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Abstract

Lassa fever virus (LASV) is endemic in West Africa and causes severe hemorrhagic fever

and sensorineural hearing loss. We identified a small molecule inhibitor of LASV and used it

to analyze the mechanism of entry. Using a photo-reactive analog that retains antiviral activ-

ity as a probe, we identified the inhibitor target as lysosome-associated membrane protein 1

(LAMP1), a host factor that binds to the LASV glycoprotein (GP) during infection. We found

that LAMP1 binding to LASV GP is cholesterol-dependent, and that the inhibitor blocks

infection by competing with cholesterol in LAMP1. Mutational analysis of a docking-based

model identified a putative inhibitor binding site in the cholesterol-binding pocket within the

LAMP1 domain that binds GP. These findings identify a critical role for cholesterol in LASV

entry and a potential target for therapeutic intervention.

Author summary

Lassa fever virus (LASV) is endemic in West Africa and can cause fatal infection. Cur-

rently, there is no vaccine or effective post-exposure treatment. Here we identify 3.3, a

small molecule that inhibits LASV infection by targeting lysosome-associated membrane

protein 1 (LAMP1), which binds to the LASV glycoprotein (GP) and promotes virus

membrane fusion and infection. Our analysis reveals that cholesterol is an important

cofactor for LAMP1 binding to LASV GP and that 3.3 inhibits infection by displacing

cholesterol from LAMP1. Thus, 3.3 is a candidate for further development as a LASV

inhibitor.
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Introduction

Lassa fever virus (LASV) is a highly pathogenic enveloped RNA virus that is endemic in west-

ern Africa [1, 2]. In early studies of LASV infection, the surface membrane protein α-dystro-

glycan (α-DG) was identified as a glycoprotein (GP) attachment factor and a key determinant

of tissue tropism. LASV particles bind to α-DG and are transported to late endosomes and

lysosomes (LE/LY) where exposure to pH<5.0 triggers GP-mediated membrane fusion and

infection [3–5]. More recent studies have indicated that interactions of LASV with the host

during infection are significantly more complex. First, it has been found that LASV tropism is

not restricted to cells that express α-DG. Candidate alternative attachment factors have been

identified and include the well-characterized TIM and TAM family proteins that are recog-

nized attachment factors for other families of viruses, including filoviruses [6–8]. In addition,

a genetic screen for host factors mediating LASV entry identified the LE/LY membrane pro-

tein LAMP1 [9]. Detailed studies of the role of LAMP1 revealed that in the acidic LE/LY,

LASV GP dissociates from α-DG and binds to LAMP1 [9–11], which markedly enhances virus

membrane fusion and infection [12, 13]. Studies in cultured cells show that binding of GP to

LAMP1 is not strictly required for acid pH to trigger LASV infection [13]. However, virus

propagation was not detected in LAMP1 knockout mice injected with LASV [9]. Herein, we

report the identification of a small molecule that inhibits LASV infection by targeting LAMP1

and interfering with a critical interaction with cholesterol that promotes LAMP1 binding to

LASV GP.

Results

The small molecule 3.3 is a specific inhibitor of Lassa fever virus

A hit from a screen to discover small molecule inhibitors of virus infection identified the ada-

mantyl diphenyl piperazine 3.3 as an inhibitor of transduction of Vero cells by murine leuke-

mia virus (MLV) particles pseudotyped with LASV GP (IC50 = 1.8μM ± 1.3), but not of

transduction by MLV particles pseudotyped with GPs from the related Old World arenavi-

ruses lymphocytic choriomeningitis virus (LCMV) Armstrong, LCMV WE, LuJo virus (LUJV)

or with Junin virus (JUNV), Ebola virus (EBOV) or vesicular stomatitis virus (VSV) (Fig 1A).

In addition, the infection of Vero cells by LASV engineered to encode eGFP (rLASV-eGFP)

was inhibited more than 90% by 3.3 (S1C Fig).

3.3 targets the viral receptor LAMP1 in cells

To identify the target of 3.3, the derivative 1519 was synthesized. 1519 is a less potent inhibitor

of LASV GP-mediated infection than 3.3 (IC50 = 3.9μM ±1.6), but contains a photoreactive

diazirine moiety suitable for formation of covalent adducts with target proteins and an alkyne

moiety for coupling 1519 adducts to azides using bio-orthogonal Cu+-catalyzed click chemis-

try (Fig 1B). Vero cells incubated with 1519 were UV-irradiated, washed and fixed, and 1519

adducts were “click”-coupled to the fluorophore TAMRA-azide. Imaging of these cells showed

that the TAMRA signal strongly co-localized with the LE/LY membrane protein LAMP1 in

cytoplasmic vesicles and that labeling by 1519 was attenuated by co-incubating cells with a 10-

or 20-fold excess of 3.3, but not by a 20-fold excess of the inactive 3.3 derivative, 100, indicating

that 1519 cross-links the 3.3 target (Fig 1C and S1 Fig). Since LASV infection is strongly hepa-

totropic [14], we also tested human hepatocyte-derived Huh7.5 cells and observed robust 1519

labeling that was specifically inhibited by co-incubation with 3.3 and by deletion of the

LAMP1 gene (Fig 1D, S1 and S2 Figs). To determine if LAMP1 is a direct target of 1519, Vero

cells were labeled with 1519 and click-conjugated to Alexa Fluor 488 (AF 488)-azide. Lysates of
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Fig 1. 3.3 inhibits LASV GP-mediated infection and cross-links to the LASV receptor, LAMP1, in cells. (A) Structure of 3.3 (left) and inhibition of transduction by

MLV pseudotyped with the indicated viral glycoproteins (right). Vero cells were incubated with the indicated concentrations of 3.3 for 1h before challenge with MLV

encoding GFP and pseudotyped with the indicated viral glycoproteins. Virus transduction is reported as % of GFP-positive cells relative to cells exposed to DMSO

vehicle alone. Data are mean ± SD (n = 3). IC50 is the concentration of inhibitor required to reduce transduction by 50%. LUJV: Lujo virus; JUNV: Junin virus; LCMV:

Lymphocytic choriomeningitis virus; VSV: Vesicular stomatitis virus; EBOV: Ebola virus. (B) Structure of 1519 (left). 1519 contains a diazirine for target cross-linking

and a terminal alkyne for Cu+-catalyzed click-based analysis and inhibits transduction by MLV pseudotyped with LASV GP (right). Vero cells were incubated with the

indicated concentrations of 1519 for 1h before challenge with MLV pseudotyped with LASV GP and encoding GFP. Virus transduction is reported as % of GFP-

positive cells relative to cells exposed to DMSO vehicle alone. Data are mean ± SD (n = 3). Data was collected in the same experiment as Fig 1A. (C) 1519 co-localizes

with LAMP1+ compartments in Vero cells and cross-links in a manner which is competed by the addition of a molar excess of 3.3 but not the inactive 3.3 derivative,

100. Vero cells were co-incubated with 1519 and the indicated competitor compound for 1h at 37˚C before UV irradiation followed by click chemistry with TAMRA

azide. LAMP1 was visualized by immunofluorescence using an anti-LAMP1 antibody. (D) 1519 co-localizes with LAMP1+ compartments in Huh7.5 cells and cross-

links in a manner which is competed by the addition of a molar excess of 3.3 but not the inactive 3.3 derivative, 100. 1519 cross-linking in Huh7.5 LAMP1 knockout

(KO) cells is diminished. Huh7.5 pX459 or LAMP1 KO cells were co-incubated with the indicated compounds for 1h at 37˚C before UV irradiation followed by click

chemistry with TAMRA azide. LAMP1 was visualized by immunofluorescence using an anti-LAMP1 antibody. (E) 1519 cross-links to endogenous LAMP1 in a

manner which is competed by the addition of a molar excess of 3.3 but not the inactive 3.3 derivative, 102. Vero cells were incubated with the indicated compounds for

1h at 37˚C before UV irradiation. Cells were harvested, lysed and used for click chemistry to attach an Alexa Fluor 488 (AF 488) azide and then subjected to

immunoprecipitation using an anti-AF 488 antibody. AF 488 labeled LAMP1 was detected using an anti-LAMP1 antibody. Total AF 488 labeled proteins were

detected via in-gel fluorescence. Input protein was detected by Coomassie staining.

https://doi.org/10.1371/journal.ppat.1007322.g001
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these cells were prepared, and labeled proteins were immunoprecipitated using an antibody

specific for AF 488 and analyzed for LAMP1 by immunoblot. The results demonstrate that

1519 forms a covalent adduct with LAMP1 and that formation of the 1519-LAMP1 adduct is

specifically inhibited by a molar excess of 3.3, but not by a molar excess of the inactive 3.3

derivative 102 (Fig 1E and S1 Fig).

3.3 inhibits LAMP1 binding to LASV GP

To examine the effect of 3.3 on LASV GP binding to LAMP1, lysates from LAMP1 knockout

(KO) 293T cells (S2 Fig) expressing LASV GP-His and from 293T pX459 cells treated with 3.3

were prepared and mixed at pH 5.5. LASV GP was immunoprecipitated and LAMP1 binding

to LASV GP was analyzed by immunoblot. The results confirm that LASV GP binds to

LAMP1 and show that binding is inhibited by 3.3 (Fig 2A). Taken together with the results of

the cross-linking experiments using 1519, these findings strongly suggest that 3.3 inhibits

LASV infection by targeting LAMP1 and interfering with LAMP1 binding to LASV GP.

Fig 2. Binding of LASV GP to LAMP1 is dependent on cholesterol and is inhibited by 3.3. (A) 3.3 blocks the interaction of LASV GP with endogenous

LAMP1. 293T LAMP1 KO cells expressing LASV GP-His and 293T pX459 cells were incubated with the indicated concentrations of 3.3 for 1h at 37˚C before

lysis. Lysates were mixed and subjected to immunoprecipitation with an anti-His antibody. The presence of LASV GP bound LAMP1 was detected by

immunoblot with an anti-LAMP1 antibody. (B) LASV GP1-IgG binds to LAMP1 D1 in a cholesterol-dependent manner. Purified LAMP1 D1-His was

incubated with the indicated concentrations of cholesterol or epicholesterol for 1h at 37˚C before the addition of purified LASV GP1-IgG. Samples were

subjected to immunoprecipitation against human IgG and bound LAMP1 D1 was detected by immunoblot with an anti-His antibody. (C) 3.3 inhibits the

cholesterol-dependent binding of LASV GP1-IgG to LAMP1 D1. Purified LAMP1 D1-His was co-incubated with 5μM cholesterol and the indicated

concentrations of 3.3 or 102 for 1h at 37˚C before the addition of purified LASV GP1-IgG. Samples were subjected to immunoprecipitation against human IgG

and bound LAMP1 D1 was detected by immunoblot with an anti-His antibody.

https://doi.org/10.1371/journal.ppat.1007322.g002
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GP binding to LAMP1 D1 is cholesterol-dependent and sensitive to 3.3

inhibition

Next, we investigated the molecular basis for LAMP1 binding to LASV GP. The 3.3 target

LAMP1 is a type I membrane protein in which the ectodomain consists of two related

“LAMP” domains [15–17]. A recent study demonstrated that LASV GP-mediated entry

depends on the presence of the membrane distal LAMP1 domain D1 [9]. To investigate the

effect of 3.3 on the interaction between D1 and LASV GP, a LASV GP1-IgG fusion protein

was purified and validated as a ligand for endogenous LAMP1 from cells (S3 Fig). In the initial

studies, immunoprecipitation of purified, soluble D1 by LASV GP1-IgG was weak (Fig 2B). A

recent study reported that the LAMP domains in LAMP1 (and also LAMP2) reversibly bind to

cholesterol [15]. To determine if cholesterol is required for LASV GP binding, purified D1

binding to LASV GP1-IgG was examined after incubation of D1 with cholesterol. We found

that the addition of cholesterol increased binding of D1 to LASV GP1-IgG in a dose-depen-

dent manner. By contrast, incubation of D1 with the 3’-OH cholesterol enantiomer epicholes-

terol, which does not bind to LAMP [15], did not enhance D1 binding to LASV GP1-IgG (Fig

2B). Importantly, the cholesterol-dependent binding of D1 to LASV GP1-IgG was inhibited by

the presence of 3.3, but not by the inactive 3.3 derivative, 102 (Fig 2C and S1 Fig). Taken

together, these findings confirm that D1 binds to LASV GP1 and demonstrate that binding is

cholesterol-dependent and sensitive to inhibition by 3.3.

Cholesterol and 3.3 stabilize the tertiary structure of LAMP1

We pursued the mechanism of 3.3 inhibition of LASV GP binding to D1. Previous work indi-

cated that cholesterol binding to LAMP1 is reversible and that the cholesterol binding site is

located within a hydrophobic pocket in the center of the pyramid-shaped LAMP domain [15–

17]. We used thermal denaturation profiling to analyze the effect of cholesterol binding on

LAMP1. Purified D1 was heated to a specific temperature between 60˚C and 80˚C for 3 min-

utes. After cooling, denatured, aggregated D1 was pelleted by centrifugation, and the superna-

tant was analyzed by immunoblot. We found that D1 is nearly completely denatured at 74.7˚C

(S4A Fig). Pre-incubation of D1 with cholesterol, but not epicholesterol, protected D1 from

thermal denaturation at 80˚C (S4B Fig). Notably, 3.3 also protected D1 from thermal denatur-

ation at 80˚C (S4C Fig). Thus, both cholesterol and 3.3 stabilize the tertiary structure of D1.

The thermal denaturation assay was used to analyze the effect of 3.3 on LAMP1 in cells [18].

The temperature profiles for denaturation of endogenous LAMP1 was similar to that of puri-

fied D1 (Fig 3A). Treatment of cells with 3.3 protected LAMP1, but not LAMP2, from denatur-

ation up to 80˚C (Fig 3A and 3B). The dose-response relationship of 3.3 on the thermal

stability of LAMP1 at 80˚C closely correlated with the antiviral activity of 3.3 (Fig 3C) and

accordingly, treatment of cells with the inactive 3.3 derivatives 100, 102 or 103 had no discern-

able effects on the thermal inactivation profile of LAMP1 (Fig 3A and S1 Fig). These findings

demonstrate that the effect of 3.3 on purified D1 in vitro is representative of its effect on

LAMP1 in cells.

3.3 is a competitive inhibitor of cholesterol binding to LAMP1

The findings that the antiviral activity of 3.3 is cholesterol-dependent and that the stabilizing

effect of 3.3 on the thermal denaturation profile of D1 is similar to that of cholesterol suggested

that 3.3 might also bind in the central pocket. We employed 1519 and a photo-reactive choles-

terol analog with a diazirine and terminal alkyne [19] as probes to address this question. Upon

photo-activation, the cholesterol analog formed a covalent adduct with D1 that was inhibited
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by the presence of either cholesterol or 3.3, but not by epicholesterol or the inactive 3.3 deriva-

tive 102 (Fig 4A). Similarly, cross-linking of 1519 to D1 was inhibited by 3.3 and by cholesterol,

but not by 102 or by epicholesterol (Fig 4B and 4C). Thus, 3.3 is a competitive inhibitor of cho-

lesterol binding to D1 and vice versa.

Model of 3.3 binding to LAMP1

We employed a docking program to identify a candidate 3.3 binding site in D1. In the dock-

ing-based model, the 3.3 adamantane and dipeptide moieties are buried in the central pocket

of D1 in proximity to the side chains of residues I145, L170 and I175, and the 3.3 diphenyl

rings are adjacent to the side chains of residues I142 and V161 that reside at the edge of the

pocket on the surface of D1 (Fig 5A and S5 Fig). We tested this model by measuring the effects

of substitutions for these residues on purified D1 and on LAMP1 in cells. We found that the

substitutions I145A, L170A/I175A and I145A/L170A/I175A located within the pocket

decreased the efficiency of cross-linking by both 1519 and photoclick cholesterol to purified

D1 (Fig 5B). The substitutions I142G, V161A and I142G/V161A at the edge of the pocket also

reduced cross-linking by 1519, but not by photoclick cholesterol (Fig 5B). In line with this,

Fig 3. 3.3 protects LAMP1, but not LAMP2, from thermal denaturation in cells. (A) 3.3 but not the inactive derivatives, 100, 102 and 103, raises the Tm of

endogenous LAMP1. 293T cells were incubated with 10μM of the indicated compounds or DMSO for 1h at 37˚C. Cells were harvested and heated to the indicated

temperatures prior to lysis. Lysed samples were centrifuged and the supernatants were analyzed by immunoblot with an anti-LAMP1 antibody. (B) 3.3 does not

alter the thermal denaturation profile of endogenous LAMP2. 293T cells were incubated with 10μM 3.3 or DMSO for 1h at 37˚C. Cells were harvested and heated

to the indicated temperatures prior to lysis. Lysed samples were centrifuged and the supernatants were analyzed by immunoblot with an anti-LAMP2 antibody. (C)

3.3 dose-dependently protects endogenous LAMP1 from thermal denaturation at 80˚C. 293T cells were incubated with the indicated concentrations of 3.3 or

DMSO for 1h at 37˚C. Cells were harvested and heated to 80˚C prior to lysis. Lysed samples were centrifuged and the supernatants were analyzed by immunoblot

with an anti-LAMP1 antibody.

https://doi.org/10.1371/journal.ppat.1007322.g003
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substitutions within the pocket reduced both LAMP1 LASV receptor activity and sensitivity to

3.3 inhibition of infection whereas substitutions at the edge of the pocket also reduced the sen-

sitivity of LAMP1 to 3.3, but had no effect on receptor activity (Fig 5C). These findings demon-

strate that the role of LAMP1 in LASV entry is sensitive to changes in the central pocket of D1

that interfere with cholesterol binding and that 3.3 binds in the central pocket of D1 in a way

that is also dependent on contacts with residues I142 and V161.

Discussion

In this report, we demonstrate that the function of LAMP1 as a host factor for LASV infection

is strongly dependent on bound cholesterol. This conclusion is based on studies of the

Fig 4. Cross-linking of 1519 to LAMP1 D1 is inhibited by cholesterol and vice versa. (A) A photoreactive cholesterol analog (photoclick cholesterol) cross-linking

to purified LAMP1 D1 is competed by a molar excess of cholesterol or 3.3 but not by a molar excess of epicholesterol or 102. Purified LAMP1 D1-His was incubated

with the indicated compounds for 1h at 37˚C prior to UV irradiation and click chemistry with an AF 488 azide. Labeled protein was detected by immunoblot with an

anti-AF 488 antibody. Input LAMP1 D1 was detected using an anti-His antibody. (B) 1519 cross-links to purified LAMP1 D1 in a manner which is competed by a

molar excess of 3.3 but not the inactive derivative, 102. Purified LAMP1 D1-His was incubated with the indicated compounds for 1h at 37˚C prior to UV irradiation

and click chemistry with an AF 488 azide. Labeled protein was detected by immunoblot with an anti-AF 488 antibody. Input LAMP1 D1 was detected using an anti-

His antibody. (C) 1519 cross-links to purified LAMP1 D1 in a manner which is competed by a molar excess of 3.3 and cholesterol but not epicholesterol. Purified

LAMP1 D1-His was incubated with the indicated concentrations of 1519 and 3.3, cholesterol or epicholesterol for 1h at 37˚C prior to UV irradiation and click

chemistry with an AF 488 azide. Labeled protein was detected by immunoblot with an anti-AF 488 antibody and input LAMP1 D1 was detected using an anti-His

antibody.

https://doi.org/10.1371/journal.ppat.1007322.g004
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mechanism of action of 3.3, a newly identified small molecule inhibitor of LASV infection that

targets LAMP1. Using a photo-reactive analog of 3.3 that forms a covalent adduct with

LAMP1, we show that 3.3 is a competitive inhibitor of cholesterol binding to D1, the LAMP1

domain that binds to LASV GP during infection. Our findings support a model in which the

binding sites for 3.3 and for cholesterol reside within the hydrophobic pocket in the center of

the prism-shaped D1. This model is consistent with the proposed location of the cholesterol-

binding site in the closely-related LAMP2 [15] and also with the observation that both choles-

terol and 3.3 increase the thermal stability of LAMP1 D1. Structural studies of LASV GP

bound to D1 are needed to determine if cholesterol is part of the GP1 binding site or

Fig 5. 3.3 binding to the hydrophobic central pocket of LAMP1 D1. (A) Docking of 3.3 (yellow) in the predicted structure of LAMP1 D1. Residues within the

hydrophobic pocket predicted to contact 3.3 are colored orange. Residues on the surface at the edge of the pocket predicted to contact the diphenyl group of 3.3 are

colored red. (B) Mutational analysis of predicted 3.3 contacts with LAMP1 D1 on cross-linking by photoclick cholesterol and by 1519. Purified LAMP1 D1 containing

the indicated mutations were incubated with photoclick cholesterol (top) or 1519 (bottom) for 1h at 37˚C prior to UV irradiation and click chemistry with AF 488

azide. Labeled protein was detected by immunoblot with an anti-AF 488 antibody. Input LAMP1 D1 was detected using an anti-His antibody. (C) Mutational analysis

of predicted 3.3 contacts with LAMP1 D1 on transduction by MLV LASV GP and 3.3 inhibition. 293T LAMP1 KO cells transfected with the indicated LAMP1

mutants were incubated with the indicated concentrations of 3.3 for 1h before challenge with MLV pseudotyped with LASV GP and encoding GFP. Virus transduction

is reported as % of GFP-positive cells relative to cells exposed to DMSO vehicle alone. Inset shows the MLV LASV GP transduction efficiency relative to that on cells

transfected with wild-type (WT) LAMP1. Data are mean ± SD (n = 3). The IC50 of the WT curve differs significantly from all other curves (p< 0.001). Inset: ns (not

significant); ��� (p< 0.001). Statistical analyses were performed using one-way ANOVA with Tukey post-hoc analysis.

https://doi.org/10.1371/journal.ppat.1007322.g005
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alternatively, if cholesterol, but not 3.3, is an allosteric regulator of the receptor-active confor-

mation of D1.

Previous studies of the role of LAMP1 in infection indicate that acidification of the LE/LY

reduces the affinity of LASV for α-DG, enhances binding to LAMP1, and promotes virus

membrane fusion [9–13]. In this scheme, LAMP1 binding may function in concert with acid

pH to activate the intrinsic membrane fusion activity of LASV GP analogous to the coopera-

tive roles of receptor binding and endosomal acidification in alpharetrovirus infection [20,

21]. LAMP1 may also promote infection by positioning LASV particles in proximity to the

target membrane. Relevant to the studies of LAMP1 receptor function reported here, acidifi-

cation of LE/LY is also the signal for release of cholesterol-rich low density lipoprotein

(LDL) particles transported by the LDL receptor [22]. LDL is the major source of exogenous

cholesterol for the cell, and the release and transport of LDL-derived cholesterol across the

LE/LY membrane is a multi-step process requiring de-esterification, extraction from special-

ized membrane vesicles by NPC2, and transport across the limiting membrane by NPC1.

Based on the recent findings showing that LAMP1 and LAMP2 bind cholesterol reversibly

and that LAMP2 resides in a complex with NPC1, it was proposed that LAMP proteins may

also play a role in uptake of LDL cholesterol [15]. Further studies are needed to examine this

hypothesis with a focus on possible consequences for LASV LAMP1 receptor function,

LASV tropism and pathogenesis. An additional related issue that awaits further investigation

is whether cholesterol has a role in the function of α-DG, TIM or TAM proteins as LASV

attachment factors.

3.3 was identified in an analysis of the structure-activity relationship (SAR) of 3.0 (S1 Fig)

[23, 24], a hit in a phenotypic screen of a small molecule library for specific inhibitors of

EBOV infection. Analogous to the effect of 3.3 on LAMP1, 3.0 specifically targets the EBOV

receptor NPC1 and interferes with its function in binding to EBOV GP and in cholesterol

transport [23, 24]. The similarities in the structure and function of 3.0 and 3.3 suggest that the

3.0 target may be a cholesterol-binding site in NPC1 that is similar to the hydrophobic pocket

in LAMP1 D1 that binds to 3.3. The model of 3.3 binding to D1 based on our studies predicts

that the adamantane piperazine dipeptide that is present in both 3.0 and 3.3 resides in the cen-

tral hydrophobic pocket that binds to cholesterol and the unique diphenyl moiety in 3.3 con-

tacts residues I142 and V161 that are located just outside of the pocket. If this model is correct,

it suggests that it may be possible to synthesize additional analogs of 3.0 and 3.3 that contain

the adamantane piperazine dipeptide core and selectively target cholesterol binding sites in

other proteins. We propose that screening these analogs may identify inhibitors of other envel-

oped viruses, such as alpha-, bunya- and hepadnaviruses for which a role for cholesterol in

viral entry has been reported [25–29]. In addition, 3.3 may also be useful in examining the pro-

posed role of LAMP1 in trafficking of LDL cholesterol.

LASV infection is associated with significant mortality and survivors have a high incidence

of sensorineural hearing loss. 3.3 has several properties that suggest it has potential as an anti-

viral drug: (1) 3.3 is not cytotoxic to cultured cells, and knockout mice lacking the 3.3 target

LAMP1 develop and function normally [30]; (2) 3.3 is membrane permeable and has a pKa

>8.0 and thus is expected to be selectively concentrated at the site of its target LAMP1 in the

LE/LY, as we observed in cell-based labeling of LAMP1 with 1519 (Fig 1C); (3) 3.3 is specific

for LAMP1 in that it did not target the closely related LE/LY protein LAMP2, as assessed by

the thermal shift assay (Fig 3B), or NPC1, as indicated by the absence of anti-EBOV activity

(Fig 1A). Recently, we completed a SAR campaign to improve the pharmacokinetic properties

of the closely related Ebola-specific inhibitor 3.0 [31] that provides a framework for the optimi-

zation of 3.3 to identify derivatives for testing in vivo.
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Materials and methods

Cell lines

Vero, HEK293T and Huh7.5 cell lines were obtained from ATCC (Manassas, VA) and main-

tained in DMEM (Invitrogen) supplemented with 10% FBS (Gemini Bio-Products) and

0.292mg/mL L-glutamine (Invitrogen) and grown at 37˚C in 5% CO2. LAMP1 knockout and

control pX459 cell lines (293T and Huh7.5) were generated by CRISPR. LAMP1 CRISPR

gRNAs targeting exon 2 (5’-GAAGTTGGCCATTATGCACG-3’) and exon 6 (5’- GCTTGCT

TGTCTTATGCAGA-3’) were designed using CHOPCHOP (http://chopchop.cbu.uib.no/)

and cloned into a pSpCas9(BB)-2A-Puro (PX459) (a gift from Feng Zhang (Addgene plasmid

#48139)) [32]. 293T and Huh7.5 cells were transfected with the CRISPR plasmids and selected

with 2μg/mL puromycin. Knockout was confirmed by sequencing using primers amplifying

the target site for exon 2 and exon 6 (5’-TGCACTCCAAGAGCAGCTGTCA-3’ and 5’-GACC

CAGGGCACAAAAAGATGT-3’) and by immunoblot using a rabbit monoclonal anti-

LAMP1 antibody (Cell Signaling Technologies) and a mouse monoclonal anti-tubulin anti-

body (Santa Cruz Biotechnology).

Expression plasmids

Full length LASV (Josiah) GP (obtained from Gary Nabel, National Vaccine Center) was mod-

ified by adding a C-terminal 3xHA-6xHis tag and cloned into the pCAGGS expression vector.

LASV GP1 (aa 1–255) fused to the N-terminus of human IgG was cloned into pCAGGS. Full

length human LAMP1 and LAMP2 (obtained from Addgene) with a GSTGSTGSTGA linker,

and LAMP1 D1 (aa 1–227) were fused at the C-terminus to a 3xFLAG-6xHis tag and cloned

into the expression vector pCAGGS.

Production of pseudotyped virions

Moloney murine leukemia virus (MLV) particles encoding green fluorescent protein (GFP)

and pseudotyped with the indicated GPs were produced as previously described [33].

Production and purification of LAMP1 D1 and Lassa GP1-IgG

recombinant proteins

Recombinant proteins were produced and purified as previously described [33] with the

exception that LASV GP1-IgG and LCMV GP1-IgG were purified on protein A/G agarose

(Santa Cruz Biotechnology) and eluted using IgG elution buffer (Thermo Fisher).

Infection assays with pseudotyped viruses

Infection assays were performed as previously described [33]. For experiments involving

expression of mutant LAMP1 proteins, 293T LAMP1 KO cells plated on poly-L-lysine coated

plates were transfected with the indicated LAMP1 proteins. One day after transfection, cells

were treated with the indicated concentrations of 3.3 in a final concentration of 1% DMSO for

1h at 37˚C before addition of LASV GP-pseudotyped MLV. IC50 values were calculated by

non-linear regression curve-fitting using GraphPad Prism. Statistical analyses were performed

using GraphPad Prism.

rLASV-eGFP inhibition assay

Vero CCL81 cells were treated with 8 doses of 2-fold dilutions of 3.3 in media containing 1%

DMSO. One hour later, cells were infected with a MOI = 0.3 of rLASV-eGFP. 48h post
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infection, plates were fixed in formalin and fluorescence was read on a Tecan plate reader

(Infinite M1000) and on the Operetta High Content Imaging System. Compound was present

throughout the entire experiment. Cytotoxicity was determined using the Cell Titer-Glo Lumi-

nescent Cell Viability Assay (Promega) after incubating cells with compound at the indicated

concentrations for 48h. All procedures using infectious rLASV-eGFP were performed under

biosafety level-4 (BSL-4) conditions.

1519 in-cell cross-linking/immunofluorescence

Stock solutions of LASV inhibitor 3.3 and 3.3 analogs 3.0, 100 and 1519 were diluted in media

to the indicated concentrations (final DMSO 1.1%). Vero cells or Huh7.5 cells seeded on

chambered coverglass (Nunc Lab-Tek II) were incubated with the compounds for 1h at 37˚C

in the dark. Cells were irradiated for 7min at 365nm followed by 3min at 302nm. Cells were

then fixed with formalin and click chemistry was performed using 100μM TBTA, 2mM

CuSO4, 1mM TCEP and 25μM TAMRA azide (Thermo Fisher) in 50mM Tris pH 8 by incu-

bating at room temperature for 1h in the dark. Following click chemistry, cells were washed

with PBS and permeabilized with 0.2% Triton and blocked with 1% BSA. LAMP1 was visual-

ized using a mouse monoclonal LAMP1 antibody (Santa Cruz Biotechnology) followed by a

goat anti-mouse Alexa Fluor 488 secondary antibody (Thermo Fisher). Cells were imaged on a

Nikon Eclipse TE2000E.

Cross-linking of photoreactive probes to LAMP1 FL and D1

1519 cross-linking to LAMP1 FL. Vero cells were incubated with the indicated concen-

trations of 1519 and competitor compound in media (DMSO 1%) for 1h at 37˚C in the dark.

Cells were then irradiated for 7min at 365nm followed by 3min at 302nm. Cells were collected

and lysed in lysis buffer (50mM HEPES pH 7.4, 150mM NaCl, 1% NP40) with protease inhibi-

tor. Cell debris was pelleted by centrifugation at 4˚C for 20min at 13,000RPM. SDS was added

to the supernatants to a final concentration of 1% and the resulting mixture was subjected to

click chemistry for 1h at room temperature to conjugate Alexa Fluor 488 azide (Thermo

Fisher) to the 1519 alkyne (100μM TBTA, 2mM CuSO4, 1mM TCEP, 25μM Alexa Fluor 488

azide). Proteins were precipitated 5 times with cold acetone and the pellet was solubilized in

1% SDS lysis buffer. Prior to immunoprecipitation, the SDS was diluted to<0.1% with lysis

buffer with protease inhibitors added. Samples were then subjected to immunoprecipitation

with a rabbit polyclonal anti-Alexa Fluor 488 antibody (1μg/sample) overnight at 4˚C and

eluted off the protein A/G agarose with SDS-loading buffer. Alexa Fluor 488 was imaged using

a Typhoon FLA 9500 and a rabbit monoclonal anti-LAMP1 antibody (Cell Signaling Technol-

ogies). Input was stained with Coomassie dye.

1519 cross-linking to LAMP1 D1. 1519 and competitor compounds in DMSO, or choles-

terol and epicholesterol in acetone, were added to purified LAMP1 D1 in pH 5.5 lysis buffer to

a final concentration of 10% DMSO or 10% DMSO and 2% acetone and incubated for 1h at

37˚C. Samples were then irradiated for 7min at 365nm followed by 3min at 302nm and imme-

diately used for click chemistry as above after the addition of SDS to a final concentration of

1%. Following click chemistry, gel-loading buffer was added to each sample and samples were

analyzed by immunoblot using mouse monoclonal anti-His or anti-Alexa Fluor 488 antibodies

(Thermo Fisher).

Photoclick cholesterol cross-linking to LAMP1 D1. Photoclick cholesterol and epicho-

lesterol dissolved in acetone and 3.3 and 102 dissolved in DMSO were added to purified

LAMP1 D1 in pH 5.5 lysis buffer to a final concentration of 10% DMSO and 2% acetone and

incubated for 1h at 37˚C. Samples were irradiated for 7min at 365nm followed by 3min at
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302nm and immediately used for click chemistry as above after the addition of SDS to a final

concentration of 1%. Following click chemistry, SDS-loading buffer was added to each sample

and samples were used for immunoblot with anti-His or anti-Alexa Fluor 488 antibodies.

All data using these protocols have been confirmed in independent experiments.

Co-immunoprecipitation

LASV GP—LAMP1 FL. 293T LAMP1 KO cells transfected with pCAGGS-LASV GP-

3xHA-6xHis and 293T pX459 cells were treated with the indicated concentrations of 3.3 in

media (1% DMSO). Cells were lysed in pH 5.5 lysis buffer and lysates were mixed as indicated.

Lysates were subjected to immunoprecipitation using an anti-His antibody and immuno-

blotted with anti-His and anti-LAMP1 antibodies.

LASV GP1-IgG or LCMV GP1-IgG—LAMP1 FL-His. 293T cells transfected with

pCAGGS-LAMP1 FL-3xFLAG-6xHis were lysed in pH 5.5 lysis buffer. Purified LASV

GP1-IgG or purified LCMV GP1-IgG was added to the cell lysates and subjected to immuno-

precipitation using protein A/G agarose beads (Santa Cruz Biotechnology) followed by immu-

noblot with anti-His and goat anti-human IgG (Santa Cruz Biotechnology) antibodies.

LASV GP1-IgG—LAMP1 D1. Purified LAMP1 D1-3xFLAG-6xHis was incubated with

the indicated concentrations of cholesterol or epicholesterol and 3.3 or 102 in a final concen-

tration of 2% acetone or 2% acetone and 10% DMSO for 1h at 37˚C, mixed with LASV

GP1-IgG complexed to protein A/G agarose and allowed to rotate overnight at 4˚C. Samples

were eluted off the beads and subjected to immunoblot with anti-human IgG and anti-His

antibodies.

All data using these protocols have been confirmed in independent experiments.

Thermal shift

Cellular thermal shift. 293T cells were treated with the indicated concentrations of 3.3 or

inactive derivatives for 1h at 37˚C in 1% DMSO media. Cells were harvested in pH 5.5 PBS,

heated to the indicated temperatures for 3min followed by incubation at 25˚C for 3min. Lysis

buffer was then added to the samples for a final concentration of 0.5% NP40 and cells were

lysed by three cycles of freeze-thaw followed by centrifugation at 4˚C for 20min at 14,000RPM

to pellet cell debris and protein aggregates. Supernatants were collected and used for an immu-

noblot with anti-LAMP1 and rabbit monoclonal anti-LAMP2 antibodies (Abcam).

LAMP1 D1 thermal shift. LAMP1 D1 was incubated in pH 5.5 PBS with the indicated

concentrations of 3.3 (1% DMSO final) or the indicated concentrations of cholesterol and epi-

cholesterol (2% acetone final) for 30min at 37˚C. Samples were then heated to the indicated

temperatures for 3min followed by incubation at 25˚C for 3min and centrifuged at 4˚C for

20min at 14,000RPM. Supernatants were collected and used for an immunoblot with an anti-

His antibody.

All data using these protocols have been confirmed in independent experiments.

Compound docking and structure generation

The structure of LAMP1 D1 was obtained by threading the sequence of human LAMP1 D1

onto the structure of mouse LAMP2 D1 (PDB: 5GV3) using PHYRE2 (http://www.sbg.bio.ic.

ac.uk/phyre2/html/page.cgi?id=index) [34]. 3.3 was docked using SwissDock (http://www.

swissdock.ch/) [35]. Molecular graphics and analyses were performed with the UCSF Chimera

package. Chimera is developed by the Resource for Biocomputing, Visualization, and Infor-

matics at the University of California, San Francisco (supported by NIGMS P41-GM103311)

[36].
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Chemical synthesis of 3.3, 100, 102, 103 and 1519

Standard resolution mass spectra were obtained on an Agilent 1200 Series HPLC (4.6 x 100

mm, 5 μm Phenomenex C18 reverse-phase column) and a 6130 Series mass spectrometer sys-

tem; all mass spectra were obtained using electrospray ionization (EI) in either positive or neg-

ative ion mode. Standard reverse-phase HPLC conditions were as follows: mobile phase

A = 0.1% formic acid in water; mobile phase B = 0.1% formic acid in acetonitrile. 1H NMR

spectra were recorded on a Varian Inova 600 MHz spectrometer with chemical shifts reported

in parts per million (ppm) relative to an internal standard (trimethylsilane). Coupling con-

stants (J) are reported in hertz (Hz). Solvents for synthesis were purchased as anhydrous grade

and used without further purification. Reagents were purchased from commercial sources and

used as received.

Scheme 1 (S6 Fig): Synthesis of azirine-adamantane-1-carboxylic acid (2)

Azirine 2 was prepared similarly as reported in the literature [19, 37]. To a sealed tube at 0˚C,

containing a stir bar and acid 1 (225mg, 1.16mmol, 1.0 equiv) was added 7N NH3 in methanol

(MeOH) (5.0mL). The reaction mixture was stirred for 3 h. Hydroxylamine-O-sulfonic acid

(183mg, 1.62mmol, 1.4 equiv) was dissolved in MeOH (2mL) and added to the reaction mix-

ture drop wise. The reaction mixture was allowed to warm to room temperature and was stir-

red for overnight, after which the reaction was centrifuged and the clear MeOH solution was

collected, and concentrated. The residue was dissolved in 20% MeOH/CH2Cl2, and passed

through a short silica gel column (eluent: 20% MeOH/CH2Cl2), then concentrated under

reduced pressure.

The residue was then dissolved in anhyd. methanol (2.5mL), then cooled to 0˚C, and

Hunig’s base (0.2mL) was added. To the reaction was then added iodine solution in MeOH

(concentration equals to 100 mg/1mL MeOH) in small portions, until a dark brown color per-

sisted in the solution for more than 30min. The reaction was then treated with solid Na2S2O3,

then acidified to pH 3 using aq. 1N HCl, then concentrated under reduced pressure. To the

residue was added 15mL of 20% MeOH/CH2Cl2. The suspension was sonicated, filtered

through a short silica gel column, and the filtrate concentrated to afford 186 mg of crude azir-

ine acid 2 as an off white solid, which was taken to the next step directly. Azirine 2 was not

detectable in either LCMS positive or negative mode. However, its structure is confirmed by

the synthesis of 1519 (included in the later part of this experimental section).

Scheme 2 (S7 Fig): Synthesis of [(adamantane-1-carbonyl)-amino]-acetic

acid (6)

In a 25mL round bottomed flask equipped with a stirring bar, under nitrogen, was placed gly-

cine 4 (468mg) in 6mL of anhyd. tetrahydrofuran (THF). To the reaction was added N,N-Dii-

sopropylethylamine (iPr2Net) (1.94mL), followed by acid chloride 3 (555mg) in 4mL of

anhyd. THF. The reaction was stirred for 4h, then concentrated under reduced pressure. To

the oily residue was added with water (50mL), and the suspension was sonicated for 10min.

The white color solid was filtered, washed with water (2 x 50mL) to afford crude tert-butyl

ester 5, which was taken to the next step directly.

In a microwave reaction vial equipped with a stirring bar was placed the tert-butyl ester 5.

To the tube was added 4N HCl/dioxane (5mL). The reaction was stirred at r.t. for overnight.

The reaction was then concentrated under reduced pressure to afford acid 6 (643mg, 97% for

two steps), as a white solid. MS m/z: 236.2 (M-1), calc’d for C13H19NO3: 237.14.
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Scheme 3 (S8 Fig): Synthesis of 4-[(2-methoxycarbonyl-phenyl)-phenyl-

methyl]-piperazine-1-carboxylic acid tert-butyl ester (11-a), 4-[(2-carboxy-

phenyl)-phenyl-methyl]-piperazine-1-carboxylic acid tert-butyl ester

(11-b), 4-[(4-methoxycarbonyl-phenyl)-phenyl-methyl]-piperazine-

1-carboxylic acid tert-butyl ester (11-c), and 4-(1-m-tolyl-ethyl)-

piperazine-1-carboxylic acid tert-butyl ester (11-d)

In a 25mL round bottomed flask was placed 2-formyl-benzoic acid methyl ester 7-a (220mg,

1.34mmol), piperazine-1-carboxylic acid tert-butyl ester 9 (249mg, 1.34mmol), 1H-benzotria-

zole 8 (167mg, 1.41mmol). To the flask was added with toluene (5mL) and ethanol (EtOH)

(1mL). The flask was sonicated until a homogeneous solution is achieved. The solvent was

then removed under reduced pressure to dryness. To the residue was added with 10mL of tolu-

ene, and the solvent was again removed to dryness under reduced pressure to afford 4-[benzo-

triazol-1-yl-(2-methoxycarbonyl-phenyl)-methyl]-piperazine-1-carboxylic acid tert-butyl ester

10-a, which was used without further purification.

In a 25mL round bottomed flask equipped with a rubber septum, and a magnetic stirring

bar was placed 4-[benzotriazol-1-yl-(2-methoxycarbonyl-phenyl)-methyl]-piperazine-1-car-

boxylic acid tert-butyl ester 10-a (1.0mmol). Under the protection of nitrogen, 20mL of

anhyd. THF was added. The reaction was then cooled to 0˚C, and PhMgBr (1M in THF,

2.68mmol) was added drop wise. After 30min at 0˚C, the reaction was warmed slowly to r.t.,

and stirred for overnight.

The reaction was then quenched with 2mL of MeOH, diluted with water (20mL), and

extracted with ethyl acetate (EtOAc) (2 x 30mL). The combined organic phases was washed

with brine (1 x 15mL), dried, and concentration under reduced pressure. The crude mixture

was purified by TLC (3% MeOH/CH2Cl2) to afford two products: 1). 93mg (17%) of 4-

[(2-methoxycarbonyl-phenyl)-phenyl-methyl]-piperazine-1-carboxylic acid tert-butyl ester

11-a. MS m/z: 411.2(M+1), calc’d for C24H30N2O4: 410.22. 2). and the spontaneous hydroly-

sis product of the methyl ester 11-a, which is the 4-[(2-carboxy-phenyl)-phenyl-methyl]-piper-

azine-1-carboxylic acid tert-butyl ester 11-b (170 mg, 32%). MS m/z: 397.2.2(M+1), calc’d for

C23H28N2O4: 396.20.

4-[(4-methoxycarbonyl-phenyl)-phenyl-methyl]-piperazine-1-carboxylic acid tert-butyl

ester (11c), yield 43%, was prepared similarly as 11-a. MS m/z: 411.2(M+1), calc’d for

C24H30N2O4: 410.22.

4-(1-m-tolyl-ethyl)-piperazine-1-carboxylic acid tert-butyl ester (11d), yield 12%, was pre-

pared similarly as 11-a. MS m/z: 305.2(M+1), calc’d for C18H28N2O2: 304.22.

Scheme 4 (S9 Fig): Synthesis of 2-[(4-{2-[(adamantane-1-carbonyl)-amino]-

acetyl}-piperazin-1-yl)-phenyl-methyl]-benzoic acid methyl ester (103),

4-[(4-{2-[(adamantane-1-carbonyl)-amino]-acetyl}-piperazin-1-yl)-phenyl-

methyl]-benzoic acid (102), adamantane-1-carboxylic acid {2-oxo-2-[4-

(1-m-tolyl-ethyl)-piperazin-1-yl]-ethyl}-amide (100), and adamantane-

1-carboxylic acid [2-(4-benzhydryl-piperazin-1-yl)-2-oxo-ethyl]-amide

(3.3)

The HCl/dioxane promoted de-Boc of 11-a, 11-c, 11-d, to afford piperizines 12a, 12-c, 12-d

were carried out similarly as described for the synthesis of compound 6. Piperizine 12-e is pur-

chased from Sigma-Aldrich.

In a sealed vial under nitrogen was placed acid 6 (9.24mg), N-(3-Dimethylaminopropyl)-

N-ethylcarbodiimide (EDCI) (6mg), 1-Hydroxy-7-azabenzotriazole (HOAt) (6.9mg) in 2mL
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of anhydrous dichloromethane (DCM). iPr2NEt (15.5mg in 0.5mL of anhydrous DCM) was

added, and the reaction was stirred for 1 hr. The activated acid was then added to a clear solu-

tion of piperazine 12-a (10.4mg) and iPr2NEt (15.5mg) in 1mL of anhydr DCM. The reaction

was then stirred for overnight. To the reaction was then added with 10mL of aq. 1N NaOH.

The reaction was then extracted with CH2Cl2 (2 x 20mL). The combined organic phases was

washed with water (10mL), dried with MgSO4, filtered, and concentrated under reduced pres-

sure. The crude mixture was purified by TLC (3% MeOH/CH2Cl2) to afford 10.8mg (68%) of

2-[(4-{2-[(adamantane-1-carbonyl)-amino]-acetyl}-piperazin-1-yl)-phenyl-methyl]-benzoic

acid methyl ester (103) as an oily wax. MS m/z: 530.2(M+1), calc’d for C32H39N3O4: 529.29.
1H NMR (400 MHz, CDCl3, ppm): δ 7.88 (d, 1H, J = 8.0), 7.71 (d, 1H, J = 8.0), 7.48–7.26 (m, 7

H), 6.78 (s, 1H), 5.34 (s, 1H), 3.97 (d, 2H, J = 2.8), 3.88 (s, 3H), 3.63–3.61 (m, 2H), 3.39–3.36

(m, 2H), 2.41–2.38 (m, 4H), 2.03–2.01 (m, 3H), 1.89–1.86 (m, 6H), 1.73–1.70 (m, 4H).

Adamantane-1-carboxylic acid {2-oxo-2-[4-(1-m-tolyl-ethyl)-piperazin-1-yl]-ethyl}-amide

(100), yield 70%, was prepared similarly as 103. m/z: 424.2(M+1), calc’d for C26H37N3O2:

423.29. 1H NMR (400 MHz, CDCl3, ppm): δ 7.25–7.08 (m, 4 H), 6.78 (s, 1H), 3.98 (d, 2H,

J = 4.0), 3.63–3.60 (m, 2H), 3.39–3.35 (m, 3H), 2.47–2.38 (m, 4H), 2.03–2.01 (m, 3H), 1.89–

1.85 (m, 6H), 1.71–1.69 (m, 4H), 1.36 (d, 3H, J = 6.4).

Adamantane-1-carboxylic acid [2-(4-benzhydryl-piperazin-1-yl)-2-oxo-ethyl]-amide (3.3)

yield 82%, was prepared similarly as 103. m/z: 472.2(M+1), calc’d for C30H37N3O2: 471.29.
1H NMR (400 MHz, CDCl3, ppm): δ 7.41–7.19 (m, 10 H), 6.77 (s, 1H), 4.25 (s, 1H), 3.98 (d,

2H, J = 1.6), 3.65–3.62 (m, 2H), 3.41–3.39 (m, 2H), 2.41–2.38 (m, 4H), 2.04–2.02 (m, 3H),

1.88–1.86 (m, 6H), 1.72–1.70 (m, 4H).

Methyl ester (13), yield 73%, was prepared similarly as 103. m/z: 530.2(M+1), calc’d for

C32H39N3O4: 529.29.

In a sealed vial was placed methyl ester 13 (53mg) in 5mL of THF and 1mL of water. To

this reaction was added 0.5mL of LiOH solution (0.5M in water). The reaction was stirred vig-

orously for 6h at r.t. The reaction was then diluted with 10mL of water, extracted with EtOAc

(1 x 10mL). To the aqueous layer, under stirring was added carefully 0.5mL of aq. HCl (0.5M

in water). The aqueous layer was then extracted with CH2Cl2c (2 x 20mL). The combined

organic phases was washed with water (10mL), dried with MgSO4, filtered, and concentrated

under reduced pressure. The crude mixture was purified by TLC (5% MeOH/CH2Cl2) to

afford 28mg (55%) of 4-[(4-{2-[(Adamantane-1-carbonyl)-amino]-acetyl}-piperazin-1-yl)-

phenyl-methyl]-benzoic acid (102), m/z: 516.3(M+1), calc’d for C31H37N3O4: 515.28. 1H

NMR (400 MHz, CDCl3, ppm): δ 8.02 (d, 1H, J = 8.0), 7.53 (d, 1H, J = 8.0), 7.39–7.21 (m, 7 H),

6.81 (s, 1H), 4.34 (s, 1H), 4.01 (d, 2H, J = 4.0), 3.64–3.60 (m, 2H), 3.38–3.34 (m, 2H), 2.41–2.37

(m, 4H), 2.03–2.00 (m, 3H), 1.89–1.83 (m, 6H), 1.74–1.70 (m, 4H).

Scheme 5 (S10 Fig): Synthesis of azirine-2-[(4-{2-[(adamantane-

1-carbonyl)-amino]-acetyl}-piperazin-1-yl)-phenyl-methyl]-benzoic acid

but-3-ynyl ester (1519)

In a sealed vial was placed acid 11-b (57mg), K2CO3 (60mg) in 2mL of anhydr dimethylforma-

mide (DMF). 4-Bromo-1-butyne 14 (38mg) in 0.5mL of anhyd. DMF was added slowly, and

the reaction was stirred at r.t. for overnight. To the reaction was added water (10mL). The

reaction was then extracted with CH2Cl2 (2 x 20mL). The combined organic phases was

washed with water (10mL), dried with MgSO4, filtered, and concentrated under reduced pres-

sure. The crude mixture was purified by TLC (3% MeOH/CH2Cl2) to afford 47mg (72%) of

piperazine 15. m/z: 449.2(M+1), calc’d for C27H32N2O4: 448.24.
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The HCl/dioxane promoted de-Boc of 15, to afford piperizine 16 was carried out similarly

as described for the synthesis of compound 6. m/z: 349.2(M+1), calc’d for C22H24N2O2:

348.18.

In a sealed vial was placed amine 16 (38mg) in anhyd THF (2mL). Glycine-ester 17 (33 mg)

in 1mL of anhyd THF was added at r.t., followed by iPr2NEt (51mg). Reaction was stirred for

overnight. The reaction was then quenched by addition of 2mL of aq. 1N NaOH. To the reac-

tion was added water (10mL). The reaction was then extracted with CH2Cl2 (2 x 20mL). The

combined organic phases was washed with water (10mL), dried with MgSO4, filtered, and

concentrated under reduced pressure. The crude mixture was purified by TLC (3% MeOH/

CH2Cl2) to afford 35mg (71%) of 18. m/z: 506.2(M+1), calc’d for C29H35N3O5: 505.26.

The HCl/dioxane promoted de-Boc of 18, to afford glycine-piperizines 19 was carried out

similarly as described for the synthesis of compound 6. m/z: 406.2(M+1), calc’d for

C24H27N3O3: 405.21.

In a sealed vial, wrapped with aluminum foil, under nitrogen, was placed acid 2 (16mg), 1-

[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluoropho-

sphate (HATU) (33mg) in 1mL of anhydrous DMF. iPr2NEt (26mg in 0.5mL of anhydrous

DMF) was added, and the reaction was stirred for 0.5h. The activated acid was then added to a

solution of piperazine 19 (22mg) and iPr2NEt (26mg) in 1mL of anhyd. DMF. The reaction

was then stirred for overnight. To the reaction was then added with 10mL of water. The

reaction was then extracted with CH2Cl2 (2 x 20mL). The combined organic phases was

washed with water (10mL), dried with MgSO4, filtered, and concentrated under reduced pres-

sure. The crude mixture was purified by TLC (3% MeOH/CH2Cl2) to afford 9.8mg (33%) of

1519 as a faint yellow solid. m/z: 594.3(M+1), calc’d for C35H39N5O4: 593.30. 1H NMR (400

MHz, CDCl3, ppm): δ 7.89 (d, 1H, J = 8.0), 7.72 (d, 1H, J = 8.0), 7.49–7.25 (m, 7 H), 6.84 (s,

1H), 5.39 (s, 1H), 4.41 (t, 2H, J = 6.4), 3.99 (d, 2H, J = 3.6), 3.63–3.61 (m, 2H), 3.43–3.39 (m,

2H), 2.65 (t, 2H, J = 6.4), 2.43–2.40 (m, 4H), 2.04–2.02 (m, 4H), 1.88–1.86 (m, 4H), 1.72–1.70

(m, 4H).

Supporting information

S1 Fig. Structure and activity of 3.3-related compounds on transduction by LASV GP-

pseudotyped MLV and infection by rLASV-eGFP. (A) Structures of 3.3-related compounds

3.0, 100, 102 and 103. (B) Effect of 3.3 analogs 3.0, 100, 102 and 103 on transduction of Vero

cells by MLV encoding GFP and pseudotyped with LASV GP. Target cells were incubated with

the indicated compounds for 1h before virus challenge. IC50 is the concentration (μM) of com-

pound required to reduce infection by 50% (n = 2 or 3). (C) 3.3 inhibits infection by rLASV-

eGFP. Vero cells were incubated with 3.3 at the indicated concentrations for 1h before infec-

tion with a recombinant LASV expressing eGFP (rLASV-eGFP). IC50 is the concentration

(μM) of 3.3 required to reduce infection by 50% after 48 hours (n = 2). The cytotoxicity was

measured after treatment of cells with 3.3 at the indicated concentrations for 48h.

(TIF)

S2 Fig. CRISPR-mediated knockout (KO) of LAMP1 in 293T and Huh7.5 cells. (A) Cells

from the indicated cell lines were lysed and subjected to immunoblot with anti-tubulin and

anti-LAMP1 antibodies. (B) gDNA isolated from the indicated cell lines was sequenced around

the CRISPR cut site.

(TIF)

S3 Fig. LASV GP1-IgG can bind to LAMP1 from cells. Purified LASV GP1-IgG or purified

LCMV GP1-IgG was added to lysates from cells expressing LAMP1-His. Samples were
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subjected to immunoprecipitation against human IgG and bound LAMP1 was detected with

an anti-His antibody.

(TIF)

S4 Fig. Cholesterol and 3.3 binding protect LAMP1 D1 from thermal denaturation. (A)

Thermal denaturation profile of purified LAMP1 D1. LAMP1 D1-His was heated to the indi-

cated temperatures for 3min. Samples were centrifuged and supernatants were analyzed by

immunoblot with an anti-His antibody. (B) Cholesterol (top) but not epicholesterol (bottom)

dose-dependently protects purified LAMP1 D1 from thermal denaturation at 80˚C. Purified

LAMP1 D1-His was incubated with the indicated concentrations of cholesterol or epicholes-

terol for 30min at 37˚C prior to being heated to the indicated temperatures. Samples were cen-

trifuged and the supernatants were analyzed by immunoblot with an anti-His antibody. (C)

3.3 dose-dependently protects purified LAMP1 D1 from thermal denaturation at 80˚C. Puri-

fied LAMP1 D1-His was incubated with the indicated concentrations of 3.3 for 30min at 37˚C

prior to being heated to 80˚C. Samples were centrifuged and the supernatants were analyzed

by immunoblot with an anti-His antibody.

(TIF)

S5 Fig. Predicted LAMP1 D1 surface view. (A) Predicted LAMP1 D1 surface view colored by

Kyte-Doolittle hydrophobicity. Orange: most hydrophobic. Blue: least hydrophobic. Inset

shows a close-up view of the hydrophobic pocket. (B) 3.3 (yellow) docked onto the predicted

LAMP1 D1 structure. The adamantane group is predicted to be buried in the hydrophobic

pocket while the diphenyl moiety makes contacts with hydrophobic residues outside of the

pocket on the surface of LAMP1 D1. Arrows label the locations of residues I142 and V161 pre-

dicted to contact 3.3.

(TIF)

S6 Fig. Synthesis of azirine-adamantane-1-carboxylic acid (2).

(TIF)

S7 Fig. Synthesis of [(adamantane-1-carbonyl)-amino]-acetic acid (6).

(TIF)

S8 Fig. Synthesis of 4-[(2-methoxycarbonyl-phenyl)-phenyl-methyl]-piperazine-

1-carboxylic acid tert-butyl ester (11-a), 4-[(2-carboxy-phenyl)-phenyl-methyl]-pipera-

zine-1-carboxylic acid tert-butyl ester (11-b), 4-[(4-methoxycarbonyl-phenyl)-phenyl-

methyl]-piperazine-1-carboxylic acid tert-butyl ester (11-c), and 4-(1-m-tolyl-ethyl)-

piperazine-1-carboxylic acid tert-butyl ester (11-d).

(TIF)

S9 Fig. Synthesis of 2-[(4-{2-[(adamantane-1-carbonyl)-amino]-acetyl}-piperazin-1-yl)-

phenyl-methyl]-benzoic acid methyl ester (103), 4-[(4-{2-[(adamantane-1-carbonyl)-

amino]-acetyl}-piperazin-1-yl)-phenyl-methyl]-benzoic acid (102), adamantane-

1-carboxylic acid {2-oxo-2-[4-(1-m-tolyl-ethyl)-piperazin-1-yl]-ethyl}-amide (100), and

adamantane-1-carboxylic acid [2-(4-benzhydryl-piperazin-1-yl)-2-oxo-ethyl]-amide (3.3).

(TIF)

S10 Fig. Synthesis of azirine-2-[(4-{2-[(adamantane-1-carbonyl)-amino]-acetyl}-piperazin-

1-yl)-phenyl-methyl]-benzoic acid but-3-ynyl ester (1519).

(TIF)
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