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ABSTRACT Microbial communities in the rhizosphere are distinct from those in soils
and are influenced by stochastic and deterministic processes during plant development.
These communities contain bacteria capable of promoting growth in host plants
through various strategies. While some interactions are characterized in mechanistic
detail using model systems, others can be inferred from culture-independent methods,
such as 16S amplicon sequencing, using machine learning methods that account for this
compositional data type. To characterize assembly processes and identify community
members associated with plant growth amid the spatiotemporal variability of the rhizo-
sphere, we grew Brassica rapa in a greenhouse time series with amended and reduced
microbial treatments. Inoculation with a native soil community increased plant leaf area
throughout the time series by up to 28%. Despite identifying spatially and temporally
variable amplicon sequence variants (ASVs) in both treatments, inoculated communities
were more highly connected and assembled more deterministically overall. Using a gen-
eralized linear modeling approach controlling for spatial variability, we identified 43
unique ASVs that were positively or negatively associated with leaf area, biomass, or
growth rates across treatments and time stages. ASVs of the genus Flavobacterium domi-
nated rhizosphere communities and showed some of the strongest positive and nega-
tive correlations with plant growth. Members of this genus, and growth-associated ASVs
more broadly, exhibited variable connectivity in networks independent of growth associ-
ation (positive or negative). These findings suggest host-rhizobacterial interactions vary
temporally at narrow taxonomic scales and present a framework for identifying rhizobac-
teria that may work independently or in concert to improve agricultural yields.

IMPORTANCE The rhizosphere, the zone of soil surrounding plant roots, is a hot spot for
microbial activity, hosting bacteria capable of promoting plant growth in ways like
increasing nutrient availability or fighting plant pathogens. This microbial system is
highly diverse and most bacteria are unculturable, so to identify specific bacteria associ-
ated with plant growth, we used culture-independent community DNA sequencing
combined with machine learning techniques. We identified 43 specific bacterial sequen-
ces associated with the growth of the plant Brassica rapa in different soil microbial
treatments and at different stages of plant development. Most associations between
bacterial abundances and plant growth were positive, although similar bacterial groups
sometimes had different effects on growth. Why this happens will require more
research, but overall, this study provides a way to identify native bacteria from plant
roots that might be isolated and applied to boost agricultural yields.

KEYWORDS rhizosphere, microbial community, plant growth promotion, 16S RNA,
Brassica rapa, feature selection, microbial communities, rhizosphere-inhabiting
microbes

Editor Christopher R. Anderton, Pacific
Northwest National Laboratory

Copyright © 2022 Klasek et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Scott A. Klasek,
scott.a.klasek@gmail.com.

*Present address: Scott Klasek, Department of
Plant Pathology, University of Minnesota,
Minneapolis, Minnesota, USA.

The authors declare no conflict of interest.

Received 20 January 2022
Accepted 17 April 2022
Published 16 May 2022

May/June 2022 Volume 7 Issue 3 10.1128/msystems.00060-22 1

RESEARCH ARTICLE

https://orcid.org/0000-0002-3396-8005
https://orcid.org/0000-0003-2833-9316
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1128/msystems.00060-22
https://crossmark.crossref.org/dialog/?doi=10.1128/msystems.00060-22&domain=pdf&date_stamp=2022-5-16


Millimeters in thickness, the rhizosphere is the zone of soil that surrounds plant
roots and supports bacterial communities distinct from those in bulk soils (1, 2).

Plants induce this “rhizosphere effect” by exuding organic compounds from roots, which
recruit rhizosphere bacteria and change bacterial community structure (3, 4). These rhizo-
bacteria can enhance plant growth directly or indirectly by mobilizing soil nutrients (5, 6),
suppressing disease (7) and herbivory (8, 9), mediating hormone signaling (10), and
increasing tolerance to physical stresses such as drought (11) and salinity (12). Leveraging
these plant growth-promoting rhizobacteria (PGPR) and their microbial communities to
increase agricultural output is of great interest and importance (13–15).

Rhizosphere microbial communities are complex and spatiotemporally variable and
can interact with hosts and with each other to maintain plant health in ways that indi-
vidual isolates cannot (16, 17). Although rhizosphere composition varies to some
extent across host species (18), host genetic and epigenetic regulatory mechanisms,
including the circadian clock and histone methylation, can affect rhizosphere recruit-
ment (19, 20). Variations in root exudate profiles across Arabidopsis growth stages have
been interpreted to change rhizobacterial community composition (21), while subse-
quent investigations have detailed how certain exudate compounds can recruit or in-
hibit specific bacterial taxa within communities, often in response to nutrient stress
(22–24). Population-level spatiotemporal variability has also been observed, such as in
a reporter assay where the activity of a root-associated Pseudomonas aligned with
expected rhizodeposition patterns during root growth (25). Not only guided by host
influences, the assembly of plant-associated bacterial communities is to an extent
shaped by stochastic forces across small spatial or temporal scales (26–28).

Considering this, high-resolution sampling is required to disentangle specific drivers
of rhizosphere community assembly.

Several strategies have been used to identify plant growth-promoting rhizobacterial
community sequence data (29, 30). Another used a random forest approach to identify
a set of 75 operational taxonomic units (OTUs) whose relative abundances could
explain 31% of the difference in grain weight of foxtail millet (31). Although the human
microbiome literature has employed a variety of machine-learning strategies for identi-
fying microbial community features (taxa or genes) associated with health or disease
classifications (32), fewer studies have used these strategies to identify associations
between rhizosphere community members and continuous plant growth data.

To identify and characterize plant growth-promoting bacteria within the context of
rhizosphere community dynamics, we grew Brassica rapa in a 2-week time series green-
house experiment using two soil treatments. These consisted of an autoclaved soil matrix
that was inoculated with a plant growth-promoting soil (South Brush Creek [SBC], inocu-
lated treatment) or left to allow microbial community recolonization by atmospheric dep-
osition (disrupted treatment). Rhizosphere communities were sampled between 2 and 14
days of growth across six replicates (spatial blocks) and across diel cycles. Using an origi-
nal approach based on generalized linear and Bayesian multilevel modeling, we identified
16S rRNA amplicon sequence variants (ASVs), ASV linear combinations, or clusters of
cooccurring ASVs (network modules) whose abundances best predict leaf area, plant bio-
mass, and growth rates across early or late stages of growth. Furthermore, we character-
ized cooccurrence patterns of growth-associated ASVs that may reveal their potential for
plant growth promotion in field studies.

RESULTS
Soil inoculum promotes Brassica rapa growth. B. rapa was grown in two soil set-

tings to examine plant growth promotion (PGP) under different modes of community
assembly, in an autoclaved soil favoring a more random assembly through migration
and colonization of air/water-sourced microorganisms (disrupted treatment) or in an
autoclaved soil followed by inoculation of a soil slurry favoring a more deterministic as-
sembly (inoculated treatment). Compared to plants grown in disrupted soil treatments,
inoculation of the B. rapa accession Wisconsin FastPlant (FPsc) with SBC soil resulted in
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higher average leaf projected area (PA) on day three after germination, persisting until
day 14 (Fig. 1A). This effect was highest at day 11, when PA of inoculated plants was
28% higher than that of plants grown in the disrupted soil treatment. By around day
12, leaves began to self-shade, decreasing the correlation between PA and true leaf
area. A 39% increase in aboveground biomass was observed by day 13 (Fig. 1B), an
effect that was not significant earlier in the time series. This is likely a consequence of
fewer measurements taken during destructive sampling. Relative growth rates (RGR),
calculated from slopes of log-transformed PA measurements from consecutive inter-
vals, were higher in inoculated compared to disrupted treatments throughout the time
series (two-tailed t test P = 0.0399; also see Fig. S1 at https://doi.org/10.6084/m9
.figshare.c.5787851.v1). Measurements of aboveground biomass and PA at harvest cor-
related highly across all cultivation pots (adjusted R2 = 0.94). In addition, we observed
differences in growth across the six blocks within the greenhouse in each treatment.
These block effects were noted with PA measurements from days 3, 10/11, and 13
(two-way analyses of variance [ANOVAs], maximum P = 0.0288). Block variation in PA

FIG 1 Plant and bacterial growth across the time series. (A and B) Projected leaf area (PA) (A) and
aboveground biomass (B) by treatment across the time series. Points represent the mean across six blocks and
five different harvest times (on days 3, 4, 13, or 14, with 95% confidence intervals shown). *, P , 0.05; **, P , 0.01;
***, P , 0.001. (C) Bacterial 16S gene counts per gram rhizosphere soil. Dashed line indicates mean SBC soil 16S
rRNA gene copy number at inoculation, accounting for dilution.
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measurements averaged on days 10 and 11 is shown in Fig. S2 at https://doi.org/10
.6084/m9.figshare.c.5787851.v1. Block differences in biomass and relative growth rates
showed less consistent patterns. Concentrations of bacterial 16S rRNA gene copies
increased with time until around day 8 but did not significantly vary across treatments
(Fig. 1C). Plants showed no indication of disease.

Inoculated rhizospheres assemble deterministically. Inoculated rhizosphere com-
munities showed higher richness and evenness compared to disrupted ones, as measured
by numbers of observed ASVs and Shannon’s diversity indices (Fig. 2A). SBC inoculum
communities were even more diverse. The top 100 ASVs from SBC soil inoculum com-
munities included 15 bacterial classes in near-equal proportions, consisting of around
30% of sequence reads (Fig. S3A at https://doi.org/10.6084/m9.figshare.c.5787851.v1). In
contrast, 2 days after germination, the 100 most abundant ASVs in rhizosphere commun-
ities of both treatments consisted of only four classes (Actinobacteria, Bacilli, Bacteroidia,

FIG 2 Rhizosphere bacterial community diversity. (A and B) Alpha diversity (number of observed ASVs
and Shannon indices) (A) and PCoA ordination of Bray-Curtis dissimilarities (B) between raw soil inoculum
(SBC) and rhizosphere communities by treatment. Separate ordinations of disrupted (C) and inoculated
(D) communities are shaded by the number of days of plant growth, with harvest times indicated by
shape. (E) Bray-Curtis dissimilarities across the time series. In each treatment, dissimilarities from
communities harvested at each day are shown relative to those from day 2. (Dissimilarities at day 2 were
calculated from day 2 samples only.) Raw read counts were transformed using cumulative sum scaling.
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and Gammaproteobacteria) and contained roughly 80% of sequences (Fig. S3B at https://
doi.org/10.6084/m9.figshare.c.5787851.v1). Neither metric of alpha diversity at the com-
munity level varied notably across time. Treatment accounted for 22% of the variation in
rhizosphere community structure (permutational multivariate ANOVA [PERMANOVA],
P , 0.001), an observation reflected by principal coordinate analysis (PCoA) ordinations
of Bray-Curtis dissimilarities (Fig. 2B). Days of growth across the 14-day time series
explained 5.8% and 16.8% of community variation in disrupted and inoculated commun-
ities respectively (PERMANOVA, P , 0.001 for both), and separation between early and
late stages of growth was more evident in inoculated communities (Fig. 2C and D). In rhi-
zospheres intensively sampled at five times per day during two 48-h cycles (3 to 4 and 13
to 14 days), harvest times did not influence community structure across either treatment
(Fig. 2C and D).

Several measures point toward deterministic community assembly in rhizospheres of
inoculated treatments. Rhizosphere bacterial communities from disrupted treatments
exhibited high but consistent dissimilarity throughout the time series, while inoculated
communities showed low but increasing dissimilarity (relative to day 2 samples) until
day 10 (Fig. 2E). Abundant ASVs were more highly prevalent (present in a higher per-
centage of communities) across inoculated communities than disrupted ones (Fig. S4 at
https://doi.org/10.6084/m9.figshare.c.5787851.v1). The core community of the inocu-
lated treatment consisted of 46 ASVs present across all 144 samples and accounting for
51% of all sequence reads, while only 8 ASVs (36% of reads) were present in all 144 dis-
rupted communities. Cooccurrence networks were constructed from rhizosphere com-
munities belonging to the same treatment and time stage (here referred to as sample
groups). Early groups correspond to rhizospheres at 3 to 4 days of growth and late
groups to 13 to 14 days of growth, chosen to represent the increased sampling fre-
quency within these 48-h intervals. Networks from all inoculated rhizospheres contained
more connections, and vertices (ASVs) were more highly interconnected than in all the
disrupted ones (Table 1). The mean number (degree) and strength of connections also
increased conspicuously between early and late networks of inoculated communities
only. Numbers of modules, or clusters of cooccurring ASVs in each sample group, ranged
from 54 to 222 (Table 1).

Rhizosphere communities from both treatments exhibited spatial variation across the
six greenhouse blocks, with block membership explaining 14% and 17% of variance
among inoculated and disrupted communities, respectively (PERMANOVA, P , 0.001 for
both). Differential abundance analysis (DESeq2 [33]) identified 33 ASVs whose abundan-
ces varied significantly across 4 of 6 blocks in inoculated communities (Fig. S5 at https://
doi.org/10.6084/m9.figshare.c.5787851.v1) and 49 ASVs across 5 of 6 blocks in disrupted
communities (Fig. S6 at https://doi.org/10.6084/m9.figshare.c.5787851.v1). These block-
specific biomarkers made up highly variable proportions of their respective communities
and included several dominant ASVs, particularly in the genera Flavobacterium and
Paenibacillus. In both treatments, block 6 had highest numbers and abundances of block-

TABLE 1 Co-occurrence network summary statistics for six sample groupsa

Sample group Count
No. of
vertices

Mean
degree

Mean
strength

No. of
edges

Mean
wt

No. of
modules

All inoculated 144 718 19.98 0.798 7,173 0.040 56
All disrupted 144 548 9.26 0.620 2,537 0.067 54
Early inoculated 60 614 4.78 0.108 1,468 0.022 222
Late inoculated 60 787 13.88 0.652 5,463 0.047 70
Early disrupted 60 423 5.35 0.405 1,132 0.076 83
Late disrupted 60 469 6.49 0.315 1,522 0.048 59
aCounts display the number of communities used for constructing networks, and vertices are the number of
ASVs in each network. Degree and strength are attributes of vertices that represent the number of connections
and sum of edge weights from each vertex. Edges are the number of co-occurrences in each graph, and weights
are attributes of edges that represent cooccurrence strength. Modules of co-occurring ASVs are shown for each
graph after removing negative edges.
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specific biomarkers (Fig. S5 and S6 at https://doi.org/10.6084/m9.figshare.c.5787851.v1).
ASVs whose abundances varied by growth stage (early or late, harvested before or after
7 days of growth) made up similar proportions of inoculated and disrupted rhizosphere
communities (Fig. S7A at https://doi.org/10.6084/m9.figshare.c.5787851.v1). However,
higher total numbers of growth-stage biomarker ASVs in inoculated communities likely
reflect the higher alpha diversity (Fig. 2A). ASVs whose abundance peaked at one partic-
ular day of the time series made up smaller proportions of both treatments than
growth-stage biomarker ASVs (Fig. S7B) but were more abundant in disrupted rhizo-
spheres, recapitulating their higher degree of stochastic assembly. All ASVs that varied in
differential abundance across treatment, block, treatment � time (growth stage or specific
day), or treatment � block are presented as a table of logical values (Table S1 at https://
doi.org/10.6084/m9.figshare.c.5787851.v1). In both treatments, Flavobacterium represented
the most diverse and the most abundant genus within rhizosphere communities, contain-
ing 630 ASVs and over 40% of reads. Overall, reads assigned to Flavobacterium increased
in abundance with time in disrupted communities but decreased in inoculated ones (Fig.
S8 at https://doi.org/10.6084/m9.figshare.c.5787851.v1).

Rhizobacterial features associated with plant growth. We used generalized lin-
ear modeling (GLM) to identify associations between normalized abundances of ASV
or modules (here features) and numerical plant growth measurements while control-
ling for block heterogeneity. A least absolute selection and shrinkage operator (LASSO)
was applied to refine the number of important, nonredundant predictive features.
Rhizosphere communities were classified into sample groups based on inoculation
treatment and time (early, 3 or 4 days growth; late, 13 or 14 days growth). GLM runs
consisted of ASV or module abundances from these communities paired with contem-
poraneous plant growth data (Table 2). Temporal variation in RGR values between
days 3 and 4 (Fig. S1 at https://doi.org/10.6084/m9.figshare.c.5787851.v1) prevented us
from associating RGR with features in early-stage communities. After feature selection,
Bayesian multilevel modeling (of individual features or linear combinations thereof)
reduced the number of growth-associated ASVs or modules to only those that were
most unambiguously associated with plant growth (i.e., nonzero slopes of feature
abundances versus plant growth; Table S2 at https://doi.org/10.6084/m9.figshare.c
.5787851.v1). Further information is provided in Materials and Methods. This statistical
framework allowed us to identify a total of 43 unique ASVs from rhizosphere commun-
ities that were good predictors of at least one measurement of plant growth across dif-
ferent time stages and treatments (here growth positive or growth negative) (Fig. 3).
Twenty-six were associated with inoculated communities, 18 with disrupted commun-
ities, and only one (ASV117) with both. Abundances of individual ASVs explained from
5% to 40% of the variance in plant growth data (Table S2), while models containing lin-
ear combinations of multiple ASVs explained from 18% to 84% of variance in growth
(conditional R2) (Table S3 at https://doi.org/10.6084/m9.figshare.c.5787851.v1). Seven
growth-associated ASVs were associated with more than one growth metric, four of

TABLE 2 Associations of rhizosphere communities and plant growth data tested in the GLMa

Time stage Response
Early (days 3 and 4) Leaf PA, day 3
Early PA residuals from days 3 and 4
Early Biomass residuals from days 3 and 4
Late (days 13 and 14) Avg PA, days 10 and 11
Late PA, day 13
Late PA residuals from days 13 and 14
Late Biomass residuals from days 13 and 14
Late RGR
All, from 3 days onwards RGR
aThese associations were run for both inoculated and disrupted soil treatments and with ASV and module
abundances. RGR measurements were consistent across the time series (see Fig. S1 at https://doi.org/10.6084/
m9.figshare.c.5787851.v1), allowing us to include communities from across the time series (excluding those from
day 2, when only one PAmeasurement was available).
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FIG 3 ASVs associated with plant growth in both treatments. ASVs were associated with projected area (PA),
residuals of aboveground biomass controlling for days grown, residuals of PA controlling for days grown and
sample collection date, and relative growth rates (RGR). Measurements from early and late columns denote
rhizosphere communities from plants grown 3 to 4 or 13 to 14 days, respectively, while All denotes all plants
grown .2 days. R2 values show proportions of variance explained by Bayesian models of abundances of each
ASV versus plant growth, with blue showing positive associations and red being negative. ASVs are labeled by
most specific taxonomy information and shown in bold if also included in best multivariate Bayesian models.
PA, residual, and RGR values represent averages from 3 to 7 plants (early stage) or 2 plants (late stage).
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which were assigned to the genus Flavobacterium (Fig. 3). In general, ASVs associated
with RGR explained less variance than those associated with other growth measurements.
More traditional biomarker detection techniques, such as DESeq2 (33), applied to rhizo-
sphere communities classified as growth-promoting, possibly growth-promoting, or non-
growth-promoting categories did not return any significant results, justifying our GLM
approach (for more detail, see Materials and Methods).

Eight ASVs belonging to the genus Flavobacterium were associated with growth
across different treatments and time stages, several of which demonstrated particularly
strong associations with growth (Fig. 3) and were highly abundant members of rhizo-
sphere communities (Fig. 4). While most of these were growth positive, ASV37 was
negatively associated with PA, biomass residuals, and PA residuals in early inoculated
communities (Fig. 3). Flavobacterium ASV sequences did not cluster phylogenetically
with growth associations in an obvious pattern, although three of the five unambigu-
ously growth-positive ASVs grouped into a distinct subclade based on 16S rRNA V4V5
sequences (Fig. S9 at https://doi.org/10.6084/m9.figshare.c.5787851.v1). Despite the high
correlation (R2 = 0.85) between PA values from inoculated plants at day 3 and residuals of
PA from days 3 and 4, 11 additional ASVs were associated with PA residuals. Interestingly,
ASV117, a Flavobacterium with a greater than 99% sequence identity to ASV37, was the
only sequence that was associated both positively and negatively with growth and associ-
ated with growth in both inoculated and disrupted treatments. Five other genera
(Arcticibacter, Bacillus, Dyadobacter, Mucilaginibacter, and Paenibacillus) also contained
multiple ASVs that showed either positive or negative associations with growth (Fig. 3).
These were identified across different treatments, stages, and measurements of plant

FIG 4 Most abundant growth-associated ASVs across time. (A and B) Relative abundances of growth-associated
ASVs from inoculated (A) or disrupted (B) communities harvested at times where they were positively or
negatively associated with any metric of plant growth (early, days 3 and 4; late, days 13 and 14). ASVs with
abundances of less than 0.2% of communities, on average, by treatment and time were omitted. Most specific
taxonomies are shown. The y axis for positive growth-associated ASVs in panel B was truncated because ASV10
exceeded 15% abundance within three disrupted communities, with a maximum abundance of 36.6%.
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growth but also sometimes within the same pairings of sample groups and plant growth
data (Flavobacterium in early-stage inoculated treatments, Bacillus with RGR in disrupted
treatments).

Overall, relative abundances of ASVs associated with any measurement of growth
were higher in inoculated than disrupted communities, and relative abundances of all
growth-positive ASVs were higher than those of growth-negative ones in both treat-
ments (Fig. 4). In addition to Flavobacterium, these dominant growth-associated ASVs
included members of Cellvibrio, Cytophaga, Adhaeribacter, and Pedobacter. All dominant
growth-associated ASVs in disrupted communities were associated with RGR throughout
the entirety of the time series. Relative abundances of growth-positive ASVs showed high
variability in disrupted communities, with Flavobacterium ASV10 ranging from less than
0.1% to 36% of reads and Fluviicola ASV58 from 0 to 4.6% (Fig. 4).

We then searched for growth-associated modules as described for ASVs. By con-
densing thousands of ASVs into dozens or hundreds of modules, we were able to
include ASVs with low abundances or prevalences that would otherwise have been
omitted from the GLM (see Materials and Methods for more detail). We identified 10
module associations with growth, where all modules consisted of only one or two
ASVs (Fig. 5). Five of these consisted of low-prevalence or low-abundance ASVs omit-
ted from the ASV-centric approach, while others included highly abundant singleton
modules, such as Flavobacterium ASV6 and Adhaeribacter ASV74. Three of the four
modules consisting of higher-abundance singleton ASVs revealed associations to PA or
PA residuals similar to those shown in Fig. 3, and the two Arcticibacter ASVs in module
9 (ASVs 68 and 149) (Fig. 5B) both showed negative associations with RGR as individu-
als (Fig. 3).

Co-occurrence networks. Co-occurrence networks of growth-associated ASVs, show-
ing ASVs displaying strong direct positive or negative connections to them, revealed
differences in connectivity across treatments (Fig. 6). The inoculated network (Fig. 6A)
consisted of 328 edges connecting 155 ASVs from six modules that made up an aver-
age of 39% of the reads within communities, while the disrupted network (Fig. 6B)
contained 76 edges connecting 70 ASVs from six modules that made up 19% of reads.
Several dominant growth-associated ASVs from both treatments (particularly Cellvibrio
gandavensis ASV14 and Adhaeribacter ASV74 in inoculated and disrupted communities,
respectively) showed no strong connections and were removed from network graphs.
Certain modules within both networks contained both growth-positive and growth-
negative ASVs, although growth-associated ASVs within these modules were generally
weighted toward one direction. Some ASVs in both networks showed positive co-
occurrences with both growth-positive and growth-negative ASVs. These comprised 50
ASVs across 26 genera in inoculated communities and two ASVs from the genus
Paenibacillus in disrupted rhizospheres. Considering all (not just strong) co-occurrences,
growth-associated ASVs from inoculated communities were more highly connected than
those from disrupted communities and non-growth-associated ASVs from inoculated
communities (Fig. 6C). Nevertheless, growth-positive and growth-negative ASVs showed
no differences in connectivity in either network, and neither did ASVs that were kept ver-
sus omitted in multivariate Bayesian models.

DISCUSSION

The use of two soil treatments, consisting of a sterilized soil matrix that was either
amended with a raw soil inoculum (inoculated) or exposed to colonization by atmos-
pheric deposition (disrupted), allowed us to examine the plant growth-promoting poten-
tial of a native soil bacterial community relative to a recent assemblage sourced from
greenhouse air and/or water. While 16S rRNA gene copy numbers are not indicative of
live bacterial biomass, similar increases in copy numbers over time in both treatments
allow us to discount biomass as a confounding factor. Trial experiments demonstrated
no discernible difference in PA or aboveground biomass between plants grown in dis-
rupted or freshly autoclaved soils, supporting the role of an intact microbial community
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in B. rapa growth promotion (data not shown). Maximum percent yield increases of 28
to 39% (leaf PA and aboveground biomass, respectively) in inoculated plants were within
range of several inocula from agricultural and forest soils that largely increased
Arabidopsis shoot and root biomass relative to axenic controls (34). Temporal changes in
rhizobacterial community composition across stages of plant growth have been
described previously (35, 36) and specifically attributed to changes in root exudate
chemistry (37) or microbial succession independent of host growth stage (38). Although
some exudates in Arabidopsis and other members of Brassicaceae (notably glucosino-
lates) exhibit circadian fluctuation, many do not (39, 40). Although glucosinolate

FIG 5 Modules associated with plant growth in both treatments. Modules were associated with PA (A) and RGR (B). Columns denote time stages when
rhizosphere communities were sampled (early, 3 to 4 days; all, . 2 days). R2 values show proportions of variance explained by Bayesian models of each
individual module’s abundance versus plant growth, with blue showing positive associations and red being negative. Modules consisting of only one ASV
show its most specific taxonomy, and modules indicated with an asterisk denote ASVs that were omitted from the ASV-centered workflow based on low
abundance or prevalence. Module labels are shown in boldface if also included in best multivariate Bayesian models. PA, residual, and RGR values
represent the averages from 2 to 7 plants.

FIG 6 Subsetted networks showing growth-associated ASVs and their strong co-occurrences. Networks show inoculated (A) and disrupted (B) communities,
subsetted to include only growth-associated ASVs and those they show strong co-occurrences with. Positive co-occurrences are shown as gray edges for
weights exceeding the third quartile of all weights from unsubsetted networks, and negative co-occurrences are shown as red edges for weights below the
first quartile. Nodes labeled in blue are ASVs positively associated with growth, and nodes labeled in red are negative. Unlabeled nodes are connected to
one or more growth-associated ASVs. Node size corresponds to the square-rooted average relative abundance, and node color indicates module
membership. Edge thickness corresponds to connection weight. Node sizes and edge widths across networks are not to scale. (C) Degree (number of
connections) from each ASV in unsubsetted networks of inoculated or disrupted communities, separated by whether they were associated with growth.
*, P , 0.05; ***, P , 0.001.
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exudation patterns in FPsc are uncharacterized, differences in growing conditions (such
as between greenhouse and growth chamber experiments) may partially explain the
consistency we observed in rhizosphere community composition across diel cycles. The
separation in community beta-diversity in both treatments between weeks 1 and 2
(Fig. 2C and D) occurred during thinning, which may be a result of density-dependent
changes in root exudation between day 6 and later time points.

We interpret the contrasting patterns of beta-diversity and network connectivity of
rhizosphere communities from disrupted and inoculated treatments as consequences
of stochastic versus deterministic assembly. Although rhizosphere microbial commu-
nity assembly is driven by both processes (41–43), the high dissimilarity in disrupted
community beta-diversity over time (Fig. 2E) has also been noted in soils after wildfire
disturbance (44). The corresponding reduction in plant growth associated with disturb-
ance (sterilization) and recolonization highlights the importance of deterministic proc-
esses of rhizosphere community assembly for agricultural contexts.

In addition, our observation of several ASVs with differential abundance patterns
across greenhouse blocks in both treatments suggests that random or dispersal forces
also shaped rhizosphere community assembly, as previously noted in Arabidopsis phyl-
lospheres and across meter-scale field plots in rhizospheres of several Brassica cultivars
(26, 27). Alternatively, subtle and unmeasured variations in temperature or other fac-
tors across different areas of the greenhouse may play a role (particularly for block 6,
which sat directly underneath a heater; see Fig. S5 and S6 at https://doi.org/10.6084/
m9.figshare.c.5787851.v1). It is important to note that whole-rhizosphere sampling as
described here may obscure fine-scale spatial distributions of bacterial populations
along the root axis, such as those recently linked with root flavone exudation during
nitrogen deprivation (22).

Roles of growth-associated rhizobacteria may be direct (such as aiding nutrient
uptake via N, P mineralization, or in competing with plants for these nutrients) or indi-
rect, such as through hormonal suppression of root growth-inhibiting bacteria by
Variovorax (10). Random forest associations have been used to identify bacterial OTUs,
genera, and taxonomic orders positively and negatively associated with grain weight
in foxtail millet (31), growth of tomato plants (45), and soybean yields (46). In these
studies, the proportion of variance (R2) attributable to combinations of these identified
features ranged from 0.31 to 0.38, which was on the lower end of the variance
explained by our multivariate Bayesian models containing multiple features (mean R2 =
0.4; Table S3 at https://doi.org/10.6084/m9.figshare.c.5787851.v1). Although our decision
to select features at the ASV level risks dispersing slightly different 16S rRNA gene
sequences that may originate from the same genome into separate entities (47), this
approach addresses strain-level heterogeneity that may provide insight into variability in
rhizosphere functional potential (48–50). Connectivity patterns allow us to at least par-
tially resolve this issue: despite sharing 99.2% sequence identity, two Flavobacterium
ASVs (6 and 37) that negatively cooccur with each other and have different effects on
plant growth (Fig. 6A) likely represent different strains, while two positively cooccurring
Arcticibacter ASVs (68 and 149, with 99.3% sequence identity) that belong to the same
module (Fig. 6B) likely arise from the same genome.

While our approach primarily focused on abundant members of rhizobacterial com-
munities, rare members of the rhizosphere can contribute to maintenance of plant
health, such as in producing compounds to suppress fungal pathogens (51). The
higher statistical power inherent to more prevalent features (those detected in higher
percentages of communities) likely allowed them to be more easily identified in GLM
LASSO runs. Nevertheless, clustering ASVs into modules allowed us to detect several
associations between plant growth and lower-abundance rhizosphere members.

Many growth associations we found were specific to early or late stages of plant
growth only, as others have observed in PGPR isolates from banana rhizospheres (52).
In particular, we identified seven early-stage biomarkers associated with growth within
the time stages in which they were most abundant (ASVs 6, 37, 99, 113, 105, and 249).
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Contemporaneous associations in late stages or disrupted treatments were less clear
and identified lower-abundance ASVs overall, suggesting that early stages of plant
growth are particularly influenced by members of diverse or stable rhizosphere com-
munities. Despite the considerable spatial heterogeneity across rhizobacterial com-
munities (Fig. S5 and S6), only four growth-associated ASVs varied significantly across
greenhouse blocks, of which only ASV13 (genus Pedobacter) exceeded 0.2% average
abundance. The overall lack of variability across spatial blocks in growth-associated
features appears to reflect deterministic assembly processes (even in disrupted com-
munities), which may be driven by selection in response to root exudation patterns.

Imperfect correlations between different growth metrics may account for differen-
ces in features with which they were associated. In particular, PA from inoculated
plants at day 3 and PA residuals at days 3 and 4 showed an R2 of 0.85 and were associ-
ated with ASVs 6 and 37, yet several additional ASVs were associated with PA residuals
only (Fig. 3). This may highlight the sensitivity of the GLM in selecting features from
similar or highly correlated data types, making the choice of growth data a critical con-
sideration. Although most growth-associated features detected in univariate Bayesian
models were also significant in multivariate models, the ones that were significant only
in a multivariate context (Table S2 at https://doi.org/10.6084/m9.figshare.c.5787851.v1)
may only appear so when controlling for the abundances of other ASVs or may require
each other to synergistically affect growth.

Members of Flavobacterium have been associated with increased potato root and
shoot growth in one of the first high-throughput sequencing studies of the rhizosphere
(29). Plant-associated members of this genus are capable of gliding motility, possess
enzymes to degrade glycans from plant cell walls, and can synthesize phytohormones to
stimulate plant growth (53). Interestingly, a recent study associated abundances of
Flavobacterium in wheat rhizospheres with fungal pathogen infection despite noting one
outlier Flavobacterium OTU associated with healthy plants (54). While saprophytic mem-
bers of Cellvibrio are capable of degrading diverse plant cell wall polysaccharides, at least
one member can fix nitrogen (55, 56). Intriguingly, genera with multiple growth-negative
ASVs identified in this study (Adhaeribacter and Pedobacter) have been associated with
growth promotion in other rhizosphere systems (54, 57, 58). Within and across studies,
the variable influences of rhizobacterial genera on plant health and growth appear to
encompass a diversity of context-dependent host-bacterium interactions at finer taxo-
nomic scales.

While treatment dramatically shaped co-occurrence patterns in rhizosphere com-
munities, we detected no differences in connectivity between growth-positive or
growth-negative ASVs, in contrast to Jin et al. (31). Different patterns of co-occurrences
between growth- and non-growth-associated ASVs across treatments (Fig. 6C) sug-
gests that higher connectivity is associated with growth promotion at the community
level, although growth-positive and growth-negative ASVs from both treatments that
did not show strong co-occurrences appear to be exceptions to this rule. We suggest
that growth-positive ASVs with few strong co-occurrences represent promising candi-
dates for isolation and inoculation to improve plant yields. In contrast, bioinoculation
with features showing strong co-occurrences may require characterizing their mecha-
nisms of interaction, designing synthetic communities, and/or directly inoculating
seeds with growth-promoting soils.

In summary, we present differing effects of stochastic and deterministic rhizobacte-
rial community assembly processes during a time series of B. rapa inoculated with a
live or a knocked down soil treatment, noting spatial and temporal heterogeneity. By
using a regularized regression approach, we identify correlations between relative
abundances of ASVs or modules and several measures of plant growth in early or late
stages of B. rapa development. Although the associations we report are correlative, dif-
ferent tests identified many of the same features. These associations provide hypothe-
ses for laboratory and field studies on whether and how these rhizobacteria promote
plant growth and associate with other members of rhizosphere communities. Because
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many rhizobacteria remain uncultured or resistant to cultivation, culture-independent
approaches such as genome-resolved metagenomics and metatranscriptomics can be
used to identify adaptation strategies of recalcitrant populations in plant-associated
systems (59). Further investigations should include comparative genomic investiga-
tions to characterize variability in growth association patterns among members of in-
fluential rhizosphere genera and link changes in rhizosphere communities with plant
gene expression and root exudation patterns. A more complete understanding of spa-
tial, temporal, and taxonomic heterogeneity in the rhizosphere will provide a valuable
bioengineering foundation for a diversity of agricultural contexts.

MATERIALS ANDMETHODS
Greenhouse experiments. To explore the timing of rhizosphere formation and its influence on

plant growth, we initiated a time course greenhouse experiment at the University of Wyoming in
December of 2018 (Laramie, WY; GPS location, 41.319787, 2105.558253; elevation, 2,149 m). We planted
204 replicate pots of each of two treatments (disrupted control versus inoculated) with the Brassica rapa
self-compatible Wisconsin FastPlant (FPsc; Rick Amasino and Scott Woody, University of Wisconsin). Pots
in both treatments were filled with a soil matrix consisting of 50% (vol/vol) fritted clay (Profile porous
ceramics greens grade; Profile, Buffalo Grove, IL, USA) to 50% sphagnum potting mix (Redi-Earth; Sungro
Horticulture, Agawam, MA, USA) amended with powdered organic alfalfa meal (3.5 mL/liter) and
adjusted to a pH of 7.0 with powdered lime. The soil matrix was sterilized with two 1-h autoclave cycles
separated by 24 h, which has been shown to prevent amplification of extracted DNA (26). For the control
(disrupted) treatment, autoclaved bags of soil matrix were opened to atmospheric inoculation in the
greenhouse 72 h prior to planting seeds, allowing for colonization by the ambient microbial community.
The day before planting, the inoculated treatment was initiated by mixing 2 mm sieved soil from a
Wyoming site (South Brush Creek, or SBC; GPS location, 41.327404, 2106.502784; elevation, 2,570 m)
with sterile autoclaved soil matrix (5%, vol/vol, SBC to matrix). This site is a disturbed montane forest
plot where Boechera stricta (Brassicaeae) is common. Inoculation experiments with Boechera stricta and
Brassica rapa have previously demonstrated significant plant growth promotion using this microbial
community (C. J. Hubbard, R. McMinn, M. T. Brock, and C. Weinig, unpublished data).

Pots (8.9 by 8.9 cm, 500 mL) were filled with either control or inoculated soil. The following day, FPsc
seeds were sterilized by vortexing for 1 min in 70% ethanol (EtOH), 10 min in 10% bleach, and 5 rinses in
sterile water, followed by planting in a 4-by-4 grid (for pots randomly assigned to early sampling days)
or a 3-by-3 grid (for pots randomly assigned to late sampling days) and topped with autoclaved vermic-
ulite. Pots with a maximum of 16 seedlings were necessary to attain sufficient rhizosphere mass at early
growth stages. Pots were assigned unique locations in alternating cells of 3-by-6 trays, which were
arranged into 6 spatial blocks. Greenhouse ambient temperatures were set to 20°C and 15.5°C (day/
night), and supplemental LED lights were set to 14-h days (starting at 0500). Germination was first
noticed 4 days after planting, which we used as time zero (T0; 55% and 33% of seeds germinated 4 and
5 days after planting, respectively).

Six pots of each treatment (1 randomly selected replicate per treatment from each of six spatial
blocks) were sampled in the afternoon (1400 h) of days 2, 3, 4, 6, 8, 10, 13, and 14 (Fig. 1). Nested within
this 2-week sampling period, we also performed 48-h diel sampling events of 6 pots per treatment at
early (days 3 and 4) and late stages (days 13 and 14) at the following additional time points over both
days: 0900, 1800, 2200, and 0400. Seedlings within a pot were split between harvesting the rhizosphere
(described below) or harvesting root tissue for transcriptome sequencing (RNA-seq) (not presented
here). Pots destined for sampling later in the experiment were thinned down after 7 days to a final den-
sity of two plants per pot.

To harvest rhizospheres, we gently divided pots in half and pulled intact seedlings and roots from
the bulk soil. Roots and rhizospheres were gently shaken to remove residual bulk soil, and then larger
soil clumps of .2 mm were removed by hand. Gloves were changed and sterilized with 70% EtOH
between handling pots. Roots plus rhizospheres were then placed in microcentrifuge tubes containing
DNA/RNA Shield (Zymo Research Corporation, Orange, CA, USA) and placed on a vortexer for gentle dis-
ruption of the rhizosphere and mixing with DNA/RNA Shield. Samples were placed in a 280°C freezer
until 16S amplicon preparation.

Plant growth measurements. To estimate average plant leaf area throughout the experiment, trays
of pots were photographed (almost daily throughout the time series) using a dSLR camera at a fixed
height on a copy stand. Resulting images were corrected for lens distortion in Photoshop CS6 (Adobe,
San Jose, CA, USA) and then cropped to individual pots using custom Perl scripts and ImageMagick (60).
Images of individual pots were batch processed with Easy Leaf Area (61) to extract the area of green pix-
els as our proxy for plant size after dividing green pixels per pot by the number of seedlings present.
The relationship between this calculated projected area (PA) and the true leaf area should diminish over
time, as plant architecture and leaf self-shading cannot be corrected from a single photo; however, cor-
relations between average PA and average biomass remained highly significant on day 14 (r = 0.67;
P , 0.0001). In addition to PA, we retained aboveground tissue when rhizospheres were harvested
throughout the experiment. Tissue samples from each pot were dried for 48 h and weighed, and seed-
ling number was tallied, allowing us to determine average aboveground biomass. Biomass and PA val-
ues were reported as means from all plants per pot. We calculated residuals for aboveground biomass

Rhizobacteria Associated with Brassica rapa Growth mSystems

May/June 2022 Volume 7 Issue 3 10.1128/msystems.00060-22 13

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00060-22


and PA to control for differences between days 3 and 4 or 13 and 14 among treatments. Relative growth
rates (RGR) were calculated by log transforming PA measurements and calculating slopes from consecu-
tive intervals on a per-pot basis.

DNA extraction and sequencing. Genomic DNA templates were prepared using the ZymoBIOMICS
DNA/RNA Miniprep kit protocol according to the manufacturer’s instructions (Zymo Research
Corporation) using a parallel purification to extract RNA. We followed 16S rRNA gene amplification
methods as previously described (62, 63). The starting master mix for the PCR contained 1� SuperFi
buffer, 200 mM deoxynucleoside triphosphates, 2.5 U of SuperFi polymerase, and molecular biology-
grade water. Before adding template DNA, we added individually indexed fusion primers (0.3 mM) to
amplify the bacterial V4-V5 region of the 16S gene (Escherichia coli nucleotides [nt] 518 to 926, 408 nt).
Primer sequences are described in reference 62. This volume was mixed by pipetting and 25 mL
removed to serve as the negative control. One to 10 ng of template DNA was added to the remaining
volume and mixed in by pipetting. The 100 mL was divided into triplicate reaction mixtures.
Amplification conditions were an initial denaturation at 94°C for 3 min; 30 cycles of 94°C for 30 s, 57°C
for 45 s, and 72°C for 1 min; and a final extension at 72.0°C for 2 min. Triplicate PCRs were pooled and
the products cleaned using 0.75 volume of AMPure XP beads (Beckman Coulter) to 1 volume of sample.

Amplicon concentrations were quantified using the PicoGreen assay (ThermoFisher Scientific) and
pooled in equimolar amounts based on PicoGreen results. Pools were size selected using BluePippin
(Sage Scientific) to a range of 425 to 625 bp on a 1.5% gel cassette. The size-selected products were
cleaned again using AMPure XP at a 1:1 ratio and the final pools visualized on an Agilent Bioanalyzer
using the DNA1000 assay. The pool concentration was calculated using quantitative PCR (KK4835; KAPA
library quantification kit) and the libraries sequenced on an Illumina MiSeq using the version 3 protocol
to generate paired-end 300-nt reads.

Sequence processing and diversity analyses. DADA2 (64) was used to filter raw 16S fastq reads,
infer ASVs, and remove chimeric sequences in a workflow similar to that of Callahan et al. (65).
Taxonomy was assigned using version 138 of the SILVA nonredundant (SSU Ref NR99) 16S database
(66). ASVs assigned to Eukaryota, mitochondria, and chloroplasts, as well as those that could not be clas-
sified at the domain level, were removed using the subset_taxa function in phyloseq (67). Before re-
moval, mitochondria amounted to 2.5% of reads and chloroplasts to 0.7%. Next, contaminant ASVs were
removed using the “combined” method of the R package decontam (68), which identified 77 sequence
variants that were more abundant across three PCR blanks and in prepooled libraries with lower ampli-
con concentrations. After removal, the three PCR blanks (2,653 to 4,828 reads each) were pruned using
phyloseq, leaving 20,961 ASVs in 293 communities, each sequenced at a depth of 25,438 reads. Alpha di-
versity calculations were performed using built-in phyloseq functions. Bray-Curtis dissimilarities calcu-
lated from cumulative sum scaling transformations of raw read counts (69) were used for PERMANOVA
tests and ordinations implemented with the vegan R package (70). A maximum-likelihood phylogenetic
tree was constructed in phangorn (71) using the Jukes-Cantor model and 100 bootstrap replications.

Differential abundance analysis. A first-order attempt to identify ASVs associated with plant
growth promotion yielded no differentially abundant sequences across rhizosphere communities from
inoculated-treatment plants based categorically on whether they were much larger, slightly larger, or no
larger than their disrupted-treatment counterparts across the entire time series. DESeq2 (33) was used
to identify differentially abundant ASVs across soil inoculation treatments and blocks using a threshold P
value of 0.05 adjusted for multiple comparisons. To search for differentially abundant ASVs across inocu-
lated plants (categorized as much larger, slightly larger, or no larger than their disrupted-treatment
counterparts), we calculated aboveground biomass and PA at harvest values of inoculated plants as a
percentage of their corresponding disrupted-treatment time point. This yielded three categorical
groups: promoted (greater than 107%, the mean normalized score of the inoculated group, n = 23), pos-
sibly promoted (100 to 107%, n = 101), and not promoted (below 100%, n = 19). No differentially abun-
dant ASVs were detected across these three groups (comparing communities from each individual
group to those in the other two, using DESeq2 with an adjusted P value cutoff of 0.05).

Network analysis. We constructed cooccurrence networks of the most abundant and prevalent
ASVs for six sample groups using SPIEC-EASI (72). These groups, split by treatment, consisted of all sam-
ples across the time series or those from days 3 and 4 (early) or 13 and 14 (late). ASVs were included for
network analysis if they were detected in at least four communities and their mean abundance was
greater than 0.5% within their corresponding sample group (e.g., early disrupted). This resulted in net-
works that contained 423 to 787 ASVs (Table 1). Associations between covarying ASVs were inferred
with SPIEC-EASI using the “glasso” probabilistic inference method and a lambda.min.ratio of 0.01, and
significant covariances were converted to correlations with the function cov2cor in a method similar to
that of Lemonnier et al. (73). To define modules of highly correlated ASVs, negative edges of networks
were removed and the Louvain algorithm (74) was implemented using the cluster_louvain function in
igraph (75). igraph was also used to plot and subset networks (without negative edges removed) within
customized R functions. Subsetted networks shown in Fig. 6 contain edges with weights below the first
quartile value (strongly negative co-occurrences) or edges with weights above the third quartile
(strongly positive co-occurrences). First and third quartile values were 20.073 and 0.152 for the inocu-
lated network and 0 and 0.119 for the disrupted network, respectively.

Feature selection. We used regularized regression to identify associations between ASV abundan-
ces in rhizosphere communities and corresponding plant growth data. This consisted of a generalized
linear model (GLM) with a penalized maximum likelihood paired with a least absolute shrinkage and
selection operator (LASSO) used to perform variable selection and minimize spurious correlations and
overfitting (76). Due to the sparsity in read count data and the low statistical power associated with low-
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prevalence features, we restricted the GLM input to include only the 200 most abundant ASVs in each
sample group that were detected in at least 30% or 50% of communities for disrupted or inoculated
treatments, respectively. These prevalence cutoffs were determined heuristically after inspecting rank
versus prevalence and cumulative abundance plots of most abundant ASVs across all sample groups
(see Fig. S4 at https://doi.org/10.6084/m9.figshare.c.5787851.v1). While imposing different prevalence
cutoffs to vary the number of input features, we noticed that a minority of runs returned different num-
bers of features at different prevalence thresholds. For this reason, we additionally imposed stricter prevalence
cutoffs of 50% or 90% for disrupted or inoculated sample groups, respectively, which reduced the number of
input features from 200 to 120 to 130 (ASVs with prevalence below 70% were almost never identified, regardless
of treatment). The top 200 ASVs in each sample group comprised 78% to 90% of the reads in these communities.
Modules of cooccurring ASVs were run with the same growth data as the ASV data without subsetting by preva-
lence or abundance, because each sample group consisted of fewer than 200 modules. (In the one exception,
early inoculation, we omitted 22 modules that were each present in less than 27% of samples and totaled an av-
erage of 0.2% of the reads in these communities).

The GLM was implemented with the cv.glmnet function of the R package glmnet (76) using a Gaussian
distribution family within a customized R function. The customized R function was used to input raw read
counts and corresponding plant growth data from samples (from the otu_table and sample_data of a phy-
loseq object) as well as parameters to include features based on rank and prevalence and in specifying the
number of lasso runs. Read counts were transformed using a centered log ratio (77), and reads of low-
prevalence or low-abundance ASVs were summed together to preserve data compositionality.

We found slight variation among the ASVs identified with the GLM LASSO. We suspect that the highly
correlated ASV abundances make each run sensitive to initial model conditions. To account for the variation
among model runs, we ran each GLM LASSO model 100 times. Features with nonzero coefficients in at least
80 of 100 runs were considered “selected” and further evaluated in our Bayesian hierarchical models
(described below). For both ASVs and modules, an optimal number of features corresponding to lambda
values that minimized mean squared error during cross-validation was found to be 7 or 8 (for PA and RGR
measurements) or 2 or 3 (for PA or biomass residuals).

Using the brms R package (78), Bayesian models of plant growth were constructed using abundan-
ces of individual features or combinations of features identified by the GLM. Our rationale for using an
additional Bayesian model after the GLM LASSO was due to the constraints and benefits of glmnet: the
glmnet function allowed us to efficiently evaluate different ASVs on plant growth but does not allow us
to include the block structure in our growth experiments. Bayesian models allowed us to incorporate
the block structure of our growth experiments using a hierarchical linear model with a random intercept
and slope for each block the plants grew in. A Gaussian family distribution was used to fit response (plant
growth) data, and features whose regression coefficient posterior distributions (95% credible intervals) did
not include zero were considered selected. Bayesian multivariate models were compared and refined using
a leave-one-out cross-validation approach with the loo R package (79). In the ASV data set, 89 ASV growth
associations from 73 unique ASVs were reduced to 59 after univariate Bayesian modeling, yielding 30 posi-
tive associations with growth and 29 negative. Likewise, the number of module-growth associations was
winnowed from 12 to 10 after these respective steps, resulting in six positive and four negative associations.
Twelve ASVs and one module were identified as significant by multivariate Bayesian modeling but not indi-
vidually; on the contrary, 23 ASVs and one module were detected with univariate Bayesian modeling only
(Fig. 3 and 5). All features and corresponding sample groups and growth metrics identified across different
steps are included in Table S2 (https://doi.org/10.6084/m9.figshare.c.5787851.v1). Univariate Bayesian models
preferentially upheld associations between ASVs and growth data identified by the GLM using both prevalence
thresholds (14 of 22, 63.6%) compared to those found at only one prevalence (25 of 68, 36.7%). Multivariate
Bayesian models explained anywhere from 9% to 80% of the variance in growth (marginal R2 values), varying
with the number of features used in the model. Several models accounting for relative growth rates explained
less variance than other growth measurements. The percentages of variance explained by different models did
not vary depending on whether a feature was a module or an ASV or by sample group. Model summary statis-
tics are included in Table S3 (https://doi.org/10.6084/m9.figshare.c.5787851.v1).

To examine the specificity of the GLM at identifying spurious features, we randomly scrambled asso-
ciations between plant growth data and feature abundances and reran all tests. In doing so, we identi-
fied 41 associations compared to the 141 identified by the GLM in the unscrambled data. After following
up with univariate Bayesian modeling, this number was reduced to 33 (compared to 69 in the
unscrambled data). When scrambled, four tests that identified features in unscrambled data identified
more than one feature, corresponding to a false discovery rate of over 1% (Table S4 at https://doi.org/10
.6084/m9.figshare.c.5787851.v1). Thus, we conservatively decided to remove all associations from these
tests that were detected in the unscrambled data.

Data availability. Supplemental figures and tables are publicly available as a FigShare collection at
https://doi.org/10.6084/m9.figshare.c.5787851.v1. Reproducible code for all analyses, including custom-
ized R functions and plant growth data files, are freely available as an archived GitHub repository at
https://loimai.github.io/rhizosphere_rapa_16S. Raw fastq sequences of 16S amplicons were deposited to
the NCBI sequence read archive (SRA) database under BioProject accession number PRJNA765038.
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