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Abstract

With continuing advances in MRI techniques and the emergence of higher static field
strengths, submillimetre spatial resolution is now possible in human functional imaging
experiments. This has opened up the way for more specific types of analysis, for example
investigation of the cortical layers of the brain. With this increased specificity, it is important
to correct for the geometrical distortions that are inherent to echo planar imaging (EPI).
Inconveniently, higher field strength also increases these distortions. The resulting displace-
ments can easily amount to several millimetres and as such pose a serious problem for lami-
nar analysis. We here present a method, Recursive Boundary Registration (RBR), that
corrects distortions between an anatomical and an EPI volume. By recursively applying
Boundary Based Registration (BBR) on progressively smaller subregions of the brain we
generate an accurate whole-brain registration, based on the grey-white matter contrast.
Explicit care is taken that the deformation does not break the topology of the cortical surface,
which is an important requirement for several of the most common subsequent steps in lami-
nar analysis. We show that RBR obtains submillimetre accuracy with respect to a manually
distorted gold standard, and apply it to a set of human in vivo scans to show a clear increase
in spacial specificity. RBR further automates the process of non-linear distortion correction.
This is an important step towards routine human laminar fMRI for large field of view acquisi-
tions. We provide the code for the RBR algorithm, as well as a variety of functions to better
investigate registration performance in a public GitHub repository, https://github.com/
TimVanMourik/OpenFmriAnalysis, under the GPL 3.0 license.

Introduction

Investigation of the BOLD response with functional MRI at the level of the cortical layers has
become increasingly popular over the the last decade [1, 2]. Activation levels differ at the lami-
nar scale [3] and they can vary depending on the performed task [4, 5]. Laminar signals have
the potential to reveal information about the underlying neuronal processes within a cortical
region, as the signal from different layers may be associated with feed forward or feedback sig-
nals [6, 7]. However, layer specific analysis comes with great methodological challenges.
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The thickness of the cerebral cortex varies between 1 and 4.5 millimetres [8, 9]. Identifying
individual layers therefore ideally requires sub-millimetre resolution, at the cost of signal to
noise ratio (SNR) per voxel. On top of this, a functional experiment ideally requires a Repeti-
tion Time (TR) on the order of several seconds. Layer specific investigations are hence best
conducted at higher field (>7 Tesla) for improved SNR, but high field strength also have some
disadvantages [10]. The inhomogeneities of the static magnetic field B, can cause non-linear
distortions when a fast acquisition scheme like Echo Planar Imaging (EPI) is used [11]. Distor-
tions primarily present themselves in the phase-encoding direction as a function of the band-
width per pixel and static field strength [12]. As layer specific analysis requires high spatial
precision, non-linear distortions are particularly problematic. T, -weighted images usually
have insufficient contrast to segment the cortical grey matter, so instead one needs to identify
the cortical boundaries from a different scan. This is typically a high-contrast T;-weighted ana-
tomical scan that can be segmented with tools such as FreeSurfer [13], CBS Tools [14], or
BrainVoyager [15]. However, as the anatomical scan is undistorted, it may not sufficiently
overlap with the functional scan.

Several potential solutions have been proposed for providing accurate alignment of func-
tional images with an anatomical image. Early papers circumvent the problem by segmenting
only a small piece of straight cortex [16, 17]. It is also possible to resort to different acquisition
schemes like FLASH, which do not suffer significant distortions, but at a heavy cost in tempo-
ral resolution. Koopmans et al. combine this with a vertex based realignment procedure based
on the Stripe of Gennari [3]. This approach, however, is highly specific to parts of the primary
visual cortex that show a myelinated band in the middle of the cortex (Stripe of Gennari), and
does not generalise to the rest of the brain. Additionally, when the acquisition only covers a
small part of the brain, cortical reconstruction algorithms may easily fail, as they are often
based on whole-brain templates. Yet another alternative is to acquire an anatomical image
with the same EPI readout and field of view as the functional image, such that the two volumes
are similarly distorted [18]. However, this assumes that field inhomogeneities, and with it the
distortions, do not change between acquisitions. Solutions in which T1-contrast is computed
from the functional acquisition directly do not have this problem, for example the VASO
sequence [19], or 3D-EPI with a variable TR [20]. Classically, B, maps have been used for cor-
recting distortions [21], yet this is typically used on low resolution images [22] and commonly
accepted thereby not to be precise enough for sub-millimetre precision. Promising advances
have also been made for high-resolution dynamic correction [23], but to date these have not
been tested at sub-millimetre resolution. Additionally, for diffusion MRI a combined registra-
tion-segmentation method (regseq) has been developed that may be portable to high resolu-
tion laminar fMRI. [24].

Ideally, there would be an accurate cross-contrast (T, to T;) registration algorithm, but this
is a notoriously hard problem. The combination of the warping of images and the unknown
relation between contrasts creates a vast parameter space that is difficult to solve in a coregis-
tration procedure. While algorithms like AFNT’s 3dQWarp [25] technically support cross-
modal cost functions, the documentation acknowledges that such usage is rather experimental
and in our experience indeed does not reach submillimetre accuracy. In general, no algorithm
currently exists that verifiably corrects non-linear distortions in high resolution low-contrast
images up to the laminar specific level, and works either on partial or whole-brain images.

One way to search through relevant information in the image domain is to try and detect
the grey-white matter boundary and match this between volumes. This is using geometric
information on top of volumetric information and forms the basis of Boundary Based Registra-
tion (BBR) [26]. A three-dimensional cortical reconstruction of the grey-white matter
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boundary is created on a high contrast anatomical image and serves as a basis for the coregis-
tration. While a functional image is too low in contrast for generating a cortical reconstruc-
tion, it can be used in the registration procedure. The contrast is sufficient to optimise the
average contrast across the boundary in order to achieve a better realignment. This was pro-
posed for linear registrations and proven to be an exceedingly robust method. We here extend
BBR to work recursively and effectively produce a cross-contrast non-linear registration. Our
aim is to provide accurate within-subject submillimetre registration for whole-brain or partial
brain images for standard high-resolution EPI sequences to make laminar fMRI analysis more
accessible to a wider audience. The algorithms can be performed on the the functional data,
without additional acquisition of additional scans, and without reinterpolation as a result of a
non-linear warping. Importantly, the procedure produces a smooth deformation field that
does not alter the topological properties of the mesh, such that the resulting surfaces can natu-
rally be used in subsequent automatic layering and further layer specific analyses [27, 28].

Methods

Boundary Based Registration (BBR) is based on a cortical construction of the boundary
between the white matter and grey matter, and the grey matter and the CSF (pial surface) [26].
This surface is generated on an anatomical scan, as the contrast of the functional scan may not
be good enough for segmentation. In order to register the two volumes, the constructed sur-
face is moved to the functional image. The average contrast across the grey-white matter
boundary is computed and used as a cost function to optimise the transformation parameters
of the registration. Versions of BBR are implemented in FreeSurfer (bbregister) [13] and
FSL(flirt -cost bbr) [29]. This method is powerful enough to be able to register the
volumes, based on only a small part of the brain [26], suggesting that local application can also
be successfully employed. Especially for high resolution (laminar) fMRI, the anatomical and
functional volumes contain detailed information about the gyrification that can be used for
registration. We hence propose to extend BBR with a hierarchical strategy [30]. By recursively
applying BBR at diminishing scales as a series of linear transformation, the volumes are effec-
tively non-linearly registered.

The way in which the mesh is divided is based on a three-dimensional cuboid lattice con-

sisting of the set of neigbourhoods N * at various depths d, decreasing in size. At each depth,

N is divided into eight equally sized cuboids (two in each dimension) N “! until a user
specified threshold size is reached. All vertices that make up the brain mesh are divided over

the elements of 1%, the set of vertices within A", The number of vertices in each neighbour-
hood may well vary between regions.

Registration is performed iteratively, from the largest scale (d = 0) to the smallest
(d = d,,4.). For each element N f, a registration is computed by means of a boundary based reg-
istration algorithm [26] applied to V. In short, this is an edge detection algorithm that maxi-
mises the average contrast across the white matter surface. Contrast is defined as the
(optionally weighted) gradient of samples on either side of vertices within the mesh. For the
optimisation procedure we use MATLAB’s gradient descent method fminsearch (default
parameters) to optimise registration parameters as a function of contrast. The same sampling
method and cost function were used as proposed by Greve & Fischl [26].

Applying the computed transformations directly to V could easily ‘break the mesh’ at the
edges of neighbouring regions as their continuity is not guaranteed. This is a serious problem,
as subsequent steps in laminar analysis (like the level set methods [31]) require the mesh to be
a topological sphere: a non-intersection closed surface without holes. In order to ensure
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continuity we use a control point based strategy [30]: let the edges and corners of the

neighbourhoods NV define a deformable lattice. For each computed transformation in a
neighbourhood, a resulting displacement vector is assigned to all of its corner points. After all
transformations at a depth level are computed, the median is taken of all displacement vectors
for each control point, thus representing a resultant vector based on adjacent neighbourhoods.
In order to further increase robustness (but at the cost of specificity), the displacement vectors
may subsequently be adjusted based on their direct neighbours:

d=od+ (1—- M), (1)

where M(X) denotes the mean displacement of the neighbourhood. The balance between local
matching and global smoothness is given by the @ parameter and Collins et al. [30] experimen-
tally found o = 0.5 yields an acceptable balance. We recommend higher values for ¢, as our pri-
mary goal in laminar analysis is the local matching. We suggest additional ways of increasing
robustness in the next section.

As all control points within A now have displacement vectors associated with them, 1*
can be displaced proportionally to the distance to their closest control points. A way of describ-
ing this is by defining transformation matrix T, such that it satisfies:

D! =TV, (2)

where the set of displacement vectors is denoted by D for which each 'th element contains
8 vectors, one for each corner of the cube. This is a typical linear regression equation and
could hence trivially be solved for T. However, a least squares solution is required as the sys-
tem is overdetermined with eight corner points and only a [4X4] transformation matrix. This
necessarily requires an approximation of the deformation vectors that may result in disconti-
nuities with respect to adjacent neighbourhoods. A preferred method is to divide the cube
into six tetrahedra by means of Delaunay triangulation [32] and compute a separate matrix
for each of them. For each tetrahedron, Eq 2 represents a determined system, for which the
solution for adjacent tetrahedra is guaranteed to be continuous. Effectively, this division
increases the degrees of freedom of the deformation field to satisfy our requirement of
continuity. Having found the transformations, they can readily be applied to adjust the posi-
tion of V.

This procedure is repeated for all depths levels d. Whenever the number of vertices in A/ s
smaller than a user specified minimum, the transformation for that region is set to the identity
matrix.

Robustness

With the exponential increase in number of neighbourhoods as a function of depth level, the
number of registrations easily reaches into the hundreds. The high number of Degrees of Free-
dom (DoF) of the algorithm therefore inescapably increases the probability of misregistrations.
The algorithm ensures robustness and continuity in several ways, by computing displacement
vectors as a weighted average of all surrounding neighbourhoods, and by an (optional) addi-
tional smoothing of displacement vectors based on adjacent control points, as mentioned
above. Additionally, we compute a transformation within a neighbourhood not only for the
entire neighbourhood, but also for six subregions. By splitting 1 separately into two in the x,
¥, and z dimensions, six cuboids are created for which the registration is repeated. This proce-
dure is illustrated in Fig 1. The resulting displacement vectors are added to the respective list
for each control point.
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Fig 1. A schematic of the workflow. First, the volume is recursively broken up into parts, for which registrations are computed by means of the edge detecting
boundary based registration method. Based on the transformations found in this step, the second step is the updating of a cuboid lattice. The control points within the
lattice are updated and applied to the boundaries. Specifically, this was performed based on a tetrahedral division of the cube. For each tetrahedron, a displacement
field was computed and applied to the vertices within the tetrahedron.

https://doi.org/10.1371/journal.pone.0223440.g001

Parameters

The algorithm can look for any combination of translation, rotation and scaling in the x, y,
and z dimensions. It will divide the volume until it reaches a user defined minimum size or
number of vertices, and a transformation will be computed. We here focus on registration in
the phase encoding direction only, i.e. translation and scaling in the y-direction, as this is the
most common type of distortion when an Echo Planar Imaging sequence is used [11]. We set
the minimum size of a neighbourhood to 4 voxels and the minimum number of vertices to
100. The smoothing factor with respect to adjacent vertices in the lattice from Eq 1 was set to
o = 0.9. Experimentally, we have found that this still yields robust results while still being
highly weighted towards specificity. In contrast, Collins et al. [30] describe an a-level of a =
0.5, which is likely to do with the fact that their purpose of template matching and segmenta-
tion prioritises robustness over specificity. While the original implementation of BBR recom-
mends using subsets of vertices for parts of the algorithm [26], we here use all vertices at all
stages. This may be redundant for registrations at the large scale, but as it is a small addition in
computation time, and because errors in early iterations may propagate further downwards,
we chose to incorporate all vertices. Finding the best selection of parameters may still require
some iterations for a given data set. It is, however, a substantial improvement with respect to
the arduous job of manually matching small patches of cortex within a very limited field of
view.
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Validation

Assessing the quality of the registration performance proved challenging. While there is a clear
theoretical relationship between the distortion size and the parameters of the acquisition [21],
in practice it is difficult to find a gold standard for the submillimetre accuracy that we are
aspiring to. Tools to convert field maps to estimates of voxel displacement are usually heavily
smoothed and cannot account for subject movement in the scanner or field changes between
acquisitions. We hence created our own gold standard by acquiring an undistorted FLASH
image and manually distorting it based on a field map. This way, the exact distortions were
known in order to test if we could find them back with RBR.

A high resolution whole brain multi-echo FLASH image [33] was acquired at a 3T Siemens
Scanner, TR = 95 ms, a = 20°, bandwidth = 170 Hz/px, [0.75 mm]°. GRAPPA was used for
three-fold in-plane acceleration. The echo times ranged from 5.88 ms to 78.96 ms with an echo
spacing of 8.12 ms. The average of the last seven echoes was used, as the first three contained
little contrast. This was accompanied by a whole brain MPRAGE acquisition that was used for
the FreeSurfer cortical reconstruction v5.1, default parameters, TR/TE/TI/a = 2300 ms/3.15
ms/1100 ms/8°, [0.8 mm]°. A field map was acquired to realistically distort the FLASH image.
The resolution was [3.5 mm X 3.5 mm X 2.0 mm], TR/TE1/TE2/a = 1020 ms/10 ms/12.46 ms/
90°, bandwidth = 260 Hz/Px.

The cortical reconstruction from FreeSurfer’s recon-all [13] was coregistered to the
FLASH image using a 6 DoF linear registration with a custom MATLAB implementation of
BBR. In order to distort the cortical surface, a voxel displacement map (VDM) was computed
using SPM field map tools [34]. In order to taper unrealistically large displacements, and to
move non-displaced vertices away from zero, the VDM was first transformed by a cubic root,
after which it was applied in the anterior-posterior direction to the boundaries. Vertices were
on average displaced by 2.56 mm (3.4 voxels), which is considerably more than could be toler-
ated for a laminar specific experiment. The distribution of displacement values was bimodally
distributed away from zero with the specific goal to let RBR find the displacement and yield a
sharp unimodal distribution around zero, as close to a delta distribution as possible.

Additionally, 12 brain scans were obtained from a 7T scanner to test RBR. One was
excluded at an early stage of the analysis because of poor quality of the cortical reconstruction,
despite manual efforts. We used 3D EPI [35], [0.93 mm]®, TR/TE/a = 2768 ms/20 ms/14°,
bandwidth = 1167 Hz/pixel, phase encoding direction: A -> P, matrix size = 2042, effective
echo spacing = 0.25 ms. The boundaries were created by FreeSurfer on a whole-brain
MP2RAGE (1.03 mm’, TR/TE/TI1/TI2 = 5000 ms/1.89 ms/900 ms/3200 ms) [36]. BBR was
performed by bbregister with a full affine transformation (12 DoFs) on the mean of the
functional images and subsequently, the boundaries were imported to MATLAB. Overlaying
the registered boundaries on top of the EPI image showed clear local geometrical distortions
in the phase encoding direction, related to field inhomogeneity [21]. These distortions were of
the order of several millimetres within a single volume. We corrected this with RBR and inves-
tigated its performance.

It must be noted that it is challenging to find an objective metric by which the quality of the
registration could be quantified. The true distorted position is unknown and methods to
approximate do not have the desired submillimetre specificity that is required. Moreover, if
such metric existed, it could itself be used in the optimisation procedure. An alternative, how-
ever, is an investigation of RBR’s performance on the true volume compared to the perfor-
mance on the volume with different levels of added noise. Assuming that the algorithm has the
best performance on the original data, the displacement with respect to the no-noise condition
is expected to increase when more noise is added. Note that this does not make a statement
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about the correctness of the result. To investigate the RBR’s performance in the presence of
noise, we added twelve different levels of white noise to the data, applied RBR and compared
the displacement to the unsalted version. For this, we used the Average Absolute Distance
(AAD) [26], defined to be the average distance that the cortical surface moves between the two
sets of registrations.

Ethics statements. This study was approved by the DCCN CMO 2014/288 (Donders Cen-
tre for Cognitive Neuroimaging, Commissie Mensgebonden Onderzoek). CMO Arnhem-Nij-
megen is an accredited IRB in the Netherlands. All participants provided written informed
consent in accordance with its guidelines.

Participants. In total, twelve participants were recruited from the Donders Institute par-
ticipant pool (7 male, mean age 23, range 18-26). One was excluded at an early stage of the
analysis because of poor quality of the cortical reconstruction, despite manual efforts.

Results

We employed RBR on a constructed gold standard where the exact displacement was known.
By taking an undistorted FLASH image and realistically distorting the cortical surface by
means of a field map, we could test if we could retrieve the initial position of the boundaries.
In Fig 2, we present a histogram of the displaced boundaries and the registered boundaries,
both with respect to the true position. The registered boundaries clearly show a sharp distribu-
tion centred around the origin (4 = 0.027 mm). The FWHM of the distribution is 0.49 mm,
showing that RBR provides accurate submillimetre registration. Additionally, Fig 3 shows a

N Displaced
N Registered

0

Vertex Displacement (mm)

-5

5

Fig 2. Histogram of the displacement of all 228,208 vertices within a single brain mesh. The red histogram shows
the displacement after fieldmap based distortion with respect to a gold standard. The green shows the displacement
after applying RBR with respect to the same standard. After registration, the histogram clearly shows a sharp zero-
centered (no bias) distribution.

https://doi.org/10.1371/journal.pone.0223440.g002
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Small registration error
Spot-on registration in in low-contrast region

large part of the brain

d
Gold Standard

Fig 3. The middle slice of the registration performed on a manually distorted FLASH image (red boundaries). The registered surface (green) overlaps for the larger
part of the brain almost perfectly with the gold standard (yellow). If the specificity is set to high values, there is a risk that errors start to appear in some low contrast
regions. This largely depends on the balance between false positives and false negatives in terms of corrected regions.

https://doi.org/10.1371/journal.pone.0223440.9003

cross section (middle slice of the volume) of the registration. S2 Fig shows a colour coded fig-
ure with the difference in millimetres of the registrered boundaries with respect to the gold
standard.

In most of the slice (and the volume), the registration accuracy is well within the submilli-
metre regime. However, especially in low contrast areas the algorithm may show some small
inaccuracies. This mainly proliferates when there is also another gradient in the image (e.g. the
pial surface) on which the algorithm starts to fix the boundaries. This is largely related to the
fine line between obtaining sufficient specificity and overfitting the data.

We performed RBR on a (resting state) dataset intended for laminar analysis consisting of
11 subjects. The boundaries after a 12 DoF bbregister were recursively registered to the
mean EPI images (0.93 mm isotropic resolution) and this yielded an updated cortical surface.
The new surface followed the grey matter boundary in the volume visibly better than the
unregistered one. In Fig 4 we present a single slice with both sets of boundaries overlaid on top
of them, illustrating the improvement. We here present the data for a representative subject,
and identical images for all other subjects are presented in S1 Fig.

By the nature of the algorithm the displacements are weighted averages of several iterations
of correction. As a result, in regions of drop-out or low contrast and thereby high computa-
tional uncertainty, the algorithm will default to ‘no change’, especially in the finer iterations.
However, in the earlier coarser iterations, low-signal regions may be drawn towards higher
contrast regions in order to optimise spurious boundaries. As a result, highly distorted regions
and drop-out regions may not be corrected accurately, of which the frontal region of Fig 4 is
an example. It should be noted, however, that these regions are unlikely to be suitable for high-
precision analysis and thereby outside the scope of the intended use cases of RBR.

Additionally, Fig 5 shows the AAD of the registration on salted images with respect to the
registration on the no-noise volume. Even for highly noisy images, the registration improves
somewhat with respect to the uncorrected boundaries. In the absence of a gold standard model
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Registered

Displacement (mm)

Fig 4. Distortion correction of 7T 3D EPI data, obtained with 0.93 mm isotropic resolution. In red, the original
brain surfaces are shown after a 12 DoF registration performed by bbregister. The mesh in green is the updated
mesh by means of the first stage RBR, 2 DoF (scale and translation in the PE direction). The green boundaries follow
the white matter boundary much better. The voxel displacement map (lower right) shows displacements on the order
of several millimetres. The control point lattice that was used to displace the boundaries are overlaid onto the
displacement map. Similar images for all subjects can be found in the supplementary materials. For even better
inspection, movie files for all subjects are included in the online supplemental materials.

https://doi.org/10.1371/journal.pone.0223440.9004
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> 600 300 0

Noise Level (a.u.)

Fig 5. The effect of adding noise on the computed average absolute displacement with respect to a no-noise
registration. In the absence of knowledge about the true distortions, the monotonic decrease of the AAD indicates that
RBR converges to an optimum as a function of data quality.

https://doi.org/10.1371/journal.pone.0223440.g005

of the distortions, the monotonic decrease of the AAD indicates that RBR converges to an opti-
mum as a function of data quality.

Data availability

All source code for the registration algorithm is freely available under the GPL 3.0 license at
https://github.com/TimVanMourik/OpenFmriAnalysis.

The respective modules are also available in Porcupine and GiraffeTools, visual pipeline
tools that automatically creates custom analysis scripts [37]. An example pipeline with all
modules in the context of laminar analysis is set up in https://giraffe.tools/workflow/
TimVanMourik/OpenFmriAnalysis.

All code to generate the images in this paper are available at the Donders Repository
http://hdlLhandle.net/11633/di.dccn.DSC_3015016.05_558. Specifically, the repository con-
tains 1 subject for the FLASH acquisition and 11 experimental data sets for the MPRAGE-to-
EPI distortion correction procedure (sequence parameters are described in the method
section).

The data set associated with our distortion simulation on a FLASH image contains a single
high-resolution high-SNR multi-echo FLASH volume and an anatomical scan with a
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FreeSurfer surface reconstruction. It provides all code to perform the field map based distor-
tion simulations, the RBR non-linear distortion corrections of the simulated volumes, and the
code to produce Figs 2 and 3.

The data set associated with the EPI distortion correction includes for each subject a struc-
tural scan with a FreeSurfer reconstruction and the mean of the functional acquisition. The
raw time series are available upon request, but are not included as we do not perform any tem-
poral analysis. We further include all derived files as produced by the MasterScript.m
MATLAB script. This script first performs a linear boundary based registration and subse-
quently our proposed non-linear recursive boundary based registration. It further saves the
registered cortical surfaces to a MATLAB readable format and outputs movie files that scroll
through the brain with corrected and uncorrected surfaces as animated plots. The code pro-
ceeds with adding noise to the images (for the previously described AAD analysis), recomputes
the non-linear registrations, and produces the base of Figs 4 and 5.

Discussion and conclusions

In recent years, laminar specific fMRI analysis has come in reach for human in vivo experi-
ments. Where standard fMRI analyses are done on a routine basis, this is hardly the case for
layer specific analysis, not least because of the large amount of manual work that is involved.
Aligning volumes to adjust for subject motion and non-linear distortion is one of the most
challenging parts of the pipeline. With Recursive Boundary Registration (RBR) we here pro-
pose a solution to this problem by means of a recursive application of Boundary Based Regis-
tration. By using a control point lattice that forms the basis of deforming the mesh, the
topology of the surface is preserved. This way, the mesh can easily be fed into next steps in
making a cortical layering (Level Set Method) where it is an absolute necessity that the mesh is
not broken as a result of the transformations. Due to the large number of degrees of freedom
that are required to non-linearly deform a volume, we built in several methods to increase
robustness. Nonetheless, as a mathematical certainty, increasing the sensitivity will increase
the false positive rate, i.e. the risk of overfitting. It is up to the user to find the desired balance
between them in the settings that we provide to control this balance. We hence provide the full
code and data of all our experiments online, in order to aid users in adopting this method and
fine-tuning the parameters for their use case. Guidance with respect to parameters, their
defaults, and possible alternatives are documented in the code. Although RBR supports trans-
lation, rotation and scaling in any direction, it must be noted that our test cases were one-
dimensional corrections. The dominant distortion in the phase encoding direction is typically
an order of magnitude larger than in other directions and it is therefore logical to adjust the
settings accordingly.

To ensure the functionality of this method, several conditions have to be met. A good
reconstruction of the cortical surface is essential, as any inaccuracies will directly affect the
contrast estimation and hence the registration optimisation. As the algorithm is based on edge
detection, the volume to which it is registered needs to have sufficient contrast between white
and grey matter. Furthermore, RBR is recommended to be initialised by a linear BBR registra-
tion. While RBR excels at subtle non-linear deformations, large displacement at any level may
not be found in a rough multidimensional landscape through which the gradient descent
method has to find its way to a minimum. In general, a gradient descent method may be diffi-
cult to monitor as it is susceptible to local minima trapping. A more robust algorithm may be a
good improvement to RBR (e.g. using bounded gradient descents, or Monte Carlo sampling).
Additional points of improvement could be the way in which the control point lattice is
applied. While the subdivision into tetrahedra guarantees continuity across segments, it has a

PLOS ONE | https://doi.org/10.1371/journal.pone.0223440 November 18, 2019 11/15


https://doi.org/10.1371/journal.pone.0223440

@ PLOS|ONE

Improved cortical boundary registration for locally distorted fMRI scans

non-symmetrical orientation. The resulting displacement hence may show a residual bias as a
result of the division. A smoother curve fitting technique to replace the current tetrehedral
solution may be a valuable improvement, for example a diffeomorphic version as implemented
in ANTS [38].

This algorithm in its current implementation focuses only on the gradient around the gray
and the white matter, without looking at the intensity value. One could imagine this to be
problematic when RBR is applied to a volume where a similar gradient of the same direction is
present, for example the grey matter to CSF gradient. The algorithm may easily get ‘confused’
about which boundary it needs to converge on. In T;-weighted images in functional studies,
this is not usually a problem as the grey matter has a higher intensity value than both CSF and
white matter. However, in standard anatomical scans with T} contrast, this is not the case. As a
result, RBR may fail due to the great similarity of contrast along both sides of the grey matter.
An extension of RBR could focus on using more prior knowledge about the intensity (as
opposed to merely the gradient), in order to inform the algorithm which boundary it should
use. This may approach solutions like regseg [24] that was developed in the context of dis-
tortion correction for diffusion MRI and presents a combined registration-segmentation
method that deals with excessively smooth gradients.

A common use of non-linear registration is template matching, for example in an anatomi-
cal-to-MNI normalisation. RBR has little potential for this type of usage as it is based on find-
ing fine within-subject similarities in a volume, rather than the coarser type of between-subject
similarities. More probable potential use cases may be could in the matching of subcortical
brain structures that are described with a three-dimensional mesh. Similarly, there is a wide
range of more deformable parts of the body (e.g. liver, heart, stomach, etc.) that might benefit
from solutions like RBR. Additionally, RBR could find its use in developmental investigations
of the brain. Pediatric longitudinal studies may cross-register surfaces obtained from older
participants to earlier time points, as FreeSurfer cortical reconstructions get progressively less
accurate for younger children.

We have shown that RBR automates the process of non-linear distortion correction in
order to accommodate an extremely high specificity. This is a next step in automated process-
ing of laminar analysis and more routine layer research. We have shown this yields submilli-
metre accuracy of registration. With the open source and modular way the code is written, the
cost function, optimisation algorithm or deformation algorithm could easily be replaced with
improved versions, to accommodate ongoing development. Finally, we concur with Saad [39]
and Greve [26] in their conclusion to encourage visual inspection of the registration before
reliance is placed on its accuracy.

Supporting information

S1 Fig. Distortion correction of 7T 3D EPI data, obtained with 0.93 mm isotropic resolu-
tion. In red, the original brain surfaces are shown after a 12 DoF registration performed by
bbregister. The mesh in green is the updated mesh by means of the first stage RBR, 2 DoF
(scale and translation in the PE direction). The green boundaries follow the white matter
boundary much better. For better inspection, the online supplemental materials include movie
files that scroll through the volume. The voxel displacement map (lower right) shows displace-
ments on the order of several millimetres. The control point lattice that was used to displace
the boundaries are overlaid onto the displacement map. These are single slice images of the
registration performance for all other 10 subjects. More detailed information can be found in
the online data sharing collection.

(EPS)
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S2 Fig. Registration performance of the FLASH data compared to a gold standard, as
described in the Results section. The difference of the registered boundaries and the gold
standard is colour coded in the figure. A detailed movie that displays the 3D information of
the registration quality of the entire volume can be found in the online supplementary materi-
als. The mid slice of the registration performed on a manually distorted FLASH image is
shown. The image on the left shows the boundaries after applying a manual distortion. The
image on the right shows the remaining distortion after RBR correction. The surfaces are col-
our coded with the displacement in millimetres with respect to the gold standard.

(EPS)
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