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Abstract 
Pathogenic variants in aminoacyl-tRNA synthetases (ARS1) 
cause a diverse spectrum of autosomal recessive disorders. 
Tyrosyl tRNA synthetase (TyrRS) is encoded by YARS1 
(cytosolic, OMIM*603,623) and is responsible of coupling 
tyrosine to its specific tRNA. Next to the enzymatic domain, 
TyrRS has two additional functional domains (N-Terminal 
 TyrRSMini and C-terminal EMAP-II-like domain) which 
confer cytokine-like functions. Mutations in YARS1 have 
been associated with autosomal-dominant Charcot-Marie-
Tooth (CMT) neuropathy type C and a heterogenous group 
of autosomal recessive, multisystem diseases. We iden-
tified 12 individuals from 6 families with the recurrent 
homozygous missense variant c.1099C > T;p.(Arg367Trp) 
(NM_003680.3) in YARS1. This variant causes a multisys-
tem disorder with developmental delay, microcephaly, fail-
ure to thrive, short stature, muscular hypotonia, ataxia, brain 
anomalies, microcytic anemia, hepatomegaly, and hypo-
thyroidism. In silico analyses show that the p.(Arg367Trp) 
does not affect the catalytic domain responsible of enzy-
matic coupling, but destabilizes the cytokine-like C-termi-
nal domain. The phenotype associated with p.(Arg367Trp) 
is distinct from the other biallelic pathogenic variants that 
reside in different functional domains of TyrRS which 
all show some common, but also divergent clinical signs 
[(e.g., p.(Phe269Ser)—retinal anomalies, p.(Pro213Leu)/p.
(Gly525Arg)—mild ID, p.(Pro167Thr)—high fatality)]. 
The diverse clinical spectrum of ARS1-associated disorders 
is related to mutations affecting the various non-canonical 
domains of ARS1, and impaired protein translation is likely 
not the exclusive disease-causing mechanism of YARS1- and 
ARS1-associated neurodevelopmental disorders.

Key messages 
• The missense variant p.(Arg367Trp) in YARS1 causes a 

distinct multisystem disorder.
• p.(Arg367Trp) affects a non-canonical domain with 

cytokine-like functions.
• Phenotypic heterogeneity associates with the different 

affected YARS1 domains.
• Impaired protein translation is likely not the exclusive 

mechanism of ARS1-associated disorders.

Keywords Functional protein domains · Phenotypic 
heterogeneity · Aminoacyl-tRNA synthetases (ARS1) · 
Novel disease genes · Neurodevelopmental disorders · 
Multisystem diseases

Introduction

Pathogenic variants in aminoacyl-tRNA synthetases (ARS1) 
have been implicated in neurodevelopmental disorders and mul-
tisystem diseases affecting many different tissues. Aminoacyl-
tRNA synthetases catalyze the attachment of specific amino 
acids to their corresponding tRNA. ARS1 proteins are cytoplas-
mic proteins, whereas ARS2 proteins act in the mitochondria.

YARS1 encodes the cytosolic tyrosyl-tRNA synthetase 
(TyrRS), that is, responsible of linking tyrosine to its specific 
tRNA and requires homodimerization for enzyme activity.

Already in 1999, it was shown that apart from its enzy-
matic function, TyrRS has acquired at least two additional 
functional motifs in higher eukaryotes during evolution 
[1]. The N-terminal ELR motif was identified to play an 
important role as an interleukin-8 (IL-8)-like cytokine by 
binding to CXCR1, and to induce angiogenesis and throm-
bopoiesis [2, 3]. The C-terminal endothelial monocyte-
activating polypeptide II (EMAP-II)-like domain exerts 
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cytokine functions, e.g., by inducing the migration of leu-
kocytes (macrophages, granulocytes) and the expression 
and release of tumor necrosis factor-� (TNF-� ), tissue fac-
tor or myeloperoxidase [1, 4, 5]. While the cytokine-like 
functions of TyrRS are inactive in the dimeric full-length 
protein, secretion, dissociation into monomers and cleavage 
by proteases (elastase or plasmin) activates the secondary 
functions of the N- and C-terminal fragments [6].

The spectrum of diseases associated with ARS1 is very 
broad. Pathogenic variants in all ARS1 coding genes have 
been implicated in autosomal recessive disorders, many 
of them presenting as early onset, severe multisystem dis-
eases, while six of these (GARS1, AARS1, KARS1, HARS1, 
MARS1, YARS1) have also been implicated in autosomal-
dominant, late-onset neuropathies [7–13].

Heterozygous pathogenic variants in YARS1 have been 
first identified to cause autosomal-dominant Charcot-
Marie-Tooth (CMT) neuropathy type C (OMIM #608,323) 
[7, 10]. Recently, five different biallelic variants in YARS 
have been published to cause autosomal recessive disor-
ders [14–18]. However, the disorders attributed to bial-
lelic pathogenic variants in YARS in these five families are 
heterogeneous ranging from severe intellectual disability 
(ID) with infant mortality to milder conditions without ID 
primarily affecting the sensory system [17].

The goal of this study was to delineate the clinical pheno-
types associated with biallelic pathogenic variants in YARS1 in 
order to improve disease recognition and health surveillance.

Via GeneMatcher and international collaborations, 
we identified and characterized a set of twelve patients 
with developmental delay and multisystem diseases 
that were all homozygous for the specific variant 
NM_003680.3:c.1099C > T, p.(Arg367Trp). We review 
all individuals with biallelic YARS1 pathogenic vari-
ants reported in the literature and search for the common 
denominator and major discrepancies in clinical presenta-
tion of distinct YARS1 variations.

By in silico analysis, we study the predicted effect of 
p.(Arg367Trp) on the protein structure and stability and dis-
cuss the impact on the canonical enzyme function of TyrRS 
and on the non-canonical, secondary functions of TyrRS.

We suggest that an impaired protein synthesis is not the 
primary mechanism underlying YARS1-(and ARS1-) associ-
ated disorders, but that they arise from defective non-canon-
ical, secondary functional domains.

Materials and methods

Patient recruitment and clinical assessment

The study was performed according to the Declaration of 
Helsinki. The study was approved by the institutional ethical 

review boards (King Faisal Specialist Hospital and Research 
Center; Ref. No # 2,121,053 and 2,080,006; University Hos-
pital Erlangen Ref. No. 253_15B). Patients with multisys-
tem diseases and biallelic pathogenic variants in YARS1 
were recruited for the study. Ten of the 12 individuals with 
homozygous p.(Arg367Trp) YARS1 variants were identi-
fied newly in-hospital or by international partners. Written 
informed consent for publishing of clinical, genetic data, 
and photographs was obtained from the patients and their 
legal guardians. Two (J:II-1 and K:II-2) of the 12 individuals 
had been identified within a large cohort of consanguine-
ous families with ID before and clinical data that had not 
been published were provided after additional follow-up 
investigations and in depth review of medical records [15]. 
Clinical and laboratory findings of all patients were centrally 
reviewed, categorized and summarized.

Identification of biallelic YARS1 pathogenic variants 
by exome sequencing and Sanger sequencing

Genetic testing preceding exome sequencing including 
cytogenetic and chromosomal microarray analyses did not 
reveal any causative genetic aberrations. Exome sequenc-
ing was performed according to standard methods (supple-
mentary material). Sanger sequencing was performed for 
confirmation of reported variants.

Review of published individuals

A literature search was performed in PubMed (search terms 
YARS, tyrosyl-tRNA synthetase deficiency). All clinical 
details and laboratory results were retrieved from the manu-
scripts, categorized and summarized.

In silico variant prediction, protein modeling, 
and structural prediction

Effects of the p.(Arg367Trp) variant were predicted using 
PROVEAN, SIFT, PolyPhen-2, and MutationTaster [19]. 
Structural analysis of the p.(Arg367Trp) variant was based 
on a crystal structure of the C-terminal domain of human 
TyrRS (PDB code:1NTG) [20]. The effect of the pathogenic 
variant was modeled using Missense3D [21]. RasMol was 
used for visualization [22]. Multiple species protein align-
ment was done with Uniprot [23]. The impact of published 
recessive variants on protein structure and stability was ana-
lyzed using the VIPUR algorithm [24]. A VIPUR score > 0.5 
indicates a critical destabilization of protein structure.
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Results

Identification and in silico analysis of YARS1 
c.1099C > T, p.(Arg367Trp)

In all included patients, homozygosity of the variant 
NM_003680.3(YARS1):c.1099C > T, p.(Arg367Trp) 
([GRCH38/hg38] chr1:g.32,781,089G > A) in exon 10 of 
YARS1 was identified by exome sequencing. No other likely 
pathogenic variant of clinical significance was identified 
in any patient. The haplotypes of the individuals originat-
ing from Saudi Arabia (C-I) differs from the haplotypes of 
individuals A + B (from Turkey) and L (from Puerto Rico) 
(Supplementary Table S1). While this finding does not rule 
out a founder effect common to the Saudi patients (C-I), it 
is less likely that also p.(Arg367Trp) of A + B and L traces 
back to the same, shared founder. The homozygous variant 
was absent from internal control databases but reported in 
dbSNP (rs376054085). The allele frequency in the gnomAD 
v2.1.1 population database is 3.89 ×  10–5, with 11 known 
heterozygotes among 141,403 individuals, of which 10 have 
Latino and 1 has South Asian ancestry. The variant affects an 
arginine residue at position 367 (Arg367) of human TyrRS, 
in the C-terminal EMAP-II-like domain (residues 364–528) 
and is located three amino acids away from the tRNA anti-
codon- binding domain (Fig. 1A). In silico tools predict del-
eterious effects on protein structure and function (predic-
tion scores: PROVEAN: − 5.642, SIFT: 0.03, PolyPhen-2: 
HumDiv 1.000/HumVar 0.953, MutationTaster: “disease 
causing”). Arginine in position 367 is highly conserved in 
mammals and down to Drosophila melanogaster, but not in 
Xenopus tropicalis (western clawed frog) and Caenorhab-
ditis elegans (Fig. 1E). Given the PS4, PP1, PP2, and PP3 
ACMG/AMP criteria being fulfilled and the consistent phe-
notype in 12 individuals of 6 families, the p.(Arg367Trp) in 
YARS1 was considered to be the causative genetic alteration 
in the patients [25].

In silico protein modeling and structural prediction

The p.(Arg367Trp) variant is located in the C-terminal 
EMAP-II-like domain (residues 364–528) of TyrRS. In sil-
ico analysis of the wildtype structure reveals that arginine 
in position 367 (Arg367) forms tight electrostatic interac-
tions with the oppositely charged aspartic acid in position 
478 (Asp478), thereby stabilizing the domain structure 
(Fig. 1C). In the mutant, the bulkier and uncharged tryp-
tophan (Trp367) cannot form this interaction resulting in 
a rearrangement of the sidechains and a reduced domain 
stability (Fig. 1D). The site of the p.(Arg367Trp) exchange 
is in the immediate vicinity of a hexapeptide stretch (resi-
dues 371–377) that is critical for the cytokine activity of 

the EMAP-II domain of TyrRS. [1] Amino acid alignment 
of the C-terminal EMAP-II-like domain of YARS1 and the 
aminoacyl-tRNA synthetase complex interacting multifunc-
tional protein 1 (AIMP1) shows that their corresponding 
residues Arg367 and Asp478 are conserved in both domains 
(Fig. 1F).

Homozygous YARS1 c.1099C > T, p.(Arg367Trp) 
variant causes a distinct multisystem disease

We characterized the clinical features of the ten newly identi-
fied patients (families 1–4, 6) and two previously published 
patients (family 5) with homozygous p.(Arg367Trp) variants, 
all presenting with moderate ID and multisystem disease 
(Table 1, Fig. 1A–G) [15]. Family 1 originates from Turkey 
and family 5 originates from Iran close to the border to Tur-
key. Families 2, 3, and 4 stem from three different regions in 
Saudi Arabia. Family 6 originates from Puerto Rico.

The individuals were born at term. Body measurements 
at birth, including weight, length, and head circumference, 
were at the lower end of the range. The weight at birth 
ranged between − 0.8 and − 2.8 standard deviations (SD) 
(5/5) (medium − 1.8 SD).

All individuals, of whom data were available, had 
acquired microcephaly (12/12, 100%), a postnatal failure 
to thrive or growth delay (11/12, 92%) and developmental 
delay or intellectual disability (12/12, 100%). Most individu-
als learned to walk independently (9/12, 75%, average age 
3.3 years, SD 0.7) and all acquired the ability to communi-
cate using single words (11/12, 92%, average age 3.4 years, 
SD 1.3). At the age of last evaluation, almost half of the 
individuals were able to follow simple demands (5/12, 42%), 
but only one individual spoke simple sentences of three or 
more words (1/12, 8%, 8.5 years). Neurological assessment 
revealed muscular hypotonia (9/12, 75%) including the face 
(6/10, 60%), ataxia (7/10, 70%), and a poor coordination 
(5/8, 63%). None of the patients had a history of epilepsy. 
Seven patients were reported to have abnormal liver find-
ings including hepatomegaly (7/7, 100%), hyperechogenic 
liver texture on ultrasonography (5/7, 71%), or an episode 
of elevated liver enzymes (1/11, 9%) suggestive of stable 
liver disease with steatosis. Serum albumin was in the lower 
normal reference range (mean ± SD, 3.4 ± 0.5 g/L). Until the 
last investigation (oldest age 15 years), only one patient had 
a history of temporary ascites and no patient showed clinical 
signs of liver failure. All individuals who had a blood analy-
sis done displayed a chronic microcytic anemia (8/8, 100%, 
mean ± SD, hemoglobin 10.9 ± 0.9 g/dl, MCV 63.9 ± 2.2 fL, 
MCH 19.6 ± 1.4 pg). Almost half of patients had laboratory 
results suggestive of hypothyroidism (4/9, 44%). Sporadic 
findings and features included mild hearing impairment 
(1/12, 8%), gastroesophageal reflux and vomiting (2/12, 
17%), abnormal findings on chest X-ray (2/11), dyspnea 
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(1/12, 8%), recurrent obstructive pulmonary disease (1/12, 
8%), and recurrent infections (1/12, 8%). MRI imaging of 
the head revealed a reduced brain volume, (7/9, 78%), a thin 
corpus callosum (6/9, 67%), and a delay in myelination (6/9, 
67%) (Fig. 2 H + J). Patients displayed facial dysmorphic 
features including a flat philtrum (6/7, Fig. 2 B–G), a open 
mouth appearance (6/7, Fig. 2 B, D, E, F, G), deep set eyes 
(5/7, Fig. 2 B, C, D, G), hanging columella (5/7, Fig. 2B, C, 
D, F, G), a prominent nose tip with relative small nares (3/7, 
Fig. B, C, D), low set (1/7, Fig. 2F), and large ears (4/7 Fig. 
B, C, D), sparse hair (4/7, Fig. 2 E–G), together reminding 
of a progeroid-like appearance (6/6, Fig. 2 B–G).

In summary, the homozygous missense variant 
p.(Arg367Trp) causes a clinically consistent, multisystem 
disease with mildly delayed motor and severely impaired 
speech development, microcephaly, failure to thrive, short 
statue, muscular hypotonia, ataxia, brain atrophy, microcytic 
anemia, hepatomegaly, hypothyroidism, and facial features 
including a deep set eyes, a flat philtrum, and open mouth 
appearance. Clinical heterogeneity is only observed for 
hypothyroidism (approximately 50% of patients affected) 
and some sporadic findings such as hearing loss or gastroe-
sophageal reflux.

YARS1 is one of the established disease genes of CMT. 
Patients and their parents had no peripheral palsy, impair-
ment of peripheral sensation, autonomic dysfunction, or 
neuropathic pain. In conclusion, no clinical signs of periph-
eral neuropathy were present. In four patients, peripheral 
nerve conduction studies were performed which showed 
unremarkable amplitudes of sensory action potentials and 
normal nerve conduction velocities. Detailed case reports 
medical histories are reported in the supplementary material.

Review of individuals from the literature: allelic 
and clinical heterogeneity associated with biallelic 
variations in YARS1

In the recent literature, five homozygous or compound het-
erozygous disease-causing variants in YARS1 other than 
p.(Arg367Trp) have been described (Table 2).

In 2016, two siblings with compound heterozygous 
likely pathogenic variants c.638C > T, p.(Pro213Leu) and 
c.1573G > A, p.(Gly525Arg) in YARS1 were reported. They 
were affected by mild developmental delay (1/2) or normal 
development (1/2), failure to thrive in the first year of life, 
short statue, microcephaly (1/2), stable liver disease with 

Fig. 1  a Organization of the functional domains of the three domains 
of human TyrRS and biallelic variants reported in the literature. 
TyrRS has three domains: (i) The catalytic N-terminal domain is 
essential for aminoacylation of tRNA. As a monomeric fragment, 
the N-terminal domain has cytokine activity and the ELR motif is 
critical for this activity. (ii) tRNA anti-codon-binding domain. (iii) 
The C-terminal EMAP-II-like domain that was shown to be dispen-
sable for aminoacylation. The heptapeptide sequence within this 
domain is critical for the cytokine activity. The homozygous vari-
ants p.(Pro167Thr) and p.(Pro213Leu) reside in the catalytic domain, 
harboring to the critical ELR motif, while most of the other variants 
reside outside this domain. All five heterozygous mutations causing 
Charcot-Marie-Tooth neuropathy reside in the catalytic domain. b 
Structure of the C-terminal domain of TyrRS shown as backbone rep-
resentation indicating the elements of secondary structure. Arg367 is 

shown in space-filled presentation and colored according to the atom 
types. The heptapeptide sequence stretch critical for the cytokine 
activity (residues 371–377) is shown in blue. c Structural role of 
Arg367 in TyrRS: In the wild-type, Arg367 forms a salt-bridge to 
Asp478 (indicated by green dotted lines). d In the p.(Arg367Trp) 
mutant, the bulky uncharged tryptophan cannot form an electrostatic 
interaction resulting in domain destabilization. c + d Arg367/Asp478 
are shown in stick presentation. e Multi-species amino acid alignment 
indicates that Arg367 is highly conserved in mammals and down to 
zebrafish (Danio rerio), but not in the western clawed frog (Xenopus 
tropicalis) [23]. f Amino acid alignment of the C-terminal EMAP-
II-like domain of TyrRS compared to AIMP1. The corresponding 
residues Arg367 and Asp478 are conserved in both domains. TyrRS, 
tyrosine tRNA synthetase; AIMP1, aminoacyl-tRNA synthetase com-
plex interacting multifunctional protein 1
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steatosis (without inflammation), hypercholesterinemia, 
areflexic muscular hypotonia (1/2), cystic lung disease, and 
non-progressive mild brain atrophy and thinning of corpus 
callosum with cystic changes in periventricular white matter 
[18]. The nerve conduction was not affected and both parents 
had no evidence of neuropathy or neurological disease.

In 2017, the homozygous variant c.806 T > C, p.(Phe269Ser) 
in YARS1 in one individual was associated with poor weight 
gain (necessitating tube feeding), severe visual impairment 
caused by progressive-rod-cone degeneration (fundus pig-
mentation), profound hearing impairment, poor balance and 
muscular hypotonia during first years of life, stable liver disease 
with steatosis (later minor fibrotic changes), primary amenor-
rhea, but normal psychomotor development [14]. MRI images 
revealed a thin corpus callosum. Laboratory analyses showed 
high level of blood platelets related to hyperactive bone marrow.

In 2019, seven related individuals with a homozygous 
c.499C > A, p.(Pro167Thr) pathogenic variant within the 
catalytic N-terminal domain of YARS1 were reported to be 
affected by a more severe multisystem disorder than previ-
ously reported [17]. All patients had developmental delay, 
microcephaly, bilateral sensorineural hearing loss, and poor 
growth. Some patients had abnormal ophthalmological find-
ings including pigmentary degeneration and visual impair-
ment. They were affected by exocrine pancreatic insuffi-
ciency and chronic, progressive liver disease with steatosis 
at the early stages, and inflammatory cirrhosis at the later 
stages. MRI images of the head revealed restricted diffu-
sion among the white matter and abnormal T2-weighted 
hyperintensity with dysmyelination. Autopsy of one of the 
deceased patients showed evidence of chronic neuronal loss 
with vacuoles. Laboratory analyses showed chronic anemia, 
hypalbuminemia, and intermittent proteinuria. Four patients 
died during the first 2 years of life due to progressive liver 
failure.

In 2019, in a large cohort of patients with microceph-
aly, the homozygous variant c.789C > A,p.(Phe263Leu) in 
YARS1 was associated with microcephaly, developmental 
delay and primordial dwarfism in one girl [16].

In summary, recessively inherited variants in YARS1 
cause some overlapping clinical features including small 
stature and motor problems (all published variants). There 
are also decisive differences between clinical features associ-
ated with the different variants.

The neurological impairment of p.Pro167Thr, p.(Arg367Trp), 
and p.(Phe263Leu) is much more severe when compared 
to p.(Phe269Ser) or the compound heterozygous variants 
p.(Pro213Leu) and p.(Gly525Arg). For almost all variants, some 
liver involvement has been reported, ranging from mild steatosis 
(p.(Pro213Leu)/p.(Gly525Arg); p.(Phe269Ser); p.(Arg367Trp)) 
to cirrhosis and hepatic failure (p.Pro167Thr). Abnormal 
blood cells (anemia or low platelets) are reported in asso-
ciation with p.(Phe269Ser), p.Pro167Thr, and p.(Arg367Trp). 

Hearing and visual impairment is only consistently observed for 
p.(Phe269Ser) and p.Pro167Thr. The disease severity associated 
with p.(Arg367Trp) (the variant of this study) lies somewhere in 
between with p.Pro167Thr and the severe end and p.(Pro213Leu), 
p.(Gly525Arg), and p.(Phe269Ser) at the milder end of the spec-
trum. The variants reside in different protein domains. In silico 
analysis with VIPUR algorithm predicts that all biallelic vari-
ants associated with recessive multisystem disease significantly 
affect the protein structure and stability (score > 0.5, Table 2), 
which leads to a significant disruption of the specific protein 
domain in which they reside [24]. Given that the variants are 
located in different protein domains the functional impact of the 
structural domain destabilization is expected to differ between 
the variants (Fig. 1). The variants p.(Phe269Ser), p.(Pro213Leu), 
p.(Phe263Leu), and p.(Gly525Arg) were absent from gnomAD 
and the p.(Pro167Thr) was detected only twice (in European) 
within at least 141,000 individuals. Compared to the biallelic 
variants reported in the literature, p.(Arg367Trp) was observed 
in the heterozygous state in eleven individuals from gnomAD 
v2.1.1 (1 South Asian and 10 Latino) [26].

Discussion

Since the availability and broad use of exome sequencing, 
the success rate in solving the genetic cause of ID and multi-
system diseases has significantly increased. Most of the new 
disease genes have been identified as private disease-causing 
variants in single families within larger cohorts [15, 16, 27]. 
For many disease genes, reliable clinical data on the features 
and course of the associated disorders are sparse. For appro-
priate patient counseling and guidance, the delineation of 
typical clinical signs is needed.

Aminoacyl-tRNA synthetases link specific amino acids 
with their transfer RNAs and play a key role in protein trans-
lation. Beyond their canonical role, many ARS1 acquired 
secondary functions by the incorporation of additional 
domains during evolution of more complex eukaryotes and 
play key regulatory roles e.g. in immunomodulation and 
inflammation [28–31].

TyrRS couples the amino acid tyrosine to its spe-
cific tRNA. In this study, we identified and character-
ized 10 newly diagnosed and two previously reported 
individuals carrying the homozygous missense variant 
NM_003680.3:c.1099C > T, p.(Arg367Trp) in YARS1 and 
summarized all previously published patients from the lit-
erature, carrying alternative, biallelic variants in YARS. We 
identified a specific multisystem disease affecting not only 
the central nervous system, but also the liver, the hemat-
opoietic system (anemia), and the endocrine system (hypo-
thyroidism). The specification of the common, clinical fea-
tures allows to establish the recommendation of monitoring 
affected individuals with regards to psychomotor, liver, 

1761Journal of Molecular Medicine (2021) 99:1755–1768
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Fig. 2  a Pedigrees of affected individuals with homozygous 
p.(Arg367Trp) in YARS1. Individuals J and K had been reported 
within a large cohort of consanguineous families with ID [15]. Indi-
vidual L additionally has two unaffected half-siblings (not depicted). 
b–h Facial features of individuals (A + B, F + G + H, I, and L). b Indi-
vidual A (family 1:II-1) at age of A 11 and 15 years, c Individual B 
(family 1:II-2) at age of 7 and 9 years, d Individual I (family 4:II-1) 
at age of 7 years, e Individual F (Family 3:II-3) at age of 3 years, f 
Individual H (family 3:II-5), g Individual G (family 3:II-4) at age of 
5  years. h Individual L (Family 6:II-41) at age of 3.5  years. Facial 

dysmorphic features including deep set eyes (b, c, d, g, h), sparse hair 
(e–h), a long nose (b-d), a flat nasal bridge (b–d), full cheeks (E − G), 
long columella (c–d, f–g), flat philtrum (b–h), open mouth appear-
ance (b, d–h), low set (1), and large ears (b–d, h), together resem-
bling progeroid-like appearance (b–h). i Axial sequences (head MRI) 
of individuals I, G, and F showing wide lateral ventricles as a sign 
of diffuse cerebral volume due to periventricular white matter loss, 
j Sagittal sequences (head MRI) of individuals I (2y), G (2y), and F 
(2y) (from left to right) showing thinning of corpus callosum

1762 Journal of Molecular Medicine (2021) 99:1755–1768
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hematological, and hormonal symptoms. In addition, the 
identification of total 12 patients with a matching and com-
mon clinical phenotype confirms the classification of the 
variant p.(Arg367Trp) to be unequivocally pathogenic.

We originally intended to include patients with multisys-
tem disorders caused by biallelic variants in YARS1, regard-
less of the specific variants. Interestingly, our efforts that 
included GeneMatcher and international collaborations, 
only identified additional patients that were homozygous 
for the p.(Arg367Trp) variant. We therefore compared the 
allele frequency of the published variants to the frequency of 
p.(Arg367Trp) in population databases. p.(Arg367Trp) and 
the other variants from the literature have not been identified 
in any of the control individuals from the Iranome or GME 
Variome projects [32, 33]. In gnomAD v2.1.1, the higher 
allele frequency of p.(Arg367Trp) (11 among a total of more 
than 141,000 individuals) compared to variants from the 
previous publication (0–2 alleles among more than 141,000 
individuals) in the general population probably accounts for 
the higher prevalence of homozygous p.(Arg367Trp) and 
explains why we identified an unexpected and disproportion-
ate high number of patients with this specific variant [26]. 
Despite predominant reports of heterozygotes in the Latino 
population, we only recruited one patient originating from 
Latin America (Patient L, Puerto Rico). A possible reason 
might be the relatively rare application exome sequencing in 
Latin America, or the predominant random-mating scheme 
in contrast to the prevalent consanguineous mating which 
is common in Middle East and South Asia. Of note, many 
variants causing autosomal recessive disorders in communi-
ties with high consanguinity rates occur as private disease-
causing variants in single families. This also seems to be 
the case for the previously published individuals with vari-
ants that are absent from established control databases. In 
contrast, the variant p.(Arg367Trp) is reported with a much 
higher frequency and, therefore, might be of high and nota-
ble clinical relevance. Haplotype analysis of our patients 
revealed diverging haplotypes surrounding the YARS1 gene 
region suggesting that p.(Arg367Trp) does not essentially 
trace back to a single founder.

As a native protein TyrRS comprises three functional 
domains: the catalytic domain, the anticodon-binding 
domain, and the C-terminal domain. TyrRS is only catalyti-
cally active as a homodimer [34–36]. While the full-length, 
dimeric TyrRS (528 AA) has no known additional cytokine 
activity, proteolytic cleavage and dissociating of monomeric 
TyrRS into the N-terminal  TyrRSMini (composed of the cata-
lytic and anticodon domain) and a C-terminal EMAP-II-like 
domain (164 AA) activates the secondary functions of these 
domains [1, 2].

Many genes involved in protein synthesis have been 
associated with neurodevelopmental disorders [37, 38]. In 
view of the core function of TyrRS in aminoacylation, it is 

tempting to expect that a limited protein synthesis which 
might not meet translational demand causes YARS1-associ-
ated disorders. Based on our findings, the hypothesis confer-
ring that a dysbalanced protein homeostasis is the sufficient 
explanation of YARS1-associated disorders must be ques-
tioned for several reasons. First, the hypothesis of impaired 
protein synthesis lacks to explain the considerable clinical 
variability of autosomal recessive diseases associated with 
YARS1 and also other ARS1-deficiencies. If a reduced or less 
specific enzyme activity was the common cause of disease, 
we would expect a more homogeneous clinical presentation 
of all biallelic YARS1 and other ARS1 pathogenic variants. 
Second, pathogenic variations causing recessive ARS1 defi-
ciencies generally reside in catalytic or anticodon binding 
domains of ARS1 genes. However, in silico analysis show 
that p.(Arg367Trp) lie outside these catalytically important 
domains, but that they are located in the C-terminal domain 
that accounts for non-canonical, immunomodulatory func-
tions [18].

It was shown that the cleaved N-terminal  TyrRSMini 
retains the aminoacylation activity of native TyrRS, and 
thus, the C-terminal EMAP-II-like domain was shown 
to be dispensable for aminoacylation [1, 39]. Therefore, 
p.(Arg367Trp) that resides in the C-terminal domain prob-
ably does not affect the aminoacylation activity of TyrRS. 
In silico analyses show that Arg367 is critical for a tight 
electrostatic interaction with the oppositely charged Asp478 
and that p.(Arg367Trp) reduces the domain stability of the 
C-terminal EMAP-II-like domain which is in close vicinity 
of the critical hexapeptide stretch of this domain (residues 
371–377). As a consequence, the destabilization of the pro-
tein structure could disrupt the EMAP-II-like cytokine activ-
ity. EMAP-II is also known as the aminoacyl-tRNA multiple 
synthetase complex (MSC) Interacting Multifunctional Pro-
tein 1 (AIMP1). The EMAP-II-like domain of YARS1 shares 
51% identity (78% similarity) including Arg367 (Fig. 1F). 
It plays a role in the assembly of the multiple synthetase-
complex (MSC), and once it is secreted from apoptotic cells 
confers multiple effects on angiogenesis, wound healing, 
glucose metabolism, and neuronal development [40]. Of 
note, Arg367 and Asp478 are not only highly conserved in 
the C-terminal domain of TyrRS, but also its correspond-
ing residues in the homologue EMAP-II underpinning their 
importance for the protein function (Fig. 1F). Homozygous 
pathogenic variants in AIMP1 have been reported to cause 
moderate to severe intellectual disability suggesting that 
imbalances in EMAP-II-like functions are sufficient to cause 
developmental disorders [41, 42].

Apart from its procytokine activity, the C-terminal 
domain functions to sterically block the critical chemotac-
tic ELR motif in the N-terminal domain by mutual shielding 
[43]. By this mechanism, the C-terminal domain is thought 
to suppress the cytokine activity of TyrRS in the state of a 
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native full-length protein [43]. Thus, destabilization of the 
C-terminal domain could impede the steric block of the ELR 
motif and thus induce a proinflammatory phenotype. The 
finding of hyperechogenic liver cirrhosis in our patients and 
patients from the literature, potentially supports the idea that 
an imbalanced immune response and excessive inflammation 
may play a role in the underlying disease pathophysiology. 
The finding of chronic, microcytic anemia in relation to nor-
mal ferritin and low reticulocytes could also be explained by 
a chronic inflammatory condition.

The phenotypic spectrum of the disorder associated with 
p.(Arg367Trp) overlaps, but also differs to a certain extent 
from other reported pathogenic variants in YARS1 from the 
literature. In silico analysis of the protein structure predict a 
significant impact of all previously reported recessive vari-
ants on the stability of the respective TyrRS protein domain.

Compared to the homozygous variant p.(Pro167Thr) 
that causes a severe multisystem disorder including the 
liver, the pancreas and the kidneys and a high infant mor-
tality, p.(Arg367Trp) is associated with a milder clinical 
presentation [17]. In contrast, the compound heterozygous 
variants p.(Pro213Leu)/p.(Gly525Arg) and p.(Phe269Ser) 
were described to compromise the auditory perception, eyes, 
reproductive organs, and liver, while not causing ID [14]. 
These observations suggest that YARS1 displays consider-
able allelic heterogeneity concerning the disease severity 
and pattern. p.(Pro167Thr) at the severe end of the spectrum 
and p.(Pro213Leu) at the mild end of the spectrum both 
reside in the N-terminal catalytic domain of YARS1, while 
p.(Arg367Trp) with a disease severity in between these both 
domains is located in the C-terminal domain. Given the lim-
ited number of variants described so far and the phenotypic 
heterogeneity associated with the different domains, it is dif-
ficult to draw a clear link between the affected domain and 
the disease severity and organs involved.

The hypothesis that autosomal recessive disorders asso-
ciated with YARS1 are caused by dysregulated secondary 
functions rather than only by impaired protein synthesis 
is further supported by location of the variations reported 
in patients from the literature outside the TyrRS catalytic 
domain (e.g., p.(Gly525Arg) in the C-terminal domain).

Until recently, all 19 ARS1 have been associated with 
autosomal recessive diseases [8]. While recessively inher-
ited ARS1 disorders share some common clinical signs, 
e.g., involvement of the CNS and microcephaly (in all but 
HARS1), there is a striking heterogeneity of the clinical 
manifestation which does not follow a reproducible pattern. 
Liver involvement has been reported for IARS, LARS, and 
MARS while for example skin anomalies have only been 
described for QARS or anatomical heart anomalies have 
only been described for MARS [38, 44–49]. LARS1- and 
MARS1-associated disorders are associated with neurologi-
cal impairment, MRI abnormalities, liver disease, anemia, 

and endocrine abnormalities and show the greatest clinical 
overlap with the YARS1 p.(Arg367Trp)-associated pheno-
type delineated here.

Another example of ARS1-associated disorders, in which 
an impaired protein synthesis as the causative disease mech-
anism can be questioned is VARS1 causing developmental 
delay with microcephaly [38]. Interestingly, in in vitro 
assays, the authors found a 50% residual aminoacylation 
activity. Because reductions in enzyme activity of approxi-
mately 50% are often well tolerated, it can be speculated 
that reduced aminoacylation is not the underlying disease 
mechanism, but that dysregulated secondary functions (for 
example, dysregulation of VEGF) might be involved. In 
many ARS1 genes, over 200 “catalytic nulls” natural splice 
variants have been annotated which primarily ablate or dis-
rupt the catalytic domain but retain the noncatalytic section. 
This observation underpins the diverse, functions of nonen-
zymatic domains of ARS1 genes [50].

CMT is another disease reflecting the significance of sec-
ondary protein functions of YARS1. Since the discovery of 
pathogenic variants in YARS1 causing CMT type C more 
than 15 years ago, the exact disease mechanism has not 
been understood, yet. All five CMT-causing mutations in 
YARS1 reside in the N-terminal catalytic domain (Fig. 1A). 
Because aminoacylation activity is not a shared property of 
pathogenic variations, it is unlikely that haploinsufficiency 
affecting the aminoacylation enzyme activity is the underly-
ing mechanism [7, 51]. Currently, gain-of-function patho-
genic variants in non-catalytical domains or transcriptional 
dysregulation are discussed to be the potential underlying 
disease mechanism [52]. Of note, none of the patients or 
parents reported here is affected by CMT neuropathy. This 
is in line with the absence of neuropathy in patients with 
recessive disorders caused by other ARS1 genes which have 
been implicated with CMT [8].

One limitation in the interpretation of the impact 
of YARS1 variants on protein function is that to date 
no structural model of the full-length protein is avail-
able and that separate structures of mini-TyrRS and 
C-domains are the basis for functional predictions. 
Another limitation is that our assumptions are based on 
clinical findings, in silico analyses, and on recent find-
ings from functional in vitro studies. Protein dimeriza-
tion assays and yeast growth complementation assays 
have been performed for YARS1 p.(Pro167Thr) showing 
impaired dimerization and limited yeast growth [17]. 
Functional studies for p.(Arg367Trp) have not been 
performed. As the C-terminal domain was shown to 
be dispensable for aminoacylation, it can be supposed 
that p.(Arg367Trp) residing in the C-terminal domain 
does not affect the enzymatic function of TyrRS; how-
ever, indirect effects on enzymatic function cannot be 
ruled out [1, 39]. Experimental studies will be required 

1765Journal of Molecular Medicine (2021) 99:1755–1768



1 3

to systematically investigate the impact of all vari-
ants on enzyme activity and to delineate the disease 
mechanism.

In conclusion, the characterization of the distinct mul-
tisystem disease associated with p.(Arg367Trp) and other 
YARS1 biallelic variants will help in the clinical diagnostic-
workup of undiagnosed patients and will improve counseling 
of affected families. There is decisive clinical heterogeneity 
associated with different variants in YARS1 and also across 
different ARS1-disorders. An advanced understanding of 
secondary functions of ARS1 will pave the way to identify 
new targets for treatment of ARS1-associated multisystem 
disorders and CMT in the future.
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