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Abstract

In previous work, we proposed a method for detecting differential gene expression based on change-point of expression
profile. This non-parametric change-point method gave promising result in both simulation study and public dataset
experiment. However, the performance is still limited by the less sensitiveness to the right bound and the statistical
significance of the statistics has not been fully explored. To overcome the insensitiveness to the right bound we modified
the original method by adding a weight function to the Dn statistic. Simulation study showed that the weighted change-
point statistics method is significantly better than the original NPCPS in terms of ROC, false positive rate, as well as change-
point estimate. The mean absolute error of the estimated change-point by weighted change-point method was 0.03,
reduced by more than 50% comparing with the original 0.06, and the mean FPR was reduced by more than 55%.
Experiment on microarray Dataset I resulted in 3974 differentially expressed genes out of total 5293 genes; experiment on
microarray Dataset II resulted in 9983 differentially expressed genes among total 12576 genes. In summary, the method
proposed here is an effective modification to the previous method especially when only a small subset of cancer samples
has DGE.
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Introduction

Selecting differentially expressed genes [1,2] is one of the most

important tasks in microarray applications. Many methods were

proposed to compare patterns of gene expression between cells or

tissues of different kinds and under different conditions, for

example, between normal and cancer cells. The goal of these

methods has been to enable faster, simpler, more sensitive and

systematic analyses [3]. Among these methods, t-statistics is a

classical and widely-used DGE detecting methods, which works on

the hypothesis that all the cancer samples are over-expressed

compared with the normal samples [4]. Several other methods are

also based on this hypothesis, such as empirical Bayes approach

[5], mixture model approach [6], and SAM [7]. However,

considering the heterogeneity of gene activation, many genes show

increased expressions in disease samples, but only for a small

number of those samples [8]. The study of Tomlins et al. [9,10]

shows that t-statistics has low power in this case, and they

introduced cancer outlier profile analysis (COPA) method which

performs better than the traditional t-statistics for cancer

microarray data sets. More recently, several progresses have been

made in this direction with the aim to design better statistics to

account for the heterogeneous activation pattern of the cancer

genes, such as non-parametric method PPST (permutation

percentile separability test) [11] (Lyons-Weiler, 2004) and LRS

(likelihood ratio test) [12] (Hu, 2008); percentile based methods

OS (outlier sum) [13] (Tibshirani, 2007), ORT (outlier robust t-

statistics) [14] (Wu, 2007) and TriORT [15] as an improvement to

ORT; MOST (maximum ordered subset t-statistics) [16] (Lian,

2008) and TriMOST [17], which is an improvement to MOST.

Previously, we proposed a non-parametric change point

statistics (NPCPS) method [18] based on modified Kolmogorov

statistic to detect the single change-point (CP) in a data sequence

[19]. This method compares directly the data distribution of

normal and cancer group to detect conveniently the existence of

possible change-point in the cancer group, giving an estimate of

the change-point as well. Besides, as a non-parametric inferential

method, NPCPS does not make assumptions about the probability

distributions of the variables being assessed, and accordingly, it is

not necessary to normalize the microarray data before calculating

the test statistic like other parametric methods usually do. By

simulation and experiment, NPCPS is effective for DGE detection

and outperforms the compared methods with better ROC results

in many circumstances [18]. However, the performance of this

PLoS ONE | www.plosone.org 1 January 2012 | Volume 7 | Issue 1 | e29860



change-point based method is still limited by the less sensitiveness

to the right bound and the statistical significance of the static has

not been fully explored. Therefore, here we present an improved

method, Weighted Change-Point Statistics (WCPS) aiming to

break the limitations.

Results and Discussion

Monte Carlo simulation and ROC analysis
Monte Carlo simulation was applied to evaluate the hypothesis

test used in the proposed method. For each Monte Carlo

simulation, the proposed method was applied to an artificial

7000-gene dataset in normal distribution (mean = 0, standard

deviation = 1) and multiple simulations were carried out with

positive m= 2, and different sample size n (normal group size n1

and cancer group size n2 equal to n/2) and DGE sample size k

(0,k,n2). The false positive rate (FPR, i.e. genes with DGE were

recognized as no DGE existence) and average estimate of change

point (Table 1 and Table 2) were computed. Generally, for both

methods, the estimate of change point and FPR enhanced together

when k increased; after FPR dropped below the significance level

(0.01 in this case), the estimated position converges to the actual

position. However, for a given k, the proposed method

outperforms the original NPCPS with closer CP estimate and

lower FPR; with k increasing, the proposed method converged

faster to the true change point and reached zero FPR before the

original NPCPS method. For normally distributed data, between

WCPS and NPCPS, the FPR is 0.09 versus 0.17; for skew-

normally distributed data, the FPR was 0.08 versus 0.12. Besides,

the mean absolute error (MAE) of estimated CP by WCPS was

0.03, while MAE by NPCPS was more than 0.06.

Results of more simulations with different m and k are in Table 3.

The proposed method and other seven methods as comparison

were then applied to two types of dataset, one in normal

distribution and the other in skew-normal distribution, and each

type contained several datasets with different m, n and k. The other

seven methods are NPCPS, LRS, TriMOST, TriORT, COPA,

OS and T-statistics. The AUC of ROC analysis on both types of

dataset is summarized in Table 4 and Table 5, and the ROC in

Fig. 1 and Fig. 2, respectively.

Results show that the proposed method had larger AUC than

the other methods, more significantly when k was smaller.

Generally, change-point based methods, namely WCPS, NPCPS

and LRS were better than the percentile-based methods in terms

of ROC in the simulation study, while WCPS had the best

performance; among the percentile based methods, T-statistic was

Table 1. CP estimate and FPR on data in normal distribution of size n1 = n2 = 25 with positive m= 2.

k Actual CP Average estimate of CP FPR with C(0.01) = 1.628

WCPS NPCPS WCPS NPCPS

1 0.98 0.84 0.60 0.65 0.84

3 0.94 0.92 0.80 0.14 0.48

5 0.90 0.89 0.84 0.04 0.16

7 0.86 0.84 0.82 0.02 0.04

9 0.82 0.81 0.81 0.002 0.01

12 0.76 0.75 0.74 0.0 0.002

15 0.70 0.70 0.69 0.0 0.0

20 0.60 0.60 0.60 0.0 0.0

25 0.50 0.51 0.51 0.0 0.0

---- ---- MAE = 0.03 MAE = 0.07 Mean FPR = 0.09 Mean FPR = 0.17

doi:10.1371/journal.pone.0029860.t001

Table 2. CP estimate and FPR on data in normal distribution of size n1 = n2 = 50 with positive m= 2.

k Actual CP Average estimate of CP FPR with C(0.01) = 1.628

WCPS NPCPS WCPS NPCPS

1 0.99 0.84 0.62 0.62 0.80

4 0.96 0.92 0.88 0.07 0.27

7 0.93 0.91 0.90 0.01 0.04

9 0.91 0.90 0.89 0.003 0.01

12 0.88 0.87 0.87 0.0 0.0

17 0.83 0.83 0.82 0.0 0.0

22 0.78 0.78 0.78 0.0 0.0

30 0.65 0.70 0.65 0.0 0.0

50 0.50 0.50 0.51 0.0 0.0

---- ---- MAE = 0.03 MAE = 0.06 Mean FPR = 0.08 Mean FPR = 0.12

doi:10.1371/journal.pone.0029860.t002

Weighted Change-Point Statistic for DGE Detection
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very effective, while TriORT and TriMOST were better than the

other two methods in terms of ROC.

The simulation result proved that by adding a weight to the

original function, the proposed method becomes more sensitive to

smaller k.

DGE detection in microarray data of breast-cancer
Result on Dataset I. Dataset I contains microarray data of

49 samples from breast cancer tissues as described in the Material

and Methods section. Based on the previous experiment result,

among the 5293 valid and unique genes of the dataset, NPCPS

(C(0.05) = 1.628) yielded a detecting result of 1598 DGE genes and

17 out of 36 top ranked genes were reported as relevant to breast

cancer or other known cancers. By applying the proposed method

to the same dataset, for C(0.05) = 1.628, there were 2279 DGE

genes being detected (1258 over expressed genes and 1021 under

expressed genes, respectively); for C(0.05) = 1.358, there were 3974

DGE genes being detected (2230 over expressed genes and 1744

under expressed genes, respectively). All the top 50 ranked genes

were reported as cancer-relevant.

Among the recognized differentially expressed genes, most of

them have been reported as involved directly with cancer in

published papers, such as AGER, MAPK14, etc. Some genes

themselves have not yet been reported, but their related genes,

proteins, or behaviors have been reported as cancer-relevant, such

as DGKD (EGFR and DAG related, ranked 481) [20]. Some of

the genes with higher Dn statistic are suspected as participants of

cancer cell lines. For example, gene CCDC130 (ranked 384) is

potentially cancer relevant and currently under research in order

to reveal the characterization of CCDC130 in cancer cell signaling

[21]. Gene ranked in the first 500, such as AHDC1 (ranked 159),

LIG3 (ranked 409), DMD (ranked 75), have not yet been reported

formally as cancer-relevant. However, given the significant

difference between cancer and normal group, it is reasonable to

assume there is high possibility that these genes might participate

in cancer development.

Some of the top 50 genes are listed in Table 6 with the cancer-

relevant description [22–53]. The data distributions of two

typically ranked genes are in Fig. 3 and 4. It is clear that the

estimated change point could locate the actual changing point in

the gene expression data. Particularly, the cancer samples that are

‘more overly expressed’ than the sample on the change point could

be recognized as located in the area specified by the red dashed

lines of CP.

The number of DGE samples of each gene is calculated and the

corresponding histogram of detected DGE genes is displayed in

Fig. 5. For example, there are 1440 non-DGE genes; 376 genes

have DGE in 4 cancer samples; 164 genes have DGE in 12 cancer

samples. Given the cancer group size 24, this histogram

demonstrates that DGE may only exist in cancer subgroup.

Accordingly, the number of differentially expressed genes in

each cancer sample is calculated as shown in Fig. 6. For

example, there are 1057 DGE genes in cancer sample 8, 1380

DGE genes in cancer sample 19, and 1682 DGE genes in cancer

sample 23.

Table 3. CP estimate and FPR on data in normal distribution
of size n1 = n2 = 25 with different m and k.

m k Actual CP
Average estimate
of CP

FPR
C(0.01) = 1.628

24 2 0.96 0.95 0.01

23 4 0.92 0.93 0.01

22 4 0.92 0.91 0.11

22 3 0.94 0.92 0.18

21 9 0.82 0.82 0.32

21 5 0.90 0.85 0.44

3 4 0.92 0.93 0.01

3 5 0.90 0.91 0

4 3 0.94 0.95 0.01

4 5 0.90 0.91 0

doi:10.1371/journal.pone.0029860.t003

Table 4. AUC of ROC curves of the simulation on data in
normal distribution.

Data
Parameter AUC

n m k WCPS NPCPS LRS TriMOST TriORT COPA OS T

50 2 3 0.87 0.79 0.85 0.73 0.81 0.75 0.78 0.72

50 2 5 0.92 0.88 0.92 0.81 0.86 0.86 0.81 0.81

50 2 9 0.98 0.97 0.97 0.92 0.94 0.88 0.81 0.93

100 2 1 0.61 0.50 0.58 0.54 0.58 0.54 0.58 0.53

100 2 4 0.89 0.82 0.83 0.70 0.80 0.72 0.80 0.70

100 2 9 0.97 0.96 0.96 0.84 0.94 0.89 0.90 0.85

50 1 6 0.75 0.72 0.74 0.70 0.64 0.63 0.59 0.70

50 1 9 0.81 0.79 0.80 0.76 0.71 0.67 0.61 0.78

50 1 14 0.89 0.89 0.89 0.88 0.80 0.71 0.61 0.89

100 1 6 0.74 0.70 0.69 0.62 0.62 0.59 0.59 0.64

100 1 9 0.80 0.78 0.75 0.68 0.67 0.63 0.63 0.70

100 1 15 0.89 0.88 0.86 0.81 0.78 0.72 0.67 0.83

Mean AUC 0.84 0.81 0.82 0.75 0.76 0.72 0.70 0.76

doi:10.1371/journal.pone.0029860.t004

Table 5. AUC of ROC curves of the simulation on data in
skew-normal distribution.

Data
Parameter AUC

n mu k WCPS NPCPS LRS TriMOST TriORT COPA OS T

50 2 3 0.81 0.72 0.70 0.66 0.62 0.55 0.56 0.66

50 2 5 0.90 0.86 0.80 0.74 0.70 0.64 0.60 0.76

50 2 9 0.95 0.95 0.90 0.85 0.78 0.64 0.57 0.88

100 2 3 0.80 0.69 0.66 0.59 0.60 0.57 0.57 0.62

100 2 5 0.89 0.84 0.74 0.66 0.66 0.61 0.59 0.69

100 2 9 0.96 0.95 0.86 0.77 0.75 0.67 0.63 0.82

50 1 6 0.68 0.67 0.65 0.65 0.61 0.56 0.55 0.69

50 1 9 0.74 0.75 0.68 0.72 0.63 0.57 0.55 0.75

50 1 14 0.82 0.83 0.71 0.80 0.67 0.59 0.55 0.83

100 1 3 0.61 0.59 0.57 0.55 0.55 0.53 0.54 0.58

100 1 6 0.67 0.65 0.61 0.63 0.59 0.55 0.55 0.64

100 1 20 0.88 0.89 0.73 0.82 0.68 0.61 0.58 0.84

Mean AUC 0.81 0.78 0.72 0.70 0.65 0.59 0.57 0.73

doi:10.1371/journal.pone.0029860.t005
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Result on Dataset II. As described in the Section of

Material and Methods, Dataset II contains microarray data of

42 samples of 12576 genes, 18 samples of histologically normal

(HN) epithelium from breast cancer patients, 6 samples of high-

risk prophylactic mastectomy (PM) patients, and 18 samples of

reduction mammoplasty patients. After applying WCPS to the

dataset, when threshold is 1.358, there are 9793 over-high

expressed gene and 190 over-low expressed genes, respectively;

when the threshold is 1.628, the over expressed genes reduced to

867 over-high and 10 over-low, respectively. Apparently, this

dataset contains majorly over-high expressed genes. Among the

50 top-ranked genes, 43 genes have been clearly reported as

relevant to human cancer. Among the rest 6 genes, third-ranked

gene AP000944.1 is a lincRNA and long non-coding RNA has

drawn the research attention of its functional role in human

cancer [54]; CENPM gene itself are not yet reported as cancer-

relevant, but inappropriate expression of the centromere proteins

CENP-A and CENP-H could be a major cause of chromosomal

instability that has been recognized as a hallmark of human

cancer [55]; 50-ranked gene HPN cooperates with MYC in the

Figure 1. ROC curves of the simulation on data in normal distribution. (A) n1 = n2 = 25, m= 2, k = 3. (B) n1 = n2 = 25, m= 2, k = 9. (C) n1 = n2 = 50,
m= 2, k = 1. (D) n1 = n2 = 50, m= 2, k = 4. The x-axis is FPR, and the y-axis is TPR. The significance level a= 0.01 for WCPS and NPCPS. Larger area under
ROC curves indicates better sensitivity and specificity. An ROC curve along the diagonal line indicates random-guess.
doi:10.1371/journal.pone.0029860.g001

Figure 2. ROC curves of the simulation on data in skew-normal distribution. (A) n1 = n2 = 25, m= 2, k = 3. (B) n1 = n2 = 25, m= 2, k = 5. (C)
n1 = n2 = 50, m= 2, k = 3. (D) n1 = n2 = 50, m= 2, k = 5. The x-axis is FPR, and the y-axis is TPR. The significance level a= 0.01 for WCPS and NPCPS. Larger
area under ROC curves indicates better sensitivity and specificity. An ROC curve along the diagonal line indicates random-guess.
doi:10.1371/journal.pone.0029860.g002

Weighted Change-Point Statistic for DGE Detection
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progression of adenocarcinoma in a prostate cancer mouse model

[56].

NPCPS was also applied to this dataset and yielded 2564 and

337 differentially expressed genes with threshold 1.358 and 1.628,

respectively.

WCPS detected much more differentially expressed genes

compared with NPCPS. Moreover, the rankings between these

two methods are only about 50 percent relevant. WCPS

successfully recognized genes that are lower ranked or ignored

by NPCPS. Fig. 7 and Fig. 8 show expression data of several such

genes.

Fig. 9 illustrates the total number of DGE genes in each HN

sample. HN sample 11 and 18, two ER+ breast cancer patient

samples, have more than 6000 differentially expressed genes. HN

sample 1, 2, 9, three ER2 breast cancer patient sample and 13, an

ER+ patient sample have more than 2000 differentially expressed

genes. Fig. 10 is the top ranked gene by WCPS.

The 6 PM samples are from high-risk women and, as in the

work by Graham et al., gene expression in histologically normal

epithelium from breast cancer patients and from cancer-free PM

patients shares a similar profile [57]. Therefore, we also tested the

dataset consisted of 6 PM samples as the case group and 18 RM

Table 6. Cancer-related description of top-ranked genes.

Rank Gene Description

1 AGER Strong expression is seen in cells at the invasive edge of tumors and correlates with invasion and lymph node metastasis
[22]

2 GP1BB Different histological types of lung cancer may be distinguished from normal tissue based on differential DNA methylation
of GP1bbeta [23]

3 PDE4B The phosphodiesterase PDE4B limits cAMP-associated PI3K/AKT-dependent apoptosis in diffuse large B-cell lymphoma [24]

4 MAPK14 The expression of p-p38 and uPA was negatively correlated to prognosis of breast cancer [25]

5 SMARCA2 Encodes BRM in the SWI/SNF chromatin-remodeling complex. SWI/SNF related and loss of SWI/SNF-mediated transcriptional
activation increases DNA methylation in cancer cells [26]

6 TCF3 Protein TCF3 no longer binds DNA when modified by a phosphate, making Phosphorylated TCF3 a new diagnostic marker
for cancer [27]

7 NCSTN NCSTN coded protein is a subunit of c-Secretase compound, which is related to Notch signaling, a pathway found
dysregulated in many cancers [28]

8 C9 Upregulation of plasma C9 protein in gastric cancer patients [29]

9 SCARB2 SCARB2 and CSNK1 double negative mRNA expression seems to be predictive of the presence of non-compromised lymph
nodes in oral squamous cell carcinoma [30]

10 BMP1 BMP molecules have further been shown to have an impact on the biological behaviour of breast cancer cells [31]

11 MEF2A Mediates synergistic transcriptional responses to the CaMK and MAPK signaling pathways by signal-dependent dissociation
from histone deacetylases [32], which regulate the expression and activity of numerous proteins involved in both cancer
initiation and cancer progression [33]

12 MYOG Terminal myogenesis switches off cell proliferation and migration, hence, the promotion of rhabdomyosarcoma
differentiation should antagonize tumor growth and metastasis [34]

13 RPL36A Over-expression of RPL36A is associated with cellular proliferation in hepatocellular carcinoma [35]

14 SLC5A5 NIS expression is prevalent in breast cancer brain metastases and could have a therapeutic role via the delivery of
radioactive iodide and selective ablation of tumor cells [36]

15 JAG1 Associated with a basal phenotype and recurrence in lymph node-negative breast cancer [37]

16 MMP11 Expression reflects the stages of tumor differentiation and LNM of breast cancer [38]

17 NEFL Neurofilament proteins are markers for neuroendocrine tumors [38]

18 SLC4A2 (AE2) AE2 might be associated with gastric carcinogenesis and the achlorhydria experienced by gastric cancer patients [40]

27 MYL1 Myosin VI is critical in maintaining the malignant properties of the majority of human prostate cancers diagnosed today [41]

28 IGHD Immunoglobulin D enhances the release of tumor necrosis factor-alpha [42]

29 ZNF131 Repressor of ERalpha signaling [43]

30 RBBP6 Involvement of RbBP6 gene and apoptosis in the pathogenesis of lung cancer [44]

31 IQGAP1 IQGAP1 plays a critical role in colon cancer cell invasion, and therefore diffuse and high expression of IQGAP1 predicts poor
prognosis in patients with colorectal carcinoma [45]

35 UNC119 UNC119 is required for G protein trafficking in sensory neurons [46], while G protein signaling is involved in tumor growth
and angiogenesis [47]

38 PTPRR The protein tyrosine phosphatase receptor type R gene is an early and frequent target of silencing in human colorectal
tumorigenesis [48]

39 UBB Essential mediator of trichostatin A-induced tumor-selective killing in human cancer cells [49]

40 MGST2 Microsomal glutathione Stransferase II. Glutathione plays a critical role in cellular mechanisms that result in cell death [50]

44 ACAP1 ACAP1 is a GTPase activating protein specific for Arf6 [51], which is required in breast cancer invasive activities [52]

47 NAT6 (FUS2) Function of NAT6 plays an important role in cancer as the gene maps to the chromosomal region 3p21.3, which includes at
least one tumor suppressor gene [53]

doi:10.1371/journal.pone.0029860.t006
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samples as the control group. As a result, when threshold

C(0.05) = 1.358, there are 7344 over-expressed genes and 79

under-expressed genes, respectively. Fig. 10 shows one of the top-

ranked genes, in which the gene expression of PM samples are not

only over-expressed compared with the RM samples in case

group, but also generally higher than the 18 HN samples from

breast cancer patients.

Fig. 11 summarizes number of DGE genes in each PM

samples. PM sample 1, 2, 4, and 6 have significantly more DGE

genes compared with PM sample 3 and 5. This result corresponds

to the average expression of the total 12576 genes from the 6

samples.

Materials and Methods

Change-point in gene expression
The method we proposed here inherited the definition of

change-point as described in NPCPS [18]. Consider gene

expression value as a sequence of independent variables as below:

X1~x1,:::,xn1
,

X2~x1,:::,xn2
,

X~X1zX2~x1,:::,xn1
,:::,xn,n~n1zn2:

ð1Þ

Here, X1 contains expression values of normal samples in

known distribution function F1 (x), and X2 contains expression

values of cancer samples. Over or under expression values in X2

would result in a change point in X. The existence of change point

is evaluated by a modified Kolmogorov statistic (K-statistic), which

indicates the distance between two distribution functions. Suppose

F1
21 ( y) is the inverse function of F1(x), which is defined as

F{1
1 (y)D inffx : F1(x)§yg, 0vyv1, ð2Þ

where y is a variable increasing with a fixed step that is subject to

user’s selection. Then, the testing procedure is defined as

Figure 4. Data distribution of Gene DECR1, ranked 3487th by WCPS. (A) Empirical distribution functions of cancer and normal group,
respectively, with the expression value at the change-point. (B) Expression data by samples, as well as expression value at the change-point.
doi:10.1371/journal.pone.0029860.g004

Figure 3. Data distribution of Gene AGER, ranked 1st by WCPS. (A) Empirical distribution functions of cancer and normal group, respectively,
with the expression value at the change-point. (B) Expression data by samples, as well as expression value at the change-point.
doi:10.1371/journal.pone.0029860.g003

Weighted Change-Point Statistic for DGE Detection
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Dn(t,y)D
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n{½n � t�
p

Xn

i~½nt�z1

fI(XiƒF{1
1 (y)){yg, 0vtv1,

0vyv1,

ð3Þ

where [n*t] means round toward negative infinity. X has a change

point when sup
0vtv1

sup
0vyv1

Dn(t,y)j j§C(a), where C(a) is the critical

value and a is the significance level, while typical values include

C(0.05) = 1.358 and C(0.05) = 1.628.

Weighted Change-point Statistic
The aim of NPCPS is to find the largest Dn and check if the

value exceeds the threshold, while the position of the largest Dn

value indicates the most significant changes in the expression

profile of a single gene. According to the ROC curves obtained

from simulation study [18], NPCPS was more than 99% correct

when for a single gene there are more than 9 samples that contain

DGE. However, NPCPS is not very sensitive to the right bound as

shown in Fig. 12. When there is only a small subset of cancer

group, especially when k,5, NPCPS would have inadequate Dn

values and consequently would not always report the existence of

change point. Fig. 13 illustrates the descending trend of Dn value.

When there is no simulated DGE added to the normally

distributed data, Dn function shows a descending curve.

Therefore, in order to enhance the right-bound sensitiveness, it

is reasonable to assume that by adding a proper weight function to

the original function, the Dn statistic could be adequately

compensated even if the change occurs in the last few data points.

Apparently, the goal of the weight function is to moderately

compensate the right end of the Dn statistic to avoid a rigid positive

result, while keeps the Dn value on the left end as well as in the

middle as much as possible, which would resemble a function

similar to 1/x. Besides, as Dn is a step function, the weight function

should also have the same step as Dn statistic.

Figure 5. Histogram: number of DGE genes by size of sample
subsets containing DGE. There are 1440 non-DGE genes; 376 genes
have DGE in 4 cancer samples; 164 genes have DGE in 12 cancer
samples.
doi:10.1371/journal.pone.0029860.g005

Figure 6. Number of significant DGE genes in each cancer
sample of Dataset I. There are 1057 DGE genes in cancer sample 8;
1380 DGE genes in cancer sample 19; 1682 DGE genes in cancer sample
23.
doi:10.1371/journal.pone.0029860.g006

Figure 7. Data distribution and CP of Gene DHCR24 in Dataset
II. (A) Empirical distribution functions of cancer and normal group,
respectively, with the expression value at the change-point. (B)
Expression data by samples, as well as expression value at the
change-point.
doi:10.1371/journal.pone.0029860.g007

Figure 8. Data distribution and CP of Gene PARP12 in Dataset
II. (A) Empirical distribution functions of cancer and normal group,
respectively, with the expression value at the change-point. (B)
Expression data by samples, as well as expression value at the
change-point.
doi:10.1371/journal.pone.0029860.g008
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The weight function as in Fig. 14 is as follows:

w~1z1=(n{n � tz1), 0vtv1, ð4Þ

and the weighted Dn is defined as

Dn(t,y)D
wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n{½n � t�
p

Xn

i~½nt�z1

fI(XiƒF{1
1 (y)){yg, 0vtv1,

0vyv1:

ð5Þ

The weighted Dn function demonstrated better response to small

subset that has DGE as shown in Fig. 12. Both estimated change

point and type II error of WCPS show better results compared with

NPCPS. Besides, from Fig. 13 we can see that adding a weight

function does not give an unreasonable rise to the right bound when

there is no DGE in any samples of the simulated data.

Experiment on Breast cancer microarray dataset
Two datasets were tested in the experiment. One microarray

dataset (referred to as dataset I) of breast cancer [58], the same

dataset used in [18] includes 49 samples all from cancer tissues,

with different status of lymph node (LN) and estrogen receptor

(ER), i.e. LN+ER2/LN+ER+/LN2ER+/LN2ER2. As the

negative-lymph-node breast cancer is categorized as early stage

breast cancer, these 49 samples could be categorized into two

types: 25 samples with negative lymph node as the normal samples

and 24 samples with positive lymph node as the cancer samples,

respectively. Besides, gene expression profile of 7129 genes in the

samples was obtained through annotation package hu6800 [59].

Probes of genes obsolete in NCBI gene bank were deleted; for

multiple probes mapping to the same gene, only the probe that

corresponded to the largest Dn was kept. These two steps resulted

in a total 5293 genes. This dataset was tested by all methods

mentioned in simulation study. Before applied to LRS, COPA,

TriMOST, TriORT, OS, and T-statistics, the gene expression

values were first normalized. Before applied to WCPS, the

expression values in cancer group were sorted in ascending order

for each gene.

Figure 9. Number of significant DGE genes in each HN sample
of Dataset II. HN sample 11 and 18, two ER+ breast cancer patient
samples, have more than 6000 differentially expressed genes. HN
sample 1, 2, 9, three ER2 breast cancer patient sample and 13, an ER+
patient sample have more than 2000 differentially expressed genes.
doi:10.1371/journal.pone.0029860.g009

Figure 10. Data distribution and CP of Gene DAPP1 in Dataset
II. Gene expression of PM samples are not only over-expressed
compared with the RM samples in case group, but also generally
higher than the 18 HN samples from breast cancer patients.
doi:10.1371/journal.pone.0029860.g010

Figure 11. Number of significant DGE genes in each PM sample
of Dataset II. PM sample 1, 2, 4, and 6 have significantly more DGE
genes compared with PM sample 3 and 5. This result corresponds to the
average expression of the 12576 genes from the 6 samples.
doi:10.1371/journal.pone.0029860.g011

Figure 12. Estimated change point and type II error of NPCPS.
NPCPS is not very sensitive to the right bound in terms of type II error
and estimated CP position. Both estimated change point and type II
error of WCPS show better results compared with NPCPS.
doi:10.1371/journal.pone.0029860.g012
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The other one (referred to as dataset II) is a 42-sample dataset

obtained on platform Affymetrix Human Genome U133A Array.

The samples contains 3 subsets: 18 samples of normal breast

epithelia from reduction mammoplasty patients (RM sample); 18

samples of histological normal breast epithelia from 9 ER+ and 9

ER2 breast cancer patients (HN samples); and 6 samples of

histologically normal breast epithelium from prophylactic mastec-

tomy patients (PM samples) [57]. 18 RM samples and 6 PM

samples were considered as the control group, while the 18 HN

samples were the case group in the original article. This dataset

was tested by WCPS.

For method NPCPS, LRS, TriMOST, TriORT, COPA, OS

and T-statistic, the genes were ranked according to the different

statistic in descending order. Genes ranked in the top indicated

higher degree of DGE.

For WCPS, change-point was determined by weighted Dn

statistic. Genes with weighted Dn larger than C(a) were recognized

as having DGE. Specially, for detecting result under C(a) = 1.358

and based on the type of DGE (over high or over low), sample

values that exceed the expression value at the change-point could

be identified on single gene level. This would result in an array

containing binary values of 0 or 1, where 0 indicates non-DGE

sample and 1 indicates significant DGE sample. Therefore, for all

genes in a dataset, these arrays could be combined to construct a

matrix. Based on the matrix, the DGE genes contained in each

cancer sample, or the size of DGE cancer sample subset could be

calculated.
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