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ABSTRACT: LC-HRMS-based nontarget screening (NTS) has become the method of choice to monitor organic micropollutants
(OMPs) in drinking water and its sources. OMPs are identified by matching experimental fragmentation (MS2) spectra with library
or in silico-predicted spectra. This requires informative experimental spectra and prioritization to reduce feature numbers, currently
performed post data acquisition. Here, we propose a different prioritization strategy to ensure high-quality MS2 spectra for OMPs
that pose an environmental or human health risk. This online prioritization triggers MS2 events based on detection of suspect list
entries or isotopic patterns in the full scan or an additional MS2 event based on fragment ion(s)/patterns detected in a first MS2
spectrum. Triggers were determined using cheminformatics; potentially toxic compounds were selected based on the presence of
structural alerts, in silico-fragmented, and recurring fragments and mass shifts characteristic for a given structural alert identified. After
MS acquisition parameter optimization, performance of the online prioritization was experimentally examined. Triggered methods
led to increased percentages of MS2 spectra and additional MS2 spectra for compounds with a structural alert. Application to surface
water samples resulted in additional MS2 spectra of potentially toxic compounds, facilitating more confident identification and
emphasizing the method’s potential to improve monitoring studies.

■ INTRODUCTION

Organic Micropollutants in Water. Issues with water
quality occur worldwide due to the large spread of the human
population and their extensive use of chemicals, which leads to
chemical pollution in a large number of water systems.1 These
systems cause distribution of the pollution with long-range
effects, ultimately posing a threat to drinking water sources.2−4

Various types of organic micropollutants (OMPs), that is,
anthropogenic chemicals that are present at trace levels (μg/
L), have been detected in ground and surface waters used for
drinking water production. These include OMPs such as
pesticides, pharmaceuticals, and industrial and consumer
products. Despite their low concentrations, OMPs can pose
a risk to human and environmental health as they can be toxic,
persistent or easily degraded into more toxic (bio)-
transformation products.5 Compounds that pose a potential
health risk need to be monitored to be able to assess the actual
risks. Monitoring is typically performed using quantitative
target analyses. As target analyses are limited to a set of known

compounds, nontarget screening (NTS) based on liquid
chromatography coupled with high-resolution mass spectrom-
etry (LC-HRMS) is often applied to monitor chemical water
quality more comprehensively and broaden contaminant
discovery.6,7

NTS-Based Micropollutant Identification. The struc-
tural identification of unknown compounds from NTS data
remains challenging due to the large number of signals
detected per experimenttypically referred to as features
(accurate mass and retention time pairs associated with a signal
intensity), and the need for high quality fragmentation
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spectra.8,9 The latter facilitates identification through spectral
matching, where experimental spectra are compared to library
spectra or in silico-predicted spectra. Software tools can
connect the experimentally obtained mass spectrum with
candidate structures from various sources.10−14

Prioritization. To limit the features that need to be
identified, prioritization can be applied by selecting peaks of
interest based on intensity, occurrence, persistence, or
potential toxicity.9,15 Prioritization is currently performed
offline during data analysis (Figure S1a). This entails that
the structure of prioritized features without fragmentation
spectrum or with uninformative, low-quality fragmentation
spectra cannot be identified in a sufficiently confident manner.
Instead, the sample has to be reanalyzed to obtain high-quality
fragmentation spectra requiring more measurement time and
resulting in delayed identification. Here, we hypothesize that
the high costs and laboriousness of NTS offline prioritization
could be remedied by using online prioritization for potentially
toxic compounds in the mass spectrometer during data
acquisition (Figure S1b).
Structural Alerts. Toxic compounds often comprise one or

more structural alerts, that is, molecular (sub)structures related
to the toxicity of a chemical. Several databases and software
programs have been developed to derive and screen molecules
for the presence of a structural alert, such as ToxAlerts,16

DEREK,17 and MultiCASE.18 Structural alerts can be specific

for a toxic end point, that is, a measured biological effect in a
toxicity test.19 Most are derived from the end points
carcinogenicity and mutagenicity, with several lists pub-
lished,20−23 including a revised list by Benigni and Bossa24 of
33 structural alerts included in the ToxAlerts database. Other
water relevant toxic end points are examined less extensively,
but some structural alerts were available in ToxAlerts for
genotoxicity, endocrine disruption, and developmental toxicity.

Intelligent Acquisition. Structural alerts could be used for
the “rough” selection of potentially toxic compounds that need
to be identified in NTS methods. To this end, fragment ion
masses and/or patterns indicating the presence of one or more
structural alerts could be used as an MS trigger for further
fragmentation events. In addition, suspect lists of toxic
compounds and isotopic patterns suggesting anthropogenic
origin of a compound were used to prompt a fragmentation
event. This novel combination leads to an intelligent
acquisition method, which would thereby prioritize (poten-
tially) toxic compounds in contrast to the currently used data-
dependent acquisition (DDA) that selects features using only
the intensity in MS1 scans as selection criteria for
fragmentation.

Overview. Here, we developed an intelligent acquisition
method that utilizes online prioritization of potentially toxic
compounds circumventing reanalysis of the sample due to
lacking (high-quality) fragmentation spectra of features that

Figure 1. (A) Schematic representation of the proposed LC-HRMS/MS workflow using intelligent acquisition based on structural alerts (SAs). A
full MS1 scan is taken after chromatographic separation, and the peaks are screened for their intensity and the presence of MS1-triggers (blue
diamond marker). The most intense peaks (based on DDA-approach, yellow star marker) and those that contain a MS1-trigger are selected for a
MS2 scan. The MS2 scans are screened for MS2-triggers, indicating the presence of a SA, resulting in two possible scenarios: 1. SA is present, so an
additional MS2 scan at different conditions is taken. 2. No SA is present, so structure identification is not necessary, and no additional MS2 is taken.
B) Schematic overview of the strategy that was used to develop the intelligent acquisition method, both cheminformatics (left) and LC-HRMS
experiments (right) were applied.
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are prioritized post-analysis (Figure 1). Cheminformatics were
applied to determine triggers for (additional) MS2 events to be
used in the LC-HRMS method. MS1-triggers exploited
accurate mass and isotopic ratios detected in the full scan
MS1 spectrum that suggested potential toxicity. MS2-triggers
were based on fragment ion masses and/or patterns detected
in the MS2 spectrum and linked to the presence of a structural
alert. To this end, in silico fragmentation predictors were used
to predict fragmentation of molecules with a structural alert
and screen these spectra for patterns. The derived triggers were
experimentally evaluated with LC-HRMS experiments. Finally,
the developed method including MS1- and MS2-triggers was
compared to a regular NTS method to evaluate whether the
prioritization was successful.

■ METHODS AND MATERIALS
Screening of Compounds for Structural Alerts. The

detailed workflow for the screening and fragmentation of the
ToxCast13 data set is given in S2.1. First, the CAS registry
numbers of the 9224 compounds registered in the ToxCast
data file Chemical_Summary_190708.csv25 were converted
into MS-ready SMILES using the CompTox Chemicals
Dashboard (https://comptox.epa.gov/dashboard).12 MS-
ready SMILES are defined as structural representations that
are observed in HRMS.26 Not all CAS registry numbers could
be converted, and some lead to the same MS-ready SMILES,
resulting in 7571 unique MS-ready SMILES. In addition to
ToxCast entries (n = 7571), the MS-ready SMILES of the two
databases NORMAN MassBank11 (n = 2304), and NORMAN
SusDat14 (n = 65,697) were screened for structural alerts.
NORMAN MassBank is a subset of MassBank Europe
(https://massbank.eu) containing the majority environmental
contributors. The compounds in the NORMAN MassBank are
also included in NORMAN SusDat; however, MassBank
contains fragmentation data and this was used for validation
purposes. In the case of MassBank, only the 1903 compounds
having available positive ionization HCD data were screened as
this ionization mode was later used in the LC-HRMS
experiments. Regarding SusDat, compounds were filtered for
those with an EPISuite predicted log Kow value between −2.5
and +3.5 (provided in SusDat), resulting in 46,688
compounds. This filtering step was applied to eliminate
compounds that are not detectable by RPLC.
Four toxic endpoints were selected for screening with

ToxAlerts: “endocrine disruption” (EDC), “nongenotoxic
carcinogenicity” (NGC), “genotoxic carcinogenicity, mutage-
nicity” (GCM), and “developmental and mitochondrial
toxicity” (DMT). These end points and their corresponding
187 structural alerts were chosen based on their relevance for
drinking water and potential human health risk. The endocrine
disruption alerts belonged to both estrogenic and androgenic
endocrine disruptors.27 This selection was made based on in
vitro and in vivo (mammalian) data.
The output of ToxAlerts was formatted in R28 (version 3.6.1

(2019-07-05)) for fragmentation with CFM-ID. A text file was
generated per structural alert containing the InChIKey and
SMILES code as input for CFM-ID 2.0.
Validation. ToxCast assays relevant for the end points that

were linked to the structural alerts were selected based on
literature.9 These assays are listed in Table S1. The AC50 values
of the ToxCast compounds with an alert were obtained from
“ac50_Matrix190708.csv” (downloaded at 04 December
2019).29 In this file, inactive compounds are given an AC50

value of 1 × 106. Lower values indicate that the compound is
active. Per toxic end point, that is, EDC, DMT, NGC, and
GCM, the percentage of molecules with both a structural alert
and activity in one of the specified assays was calculated. This
percentage was compared to the percentage of active
compounds for the total ToxCast data set, irrespective of the
presence of a structural alert.
In ToxCast, MS-ready SMILES can occur multiple times but

with a different DSSTox Substance identifier and in some
cases, varying toxicity information. The toxicity validation was
based on the DSSTox Substance ID to include all bioassay
results for the same MS-ready SMILES and prevent
information loss.

In silico Fragmentation. Compounds with a structural
alert were in silico-fragmented with the combinatorial
fragmentation predictor CFM-ID 2.0 using single energy
competitive fragmentation modeling (SE-CFM) in the
command line. The main reason for using CFM-ID is that it
can be accessed in batch mode. CFM-ID includes assumptions
of the fragmentation process such as that the molecule needs
to carry a single positive charge, removal or addition of sigma
bonds during a break is not allowed, and the valence and even
electron rules must be satisfied in all fragments.30 Note that
here, in silico fragmentation was not used for subsequent
fragment matching but to predict spectra and screen these for
patterns.
The command-line utility cfm-predict.exe31 was used to

generate fragments with CFM-ID 2.0; the standard trained
CFM model and its standard configuration parameters were
used (S2.1). The postprocessing option was not included, and
the probability threshold was set to 0.001 (default setting).
The program output consisted of three lists containing m/z
values and corresponding intensities for low energy CID (10
V), medium energy CID (20 V), and high energy CID (40 V).
These energies reflect the type of spectra the model is based
on. CFM-ID is based on CID QTOF data, which are
comparable to HCD data from an Orbitrap instrument. The
output was processed in R.

Validation. The in silico-predicted fragmentation results of
SusDat generated with CFM-ID were validated with
experimental data obtained from NORMAN MassBank.11

MassBank data was available for 2.25% of the 26,081
fragmented molecules with an alert from SusDat. The overlap
in percentage of MassBank and CFM-ID fragments was
calculated using eqs 1 and 2 to account for the differing total
number of MassBank and CFM-ID fragments per spectrum.
Since experimental data are also prone to errors, the output of
these calculations must be considered as approximations.

=
‐

·pct
number of MassBank fragments matching with CFM ID

total number of MassBank fragments
100%MassBank

(1)

=
‐

‐
·‐pct

number of CFM ID fragments matching with MassBank
total number of CFM ID fragments

100%CFM ID

(2)

Pattern Screening. The in silico-predicted fragmentation
spectra of compounds with a structural alert were screened for
characteristic patterns, that is, recurring fragment masses and
recurring mass shifts (deltas). All structural alerts which were
found in more than four molecules were included in the
analysis. The CFM-ID data set was screened, with the control
set being the in silico-predicted MS2 spectra of all molecules for
each fragmentation method. To be able to compare the effect
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of the three CFM-ID energy levels on the recurring fragments
and deltas, an intensity threshold was set at a minimum of 5%
of the maximum peak intensity (100). The energy levels had
an effect on the signal intensity only and not on the type of
predicted fragments. Setting this threshold led to elimination
of low-intensity fragments, resulting in different fragmentation
spectra for the energy levels.
The frequencies of each m/z value and delta recurring

within the MS2 spectra of the molecules of one structural alert
were calculated and compared to the frequencies in the total
fragmented data set. An extra control step for the frequencies
was performed to show the difference in frequencies between a
random sample and alerts. A random set of compounds (n =
3953) from NORMAN SusDat (ntotal = 65,697) that had not
been screened for structural alerts was fragmented with CFM-
ID. The frequencies of recurring fragment masses and
recurring deltas within this random sample were then
compared to the frequencies within MS2 spectra of
compounds with structural alerts derived from ToxCast.
HRMS Method Development. Sample Preparation. The

chemicals used in this study are listed in Tables S2−S8. An
internal standard mixture of atrazine-d5 (CDN isotopes,
Pointe-Claire, Canada) and benzotriazole-d4 (LGC Standards,
Wesen, Germany) was added to each sample to a final
concentration of 1 μg/L. Surface water (SW) (Lekkanaal, the
Netherlands) and wastewater treatment plant (WWTP)
influent samples, with and without spike-in (see Tables S2−
S8) were filtered using 0.2 μm Phenex-RC 15 mm Syringe
Filters (Phenomenex, Torrance, USA) prior to analysis. The
WWTP-influent samples were 10 times diluted after spike-in
and prior to filtration. The blanks used for these analyses were
filtered as well. The spiking solution with water-relevant
contaminants (see Table S2) was added to the samples to final
concentrations of 10 μg/L, 1 μg/L, 100 ng/L, 10 ng/L, and 1
ng/L.
MS1-Trigger Experiments. Inclusion lists for MS1-trigger

experiments (SusDat,14 SusDat + tR,14 UBAPMT,32 Sjerps,33

and Spike) were retrieved from the NORMAN Suspect List
Exchange (https://www.norman-network.com/?q=suspect-
list-exchange) and an in-house database and filtered for
organic compounds within the full scan mass range (80 to
1000 Da) and polarity amenable to RP-HPLC, that is, log KOW
between −2.5 and +3.5 (see the calculation method described
in S2.3).
Based on the distribution of the number of chlorine and

bromine atoms in the compounds registered in the CompTox
Chemicals dashboard (n = 869,027),34 the isotopic ratios
covering ≥99% of the chlorinated compounds (n = 128,650)
and brominated compounds (n = 53,258) were used for the
MS1-triggers. The isotopic ratios of Cl up to Cl6 and Br up to
Br5 were calculated with the software Xcalibur (Thermo Fisher
Scientific, San Jose, USA) and are shown in Table S9. The
inclusion lists and the isotopic ratio trigger were tested
separately and combined. The design of the resulting
acquisition decision trees is shown in Figure S2. The methods
were evaluated using surface water and WWTP-influent
samples spiked with water-relevant contaminants; see Table
S2.
MS2-Trigger Experiments. The performance of four

different MS2-triggers, that is, two recurring deltas and two
recurring fragments, was evaluated using ultrapure water
samples spiked with compounds (Tables S3−S8) predicted
to exhibit these fragments or deltas in their MS2 spectra based

on the in silico experiments. Due to in-house availability of
chemicals, only four different MS2-triggers were tested. The
spike-in compounds were also added to surface water at
concentrations ranging from 1 ng/L to 10 μg/L to determine
sensitivity of the triggers. The MS2-trigger experiments were
performed separately, together, and combined with the MS1-
triggers using isotopic ratios and the Sjerps inclusion list.
Detection of an MS2-trigger led to an additional MS2 event
using alternative collision energies (CEs), that is, stepped CE
(10, 75, 90) or assisted CE (20, 35, 50, 75, 90), or longer ITs,
that is, stepped CE (20, 35, 50) with 200 ms IT instead of the
regular 50 ms. These alternative fragmentation events were
hypothesized to result in spectra with complementary
fragments in the case of alternative energies, and higher-
quality spectra in the case of longer ITs. The 11 different
methods are described in Table S10 and the design of their
decision trees in Figure S3. The experimental data obtained
with the MS2-trigger experiments were used to validate the in
silico-predicted fragmentation spectra and the pattern screen-
ing.

Data Analysis. The details of the data analysis are reported
in S2.4 and S2.5. Data preprocessing and compound
annotation were performed using Compound Discoverer 3.1
(Thermo Fisher Scientific, San Jose, USA). Further processing
was done in R. Spectrum similarity scores were calculated
using the function SpectrumSimilarity() from the R-package
OrgMassSpecR (version 0.5−3).35 Fragment annotation was
performed with the R-package metfRag (version 2.4.2)36 using
the function frag.generateMatchingFragments() on the cen-
troided MS2-spectra, using default settings. The spectrum
similarity scores and number and percentage of annotated
fragments and percentage of the annotated peak area were
used to gain insights into the quality of the fragmentation
spectra acquired with different acquisition settings.

■ RESULTS AND DISCUSSION
Screening of Compounds for Structural Alerts. Three

databases were screened with ToxAlerts for compounds with
structural alerts (Figure S4). Screening of the ToxCast
database revealed the presence of 139 unique structural alerts
in one or more molecules (Figure S4). A total of 109 of these
exceeded the pattern detection cutoff of a minimum of five
molecules. Screening for structural alerts of SusDat compounds
was performed accordingly, resulting in the detection of 152
unique alerts and 133 after the cutoff (Figure S4). The
compounds in the NORMAN MassBank data set contained
103 unique structural alerts, of which 59 alerts were present in
at least 5 compounds (Figure S4).

Validation of Toxicity. To validate the ToxAlerts approach
for structural alert detection, we investigated whether
compounds with a given structural alert were active in a
bioassay linked to the toxic endpoint which was related to that
alert. For all four end points, the compounds with structural
alerts showed higher percentages of active chemicals in
bioassays related to that alert (S3.1) than ToxCast compounds,
regardless of the respective structural alert. Based on these
results, structural alerts could indeed indicate toxicity, but the
alerts used for screening did not cover all chemicals active in
these toxic end points. Moreover, many chemicals have not
been tested on all included ToxCast assays,37 causing a data
gap.

In silico Fragmentation. To be able to determine patterns
in the MS2 spectra characteristic for a structural alert,
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fragmentation spectra were generated in silico using the
fragmentation software CFM-ID 2.0. CFM-ID provided
intensity values to filter for the most likely fragments.

Validation with NORMAN MassBank Data. The in silico
fragmentation results generated by CFM-ID were validated
with experimental HCD data retrieved from NORMAN

Table 1. Structural Alerts with a Recurring Fragment (Top) and Deltas (Bottom) and Their Frequencies in Each Data Set

anTC and nSD represent the number of compounds in the ToxCast and SusDat data set, respectively. A description of the structural alert is given in
the second column.38
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MassBank.11 Positive ionization HCD data were available for
1903 compounds, 587 of which were NORMAN SusDat
compounds with a structural alert. To account for the
experimental error in the MassBank data, a 10 ppm mass
tolerance was used to find overlapping fragments between the
CFM-ID predicted and experimental MassBank fragments.
Depending on the CFM-ID energy, for 144 up to 398 of the
587 compounds ≥50% of the CFM-ID fragments were
matched with a MassBank fragment (S3.2, Table S3.2, Figure
S3.2). As no CFM-ID fragmentation energy setting out-
performed the others, all energies were included in the further
analyses.
Pattern Screening. After in silico generation of predicted

fragmentation spectra, these predicted spectra of compounds
with structural alerts were screened for patterns characteristic
for each structural alert for subsequent use as MS2-triggers.
These patterns included recurring fragment masses and
recurring mass differences between two fragments referred to
as deltas. All three CFM-ID fragmentation energies were
included in the pattern screening, and patterns were filtered for
occurrence in the spectra of at least two fragmentation energies
to remove less relevant fragments and/or deltas. To further
increase specificity, only fragments and deltas with a frequency
higher than 0.5 in both the ToxCast and SusDat data sets were
taken into consideration. These strict requirements led to a
relatively low number of alerts: 6 recurring fragments and 11
deltas exceeded this frequency cut-off (Table 1). m/z 62.99960
was a recurring fragment in mustard-like structural alerts,
which could correspond to C2ClH

+, a fragment that is likely to
form from these alerts. The recurring fragments m/z 55.01784
and m/z 109.01632 could correspond to C3H3O

+ and
C2H6ClON2

+, respectively. Five structural alerts corresponded
to the same recurring fragment, that is, m/z 62.99960 (Table
1), and four structural alerts to two recurring deltas, that is, Δ
m/z 27.99491 and Δ m/z 42.01056 (Table 1) due to the
similarity in their structures.
For both the recurring fragments and deltas, their

frequencies within an alert were significantly higher than the
highest frequency observed in the three different control data
sets, that is, in all fragmented molecules with an alert from
ToxCast, a random sample from SusDat, regardless of the
presence of an alert, and all fragmented molecules with an alert
from SusDat (Tables S11−S13). This confirmed that the
recurring fragments and deltas were characteristic for their
structural alerts. Two deltas detected with high frequency were
2.01565 and 18.01056 Da. These were not considered as
relevant deltas because there was no significant difference
between their frequencies in the compounds with alerts

compared to the total data set. These deltas are expected to
correspond to a loss of 2H and H2O, respectively.
In order to increase the “yield” of alerts that could be used as

trigger, other data mining approaches could be applied such as
hierarchical clustering, random forest or multiple linear
regression to find patterns characteristic for a specific structural
alert. However, one has to take into account that the output of
more advanced pattern recognition needs to be in a format that
is suitable for implementation in acquisition software used to
operate mass spectrometers. Moreover, even more reliable
results could be generated when experimental fragmentation
data is used instead of in silico-predicted fragments.
Based on in-house availability of chemicals, the recurring

fragments m/z 62.99960 of ToxAlert alert TA344/TA362
(Table 1) and m/z 55.01784 of alert TA367 and the recurring
deltas m/z 17.02655 of alert TA322 and m/z 42.01056 of alert
TA387/TA395 were selected for use in the MS2-trigger
experiments.

LC-HRMS Experiments. MS1-Trigger Experiments. Prior
to implementing MS triggers, background exclusion and
selected MS acquisition parameters were optimized to
maximize available cycle time for (additional) MS2 scans
and MS2 spectral quality during online prioritization (S3.3
Acquisition parameter optimization). Subsequently, the
potential of MS1-triggers for the prioritization of toxic
compounds was assessed experimentally. The MS1-triggers
consisted of five different inclusion lists and isotopic ratios for
chlorinated and brominated compounds.
Based on the Cl/Br pattern, which is a parameter in

Compound Discoverer stating whether a chlorine- or bromine-
specific isotopic pattern is present in the MS1, there was a
significant increase in the percentage of MS2 scans for the
surface water (μNTS = 94.2 ± 0.4%, μMS1‑trig = 100 ± 0%, p-
value of 0.001292, Figure S7) but not the WWTP-influent
samples (μNTS = 82.7 ± 5.2%, μMS1‑trig = 84.5 ± 1.3%, Figure
S7). The lesser performance in the WWTP-influent samples
could be due to the more complex MS1 spectra confounding
isotopic ratios, in particular when low error tolerances are set.
This is also supported by the pattern matches determined
during the Compound Discoverer analysis. The peaks of Cl-
and/or Br-containing features should contain a characteristic
isotopic pattern due to the natural abundance of chlorine and
bromine isotopes. For some brominated and/or chlorinated
compounds, no additional MS2 was triggered because the
isotopic ratio deviated more than the allowed 10% ratio
tolerance. Additional experiments with increased mass
tolerance (10 ppm instead of 3 ppm, which was chosen to
test the extreme effect) and ratio tolerance (15% instead of

Table 2. Comparison of Percentage MS2 Scans of the Inclusion List m/z Values between Methodsa

inclusion list type sample type method with inclusion list μ% features with MS2 standard NTS method μ% features with MS2 p-value test type

SusDat WWTP-influent 95.86 91.76 0.01576 t-test
SW 97.68 97.31 0.1039 t-test

UBAPMT WWTP-influent 100.0 100.0 -
SW 96.97 96.97 -

Sjerps WWTP-influent 98.36 93.32 0.01485 t-test
SW 95.76 96.58 0.8779 t-test

Spike WWTP-influent 96.41 95.60 0.3425 t-test
SW 98.58 97.65 0.1250 Sign test

SusDat + tR WWTP-influent 97.74 92.53 0.004934 t-test
SW 98.80 97.87 0.0005877 t-test

aIn one case (Spike SW), a Sign test is applied since the data was not normally distributed.

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.0c04473
Anal. Chem. 2021, 93, 5071−5080

5076

https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.0c04473/suppl_file/ac0c04473_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.0c04473/suppl_file/ac0c04473_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.0c04473/suppl_file/ac0c04473_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.0c04473/suppl_file/ac0c04473_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.0c04473/suppl_file/ac0c04473_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.0c04473/suppl_file/ac0c04473_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.0c04473/suppl_file/ac0c04473_si_001.pdf
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.0c04473?rel=cite-as&ref=PDF&jav=VoR


10%) did not improve this. Setting priority of the decision tree
to the branch with the targeted isotopic ratio node, however,
led to a significant increase in percentage of Cl and/or Br
containing features with an MS2 spectrum (p-value of 0.04225,
one-sided t-test). Further experiments could focus on
optimizing the isotopic ratio and mass tolerance of the MS1-
trigger to balance a more tolerant threshold and the
subsequent increase in false-positive triggers.
Based on these results, the isotopic ratio was implemented

(with the narrow tolerances) in the intelligent acquisition
method as MS1-trigger as it increased MS2 spectral availability
for Cl-/Br- containing features which are mostly anthropogenic
and often toxic, and the risk of triggering fragmentation of
irrelevant features was low.
Regarding the use of inclusion lists as MS1-triggers, there

was a significant increase in percentage of MS2 scans for m/z
values present in the inclusion lists SusDat, SusDat + tR, and
Sjerps in the WWTP-influent and SusDat + tR in the SW
samples (Table 2). The lesser effect observed in SW samples
can be explained by the fact that the standard NTS method
without an inclusion list was able to separate and identify the
features present in the SW but not WWTP influent samples.
Due to the large number of compounds in SusDat (+tR),
including non water-relevant ones, the Sjerps list was used for
subsequent MS2-trigger experiments.
Overall, less complex matrices such as SW samples seemed

to benefit more from the isotopic ratio MS1-trigger,
demonstrated by the significant increase in the percentage of
MS2 scans for these samples. The analysis of more complex
matrices such as WWTP influent improved through the use of
inclusion lists that ensured that water relevant compounds
were fragmented. The inclusion list MS1-trigger showed
promising results for the inclusion lists SusDat, with and
without retention time estimate, and Sjerps. As the Sjerps list
consisted of water-relevant compounds, this list was used in
subsequent experiments in combination with the MS2-triggers.

MS2-Trigger Experiments. Next to MS1-triggers that trigger
an MS2 scan, MS2-triggers were developed that trigger an
additional MS2 scan in the presence of a structural alert,
indicating a potentially toxic compound. Four specific fragment
masses and deltas were used as MS2-triggers: the recurring
fragments m/z 62.99960 of alert TA344/TA362 and m/z
55.01784 of alert TA367 and the recurring deltas m/z
17.02655 of alert TA322 and m/z 42.01056 of alert TA387/
TA395. These alerts correspond to the toxic end points
genotoxic carcinogenicity and mutagenicity. A total of 12
reference compounds were selected, which were hypothesized
to contain an alert and MS2-trigger based on pattern screening
(Tables S3−S7).
The recurring fragments were present in the MS2 spectra of

all 12 detected compounds, thereby confirming the usefulness
of the in silico-predicted spectra generated with CFM-ID. MS2
scans were triggered in all cases, except ifosfamide and
diacetone acrylamide. For these compounds, the ppm mass
error tolerance was too narrow. Increasing the tolerance to 20
ppm lead to triggering of additional MS2 scans. Therefore, a
higher error tolerance or potentially a combination of a low
relative tolerance and an absolute tolerance of m/z 0.001
would be advantageous. Alternatively, the calibration range of
the instrument could be expanded to lower m/z values.
In addition to the recurring fragments, the use of recurring

deltas as MS2-triggers was investigated. The recurring delta m/
z 17.02650 corresponding to alert TA322 was detected in the
MS2 spectra of all reference compounds that contained this
alert, thereby validating the approach of using CFM-ID to in
silico predict spectra. Additional MS2 scans were triggered for
all compounds with this recurring delta.
Examples of spectra where an additional MS2 was

successfully MS2-triggered are shown in Figure 2. The
recurring delta m/z 42.01060 corresponding to the alerts
TA387 and TA395 was detected in all spectra except those of
diatrizoic acid and one of the three triplicates of n-

Figure 2. Four experimentally obtained MS2 scans with expected MS2-trigger marked in red, of which an additional MS2 was triggered. (a) MS2
spectrum of ifosfamide and its recurring fragment, (b) MS2 spectrum of diacetone acrylamide and its recurring fragment, (c) MS2 spectrum of
desethylatrazine and its recurring delta, and (d) MS2 spectrum of paracetamol and its recurring delta.

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.0c04473
Anal. Chem. 2021, 93, 5071−5080

5077

https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.0c04473/suppl_file/ac0c04473_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.0c04473?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.0c04473?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.0c04473?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.0c04473?fig=fig2&ref=pdf
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.0c04473?rel=cite-as&ref=PDF&jav=VoR


acetylsulfamethoxazole. The delta m/z 42.01060 triggered
additional MS2 scans in all other compounds, where the
recurring delta was detected. The measured MS2 spectra of
diatrizoic acid did not match the in silico-predicted spectrum
(see Figure S8), and the peaks that were expected to form the
recurring delta (m/z 614.7769272 and m/z 572.7663625 or
m/z 596.7663625 and m/z 554.7557979) were not present.
Next, the effect of compound concentration levels on the

MS2-triggers was investigated (Figure 3). To this end, a
concentration range from the 10 μg/L used in the proof-of-
principle experiments down to 1 ng/L was used. At first, the
precursor ion of the compound containing a structural alert has
to be selected for a MS2 scan, in which the MS2-trigger can be
detected. Thereafter, this trigger can prompt the consecutive
MS2 scan. Generally, once a compound was detected and a
MS2 scan recorded, an additional MS2 scan was triggered as
well, indicating the sensitivity of the MS2-trigger. However,
some exceptions were observed (marked in yellow in Figure
3). In these cases, the compound was detected, but no
additional MS2 scans were triggered due to the absence of the
trigger in the MS2 scan (in case of metamitron, desethyla-
trazine up to 100 ng/L, sulfamethoxazole, trimethoprim, and
sulfaquinoxaline) or the selected error tolerance (5 ppm, in
case of ifosfamide and desethylatrazine in the third measure-
ment at 1 μg/L). In one case, no MS2 scan was recorded.
Consequently, no additional MS2 scan could be triggered. This
was the case for a single measurement of N(4)-acetylsulfadia-
zine at 1 μg/L.
MS2-triggers were applied to prompt an additional MS2

scan that would ensure more informative fragmentation
spectra, that is, higher spectral quality or complementary
fragments to the first MS2 scan, of features with a structural
alert. Different acquisition parameters were used for this
additional MS scan: stepped CE (10, 75, 90 instead of the
regular 20, 35, 50), assisted CE (20, 35, 50, 75) and longer ITs
(200 ms IT instead of the regular 50 ms). The effect of the
acquisition parameter to increase the information content of
the spectra was assessed based on the mzCloud scores assigned
to the identified features because these could be easily
extracted from the Compound Discoverer results. The
mzCloud scores tended to increase slightly (approximately
0.1−1%) with the additional MS2 scan using assisted CE and

longer IT. As mzCloud scores are based on experimental
spectra that might have not been generated with the optimal
acquisition parameters, as an alternative performance evalua-
tion MetFrag annotation was examined. This showed that
generally, the additional MS2 scans using assisted CE had a
higher percentage of annotated intensity (Figure S9) but no
higher percentage of annotated fragments (Figure S10).
However, to reach the maximum advantage of the additional
MS2, higher spectral quality that facilitates identification,
spectral quality metrics need to be developed and implemented
online, that is, during the measurement.

Application of Triggered Methods to SW Samples. To
compare the online prioritization methods to the standard
NTS method, a SW sample spiked with water-relevant
contaminants was analyzed. Three versions of the intelligent
acquisition method combining the MS1- (isotopic ratio and
Sjerps inclusion list) and MS2-triggers (fragment m/z
62.99960, fragment m/z 55.01784, delta m/z 42.01060, and
delta m/z 17.02650) were used: with the additional MS2 with
either stepped CE, ACE or longer IT. Ten of the spiked
compounds contained an alert related to these MS2-triggers,
and for eight of them, an additional MS2 was triggered. The
spectra of 2-aminobenzothiazole and 2,4-dichloroaniline did
not exhibit the expected delta m/z 17.02650. Consequently, no
additional MS2 was triggered. Using the regular NTS method
(see Tables S14−S15), the mzCloud best match and mzVault
best match scores (S1.2) ranged from 97.1 to 99.8 out of 100
and from 89.6 to 99.8, respectively. This indicates that these
scores are already high. Despite these high scores, for the
compounds desisopropylatrazin and desethylatrazin, the
mzCloud scores increased with all three tested intelligent
acquisition methods (Table S15).

■ CONCLUSIONS

Overall, the intelligent acquisition method, using the Sjerps
inclusion list and additional MS2’s with ACE or longer IT,
directed prioritization toward potentially toxic compounds.
The isotopic ratio MS1-trigger significantly improved the
percentage of Cl-/Br-containing compounds with a MS2
spectrum if priority was assigned in the method. The use of an
inclusion list increased the percentage of MS2 spectra of

Figure 3. Schematic overview of the detection of the spike-in compounds, and whether an additional MS2 was triggered or not.
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features with m/z values present in the inclusion list. The MS2-
trigger method successfully triggered additional MS2 scans of
molecules with a structural alert for the four alerts that were
tested. Therefore, the method could prioritize these potentially
toxic compounds online, and further developments will
improve the added value. Once fully developed, it could be
far more efficient than many current strategies involving post-
acquisition processing.
Future work could expand the developed method with more

structural alerts targeting different toxic endpoints, implement-
ing the method in our laboratory, and making it available for
other laboratories to use. Ultimately, application of intelligent
acquisition methods in routine monitoring studies is necessary
to expose the benefits in practice for safety monitoring of
drinking water sources. While a clear benefit was demonstrated
for MS1- and MS2-triggers, the automatic triggering of an
additional MS2 scan will reach its maximum benefit once more
knowledge is available on how spectral quality can be
optimized in a directed manner through selection of
appropriate acquisition parameters.
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