-based SA
segmentation; (b) LAR-seeding-based SA segmentation; (c) FA segmentation and binary classification.

In general, nevi are well distinguished from cancerous lesions: with one exception,
the relevant classifications (‘Nevus vs. others’, ‘Nevus vs. BCC’, ‘Nevus vs. MM’) yield
AUC values over 90% (highlighted in bold in the table).

Although the FA method generally fares worse than the SA methods, the performance
is always within 5% of the best performing method.

The ACC values for both binary and multiclass classifications are summarized in
Table 4. The table depicts a similar trend to the AUC results in Table 4: the nevi are
generally well distinguished from cancerous lesions, with most such classifications reaching
accuracies above 80% (highlighted in bold in the table). The notable exception is the
multiclass classification of ’Nevus vs. MM’, which could be, in part, due to the relatively
low number (N = 70) of melanoma recordings.

It should also be noted that multiclass classifications generally show a worse perfor-
mance than binary classifications. This is arguably because multiclass classification forces
the training classes to be smaller, outweighing the advantage that arises from being able to
train on adequately distinct classes separately.

As before, the FA method generally shows a poorer performance; however, with one
exception (‘BCC vs. others’, multiclass), the difference from the best method is never worse
than 5%.

The current results also compare favourably to the results of Andrékuté et al. [49],
where nevi were distinguished from melanoma with an accuracy of 82.4%: with the SA
methods, the binary classification achieved an accuracy of 85.0%, while the FA method also
achieved a comparable 81.1%.

For a comparison with other relevant works (all using SA segmentation), please see
Table 1. Although the comparison is more difficult with other works, since they mostly set
the sensitivity to 100% and then observe specificity, the current work nevertheless seems to
fare well. For example, for those works where AUC values are provided, the current work
is always superior in its corresponding AUC values. The specificity at 100% sensitivity
shows more variable results in the current work.
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Table 4. Mean accuracy (ACC) values of binary/multiclass classification. Values over 80% are
highlighted in bold.

Mean ACC SA Segmentation SA Segmentation FA Segmentation
(Binary/Multiclass) (Freehand) (LAR)

Nevus vs. others 0.842/0.881 0.881/0.839 0.848/0.855
MM vs. others 0.777/0.752 0.784/0.768 0.761/0.777
BCC vs. others 0.784/0.781 0.784/0.781 0.765/0.713
Nevus vs. BCC 0.879/0.808 0.892/0.792 0.850/0.750
Nevus vs. MM 0.850/0.661 0.850/0.667 0.811/0.689
BCC vs. MM 0.705/0.625 0.670/0.635 0.745/0.620

Overall, the classification of nevi from cancerous lesions, and in particular from both
cancerous lesion types (‘Nevus vs. others’), provides the best classification performance.
Using multiclass classification, the FA method can distinguish nevi from cancerous lesions
with an accuracy of over 85%.

3.2. Comparison of FA and SA Classification Performance with Representative Images

The reason behind a difference in classification performance can be a direct result
of differences in segmentation during the classification phase; or it can be an indirect
result of training on differently segmented images. For the FA method, 83.5% of the
lesions were detected correctly, making its classification performance being close to that
of the other methods somewhat surprising. To try and offer putative explanations for
differences between classification performances, a presentation of images (with overlaid
segmentation contours) that led to different classifications could be informative. In order to
be consistent, the classification discussed will be the best performing one, namely ‘Nevus
vs. others’. Before proceeding to discuss the images, it should be noted for context that, for
this classification task, all three methods were jointly successful in 73.6% of the images, all
three failed together in 5.2% of the cases, while there were differing classifications in 21.3%
of the cases. In the following subsections, those cases where differing classifications are
given are considered.

3.2.1. Cases When FA Fails While SA Methods Perform Correctly

In most cases of differing classifications, the SA methods succeeded while the FA
method failed. Figure 3 presents examples for the three trends observed when analyzing
this subset. In some cases, the FA segmentation method detected an image region fully
outside the real lesion. As can be seen in Figure 3a, there are cases in which the image
structure can be misleading when searching for the lesion location. In other cases, the
FA segmentation did not detect parts of the lesion (Figure 3b) or included additional
areas that were not part of the lesion (Figure 3c). In the latter case, the example shows a
shadowing effect in the dermis region next to the lesion, which potentially misled the FA
segmentation method.

Figure 3. Cont.



Diagnostics 2021, 11, 1207 14 of 23

Figure 3. Examples of images with segmentation results leading to a correct ‘Nevus vs. others’ type
binary classification in the cases of both SA methods (freehand: blue mark; LAR: green mark) while
failing the classification results for the FA method (red mark). Three typical cases are presented:
(a) an image region being totally separated from that of the lesion misleading the FA segmentation;
(b) FA segmentation detecting the lesion only partially; (c) FA segmentation including misleading
image areas nearby the lesion as part of the lesion segmentation.

3.2.2. Cases When the Two SA Methods Return Different Classifications

The SA segmentation methods, based on freehand and LAR segmentation, produced
similar results generally; however, in certain cases, they led to different lesion classification
results, such as in the cases presented in Figure 4. In the minority (29%) of such cases (2.5%
of all images), the LAR-based method was the one failing the classifications. These were
due to the shape of the lesion being such that the LAR segmentation could cover only a
small portion of the lesion, which could not be expanded to cover the entire lesion even
with the subsequent ACM method (Figure 4a).

In the majority (71%) of the cases discussed here (6.3% of all images), the freehand-
based method led to failing classifications while the LAR produced correct results. These
were presumably due to human error in the freehand segmentation, since the pixel bound-
aries of the freehand lesion segmentation are relatively arbitrary in contrast to the LAR-
based method, where the ACM model finds the boundaries of the lesion with a higher
precision (Figure 4b).

3.2.3. Cases When the SA Methods Both Fail While the FA Method Performs Correctly

In some cases, the ‘Nevus vs. others’ type classification was correct for the FA seg-
mentation while failing for both SA segmentations. Figure 5 presents notable cases for
such segmentations. Figure 5a shows a case in which the FA segmentation detected a
similarly shaped and sized but slightly shifted region from that detected by the two SA
segmentations. In some cases, such as the one presented in Figure 5b, the FA segmentation
detected additional image regions as part of the lesion in comparison to the results of the
SA segmentations, leading to a correct classification result.
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In the case shown in Figure 5c, all three segmentation results matched closely; however,
slight differences in their borders led to different classification results. This example
emphasizes the significance of small details in automated ultrasound-image-based lesion
classification performance.

3.3. Sensitivity of Classification to Changes in Lesion Segmentation

The last example in the previous subsection (Figure 5c) presented an interesting
case, since it showed that slight changes in the border of the segmented lesion could
lead to different classification results. Similar issues of classification sensitivity have been
addressed elsewhere in the computer vision literature [61]; however, it is a challenging
topic to address, partly due to the large search space involved in the sensitivity analysis. In
the current work, the topic has been partially addressed in the following manner.

The ultrasound image on Figure 5 depicting a nevus was chosen as the target of the
investigation, since this is where the phenomenon of changing classification due to a small
change in lesion border was observed. Taking the freehand-based SA segmentation as the
reference, the region was progressively grown/shrunk at various regions of the border
(right edge, bottom edge, right and bottom, entire border), with the classification noted at
each step.

Figure 6 shows the results. Figure 6b shows that if the segmented region is shrunk
only at the right edge, then a modest shrinkage of only 2 pixels’ width is able to change the
classification from wrong to correct. This is consistent with the behaviour previously noted
in Figure 5c, where the correct FA classification has a segmentation that is slightly shrunk
at the right edge compared to the other two (Figure 6a). Interestingly, where other sides of
the segmented regions are also modified, it becomes more difficult for the classification
to be corrected. This could be because a hyperechoic patch on the right edge of the lesion
perturbs the classification, and the segmentation is otherwise correct.

Although a more systematic analysis is beyond the scope of the current paper, the
above preliminary analysis does show some insight into the relatively small yet significant
perturbations in classification that can occur due to variabilities in segmentation.

Figure 4. Cont.
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Figure 4. Examples of images with segmentation results leading to a different ‘Nevus vs. others’ type
binary classification in the case of the SA methods (freehand: blue mark; LAR: green mark). Two
typical cases are presented: (a) freehand segmentation leads to correct classification, but LAR-based
segmentation detects the lesion only partially so its classification fails; (b) SA freehand segmentation
fails because of arbitrary boundary selection, but the ACM model, used by SA LAR, corrects the
mistake.

Figure 5. Cont.
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Figure 5. Examples of images with segmentation results leading to a correct ‘Nevus vs. others’ type
binary classification in the case of the FA method (red mark) while failing for both SA methods
(freehand: blue mark; LAR: green mark). Three notable cases are presented: (a) FA segmentation
detected a similar but slightly shifted region from that detected by SA segmentation; (b) FA seg-
mentation detected additional image regions as part of the lesion in comparison to the results of SA
segmentations; (c) All three segmentation results matched closely, however slight differences in their
borders led to different classification results.

Figure 6. Cont.



Diagnostics 2021, 11, 1207 18 of 23

Figure 6. Sensitivity analysis of skin lesion classification procedure. (a) Zoomed ultrasound image
from Figure 5c, with segmentations denoted using the previously used color scheme (freehand SA,
LAR SA, FA). Taking the freehand-based SA lesion border as a reference, the border is shrunk/grown
along various regions of the border ((b): right; (c): bottom; (d): right and bottom; (e): entire region).
The classification result is drawn on the corresponding border change, with gray signifying incorrect
classification, and white correct classification.

3.4. Feature Performance

The aim of this section is to evaluate the features used in the classification framework
by identifying those with the largest contribution to the classification performance. Since
in the SVM classifier model the features do not act in isolation but are part of a non-linear
system where features support each other, the performance of a feature was deemed to
be better evaluated by measuring how much performance degraded when it was left out,
rather than the performance it achieves on its own. Thus, the contribution of each of the
62 selected features was examined one-by-one as follows: one feature was removed and
binary classification was performed using the remaining 61 features and using LAR-based
segmentation. The AUC and ACC performance metrics were computed for all 62 cases
for the six types of classification (similarly to Tables 3 and 4 earlier when all features had
been used). The top features—the absence of which caused the largest deterioration in
classification performance—are shown in Table 5, with the worst feature also shown for
reference. By removing one of the top features, the accuracy performance dropped by
around 2 to 5%.

Table 5 shows several features that performed well on different classification cases,
regarding both AUC and ACC performance measures. Those features that appear at least
three times in the top four are in bold and are as follows (with feature indices in parentheses
as listed in Section 2.3, Feature extraction): boundary heterogeneity (7); boundary contrast
(8); skewness (13); entropy (15); axis ratio (18); compactness (20); and difference variance
(26). Of these features, four are first-order textural features (7,8,13,15), two are shape-based
features (18,20), and one is a second-order textural feature (26). When considering the
possibility of applying the trained classifier to skin ultrasound images from other devices,
the two shape-based features are arguably the most transposable; with the other features,
some form of domain adaptation may be required [62]. In both the ‘Nevus vs. others’ and
‘Nevus vs. MM’ classification tasks, shape-based features were prominent, in agreement
with the results of [49], where shape-based features provided the highest classification
performance for distinguishing between nevi and melanoma.
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Table 5. Features performance. AUC (a) and ACC (b) measures of binary classifications using LAR-based segmentation are
presented for the cases of leaving one feature out from the feature set of the classification framework. The results (AUC and
ACC) are presented in ascending order, showing the omitted features in descending order regarding their contribution to
the performance of the full framework. The features are represented by their index in the feature set of the framework. The
top four rows for each of the six binary classification tasks are presented, together with the last row as a reference. The full
list of the features (with feature names and corresponding indices) can be found in Section 2.3, Feature extraction. Features
appearing at least three times in the top four are highlighted in bold.

a.

Nevus vs. Others MM vs. Others BCC vs. Others Nevus vs. BCC Nevus vs. MM BCC vs. MM

idx AUC idx AUC idx AUC idx AUC idx AUC idx AUC

18 0.910 18 0.738 15 0.850 20 0.927 18 0.866 11 0.738
15 0.913 7 0.777 4 0.850 49 0.927 7 0.905 4 0.747
13 0.918 34 0.780 9 0.851 2 0.928 20 0.908 26 0.749
7 0.918 32 0.780 32 0.854 10 0.928 9 0.909 17 0.752

. . . . . . . . . . . . . . . . . .
55 0.929 11 0.794 14 0.864 55 0.937 4 0.930 18 0.771

b.

Nevus vs. Others MM vs. Others BCC vs. Others Nevus vs. BCC Nevus vs. MM BCC vs. MM

idx ACC idx ACC idx ACC idx ACC idx ACC idx ACC

20 0.826 1 0.771 15 0.768 6 0.875 18 0.789 13 0.680
18 0.832 8 0.771 34 0.774 15 0.875 8 0.828 7 0.690
41 0.832 11 0.771 6 0.777 21 0.879 13 0.833 21 0.690
43 0.832 20 0.771 8 0.777 26 0.879 15 0.839 26 0.690
. . . . . . . . . . . . . . . . . .
9 0.868 26 0.784 39 0.790 8 0.896 19 0.861 5 0.725

3.5. Runtime Measurements

While the segmentation seeding algorithm was implemented in Python, the growing
step, feature extraction, classification and evaluation were implemented in MATLAB
R2018b (MathWorks, Inc., Natick, MA, USA). Table 6 details the computational cost of
the proposed algorithm. Each ultrasound image had a size of 900× 400 pixels and the
computer used had an Intel Core i7-7500U CPU (2.70 GHz) processor and 16 GB RAM.

Table 6. Runtime measurements of the proposed algorithm. For segmentation and feature extrac-
tion, the mean runtime over all images; for classification tasks, the mean runtime over all folds
was calculated.

Method Runtime Environment Mean Runtime [s]

segmentation
lesion detection Python 3.7 2.209
border segmentation MATLAB 2.414

feature extraction MATLAB 0.377
binary classification

training (lesion class vs. others) MATLAB 3.129
training (class 1 vs. class 2) MATLAB 2.043
prediction MATLAB 0.002

4. Conclusions

An automated framework for skin lesion classification was presented and an FA and
two SA segmentation methods were compared. Ultrasound images of three types of lesions
were used for the classifications: MMs, BCCs and benign nevi. Both binary and multiclass
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classifications were performed and evaluated, using six types of class differentiations, for
all three segmentation methods, separately.

The best results were obtained generally for ‘Cancerous vs. Non-cancerous’ (‘Nevus
vs. others’, ‘Nevus vs. BCC’, ‘Nevus vs. MM’) type binary classifications (>90% AUC). The
two SA methods produced generally better results than the FA method, but with relatively
slight differences (between 0.7–3.9%), such that the FA also provided an AUC at around
91% for the binary classification between nevi and the two cancerous lesion types. The
achieved accuracies were similar to those obtained by Andrékuté et al. [49] when they
differentiated between nevi and melanoma: 85.0% with the SA methods and 81.1% with
the FA method, compared with 82.4%. The classification of nevi from cancerous lesions had
even higher accuracies of above 85% even with the FA method. The result demonstrates
the viability of FA skin cancer classification from ultrasound images.

Since features can be highly dependent on the type of ultrasound image they are
applied to, it is worth noting that, in the case of the best performing classification task of
distinguishing nevi from cancerous lesions, the top two performing features in terms of
accuracy were shape-based features, since such features are more adaptable for different
types of ultrasound images. Nevertheless, future work should focus on applying domain
adaptation techniques to ensure the classification framework here presented can also be
applied to skin ultrasound images produced by other devices.

Author Contributions: Conceptualization, P.M.-V., K.S., A.H., D.C. and M.G.; methodology, P.M.-V.,
A.H., D.C., K.F. and M.G.; software, P.M.-V., D.C. and K.F.; validation, P.M.-V., K.S., A.H., G.C. and
M.G.; formal analysis, P.M.-V., A.H., G.C. and M.G.; investigation, P.M.-V., A.H., G.C. and M.G.;
resources, P.M.-V., K.S., D.C. and G.C.; data curation, P.M.-V., K.S., D.C. and G.C.; writing—original
draft preparation, P.M.-V., G.C. and M.G.; writing—review and editing, P.M.-V., G.C. and M.G.;
visualization, P.M.-V.; supervision, M.G. and A.H.; project administration, M.G.; funding acquisition,
M.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was in part supported by Pázmány Péter Catholic University KAP pro-
grammes. The APC was funded by Pázmány Péter Catholic University. The collaboration with Jedlik
Innováció Kft under the GINOP-2.1.7-15-2016-02201 programme is gratefully acknowledged.

Institutional Review Board Statement: The acquisition of the ultrasound images was conducted ac-
cording to the guidelines of the Declaration of Helsinki, and approved by the competent authority Na-
tional Institute of Pharmacy and Nutrition, Budapest, Hungary (protocol code OGYÉI/16798/2017).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the data
acquisition.

Acknowledgments: The authors thank the generosity of Miklós Sárdy (director) and Sarolta Kárpáti
(former director) of the Department of Dermatology, Venereology and Dermatooncology of Semmel-
weis University) for their scientific support and encouragement of the current research. The authors
also thank Jan D’hooge, from Department of Cardiovascular Sciences, KU Leuven, for advising on
the second-order textural features.

Conflicts of Interest: Some of the co-authors are employed by and hold financial interest in Dermus
Kft. The company may plan to use the scientific results in its own research and development efforts.
Other than that, the authors have no potential conflicts of interest to disclose.

Abbreviations
The following abbreviations are used in this manuscript:

FA fully-automated
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NA Not Available
LAR largest area rectangle
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