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Vortex trapping recaptures energy 
in flying fruit flies
Fritz‑Olaf Lehmann1*, Hao Wang2 & Thomas Engels1 

Flapping flight is one of the most costly forms of locomotion in animals. To limit energetic 
expenditures, flying insects thus developed multiple strategies. An effective mechanism to reduce 
flight power expenditures is the harvesting of kinetic energy from motion of the surrounding air. We 
here show an unusual mechanism of energy harvesting in an insect that recaptures the rotational 
energy of air vortices. The mechanism requires pronounced chordwise wing bending during which the 
wing surface momentary traps the vortex and transfers its kinetic energy to the wing within less than 
a millisecond. Numerical and robotic controls show that the decrease in vortex strength is minimal 
without the nearby wing surface. The measured energy recycling might slightly reduce the power 
requirements needed for body weight support in flight, lowering the flight costs in animals flying at 
elevated power demands. An increase in flight efficiency improves flight during aversive manoeuvring 
in response to predation and long-distance migration, and thus factors that determine the worldwide 
abundance and distribution of insect populations.

To allocate low energy investment for big gains is an universal rule in nature1–8. The reduction of energy spent 
during locomotion is thus key to the ecological success of many flying animals. During wing flapping of insects, 
the energy for propulsion stems from the contraction of flight muscles. The majority of muscle energy during 
flight appears as kinetic energy in the surrounding air but part of it is also stored as elastic potential energy in 
the muscle tissue9, as elastic deformations of the thorax10 and wings11, and as kinetic energy in the movement 
of wings. Energy loss in deforming structures are common in flight. Fly wings, for example, elastically recycle 
only ~ 80–90% of their deformation energy during wing flapping11,12, making flight less efficient. Many animals 
thus benefit from a reduction of energy needed to accelerate the surrounding fluid by extracting kinetic energy 
from their environment. Birds in flocks, for example, take advantage of flight formations using vortices shed 
from the wing tips of the heading animals13–16 and trouts save muscle power by exploiting rotational energy from 
vortices generated by bodies upstream17.

Vortices at the wing may enhance the production of locomotor forces in flight. Elevated leading edge suc-
tion in birds18,19, bats20,21 and insects4,5,22,23 is generated by the wing’s leading edge vortex (LEV) that boosts lift 
production for weight support and increases locomotor capacity during flight manoeuvres. The cyclic changes in 
wing flapping direction within the stroke cycle, however, force insects to periodically shed these vortices into the 
wake. Thus, at each stroke reversal, a large amount the kinetic energy and thus muscle power is wasted, lowering 
propulsion efficiency owing to energy conservation laws4. To cope with these constraints, many insects developed 
strategies to simultaneously increase lift production and locomotor efficiency during wing flapping. Dragonfly 
hindwings, for example, utilize energy-rich vortex flows shed from the forewings that increases aerodynamic 
efficiency24 and butterfly wings lower the kinetic energy of stopping vortices by slicing through it5. While physical 
and numerical modelling of flight in small insects showed that a single wing recaptures vortex flows from the 
wake of a previous halfstroke4,22,25,26, two-winged models apparently miss this ability27–30.

This study identifies that the 1.3 mg fruit fly Drosophila virilis harvests energy from trapped vortices during 
clap-and-fling wing kinematics27,30–34, at which the flapping wings physically touch and chordwise bend during 
the dorsal stroke reversal (Fig. 1). Experiments previously showed that clap-and-fling kinematics alters vortex 
development35,36 and also lowers the energetic costs for lift production per unit flight muscle mass compared to 
flight without clap-and-fling kinematics29,37,38. In freely flying fruit flies, high-speed video recording shows that 
full and partial dorsal wing-wing contact occurs in ~ 33% of 144 tested wing strokes (N = 24 flies, supplementary 
text S1), suggesting that this kinematic manoeuvre is frequent in fruit flies. Figure 1b shows wing orientation 
in 4 out of 17 measured times during the dorsal rotation phase of a tethered fruit fly. The images suggests that 
clap-and-fling wing motion in fruit flies lasts approximately one millisecond or ~ 15% of the ~ 150 Hz stroke 
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cycle. We estimated the wing’s chordwise deformation using high-speed videography and a laser sheet (Fig. 1a,c), 
illuminating wing profiles at 4 equally distant wing sections. Figure 1d shows the evolution of the chordwise 
deformation at the centre of aerodynamic force production at ~ 0.6 wing length29.

During wing rotation at the dorsal reversal, the wings deform only little until they clap together (0 ms stroke 
cycle, Fig. 1b). However, they strongly deform within only ~ 0.5 ms during wing separation (peel motion), 
increasing the wings’ rise-to-chord ratio up to ~ 18% (Fig. 1d). The flexing motion of the wing chord accordingly 
reduces the elevated drag on the wing that results from both the viscous forces between the wing surfaces and 
wing acceleration during wing separation30,31. Figure 1d shows that wing rotation occurs symmetrical in fruit 
flies with respect to the up- and downstroke, producing elevated lift for weight support compared to a delayed 
rotation4. At wing clap, instantaneous translational wing velocity is minimum but quickly accelerates to ~ 2.4 ms−1 
within only ~ 1.5 ms during wing separation (Fig. 1e). The wings’ rotational motion peaks at ~ 1579 rad s−1 during 
wing clapping and decelerates to zero at the beginning of the downstroke within less than a millisecond (Fig. 1f). 
In contrast to the negative wing camber as used in computer simulations30,39, the wings in fruit flies have a small 
positive camber at the beginning of the downstroke. This positive camber contributes to lift production at the 
initial phase of the downstroke40 because it increases the wing’s angle of attack and thus fluid momentum41.

Figure 1.   Experimental setup, wing kinematics and elastic wing deformation during the dorsal stroke reversal. 
(a) A single fly is tethered to a 100 µm tungsten wire and flown in a 25 × 25 × 75 mm3 flight chamber. The wire 
is attached to a piezo element recording an electrical signal synchronous to wing flapping motion. The signal 
triggers a high-speed video camera equipped with magnifying lenses and a teleconverter. A Nd:YLF dual laser 
generates a ~ 500 µm thin light sheet for flow measurements by time-resolved particle image velocimetry. Flow 
vectors are calculated from adaptive cross-correlation and smoothed by a spatial filter with 160 × 160 image 
pixels. The laser light is guided through a 25 mm beam waist adjuster and a cylinder lens, and narrowed by 
a ~ 100 µm mechanical slit. Smoke from burning plant debris is pumped as seeding particles into the chamber 
at low speed. Inset shows schematics of the wing’s rise-to-chord ratio as plotted in d. Drawing is not to scale. 
(b) Four significant phases of wing motion during dorsal wing-wing interaction in the fruit fly. At the stroke 
reversal, leading edges of left and right wing touch (up) while the wings rotate about their longitudinal axes. 
After wing clapping (clap), the wings chordwise bend (peel), forming an opening cleft (fling) at the leading 
edge while the trailing edges remain connected. The wings separate ~ 500 µs after wing clapping, starting the 
downstroke (down). (c) Top view image of left and right wing chord of Drosophila virilis during the fling phase, 
highlighted by a laser at 0.6 wing length. Body outline is superimposed. View is on the dorsal body side and 
from wing tip to hinge. (d) Change in chordwise wing bending (rise-to-chord). Left (red) and right (blue) wings 
are maximally deformed ~ 300 µs after wing clapping. White lines are filtered means. (e) Mean translational and 
(f) mean rotational wing velocity about the wing’s longitudinal axis measured at 0.6 wing length of left (red) and 
right (blue) wing during the dorsal reversal. Corresponding coloured areas indicate standard deviations. Data 
are from 12 animals and 15 stroke cycles. Grey areas show wing peel time.
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The fate of vortical structures at the end of the wings’ upstroke is key for aerodynamic recapture mechanisms 
(movie S1). Figure 2 shows the evolution of leading and trailing edge vortices during the dorsal stroke reversal 
in 5 equally-spaced out of 17 moments sampled at 10 kHz. At the beginning of wing rotation, vorticity of LEV 
at the ventral wing surface increases due to the wing’s increasing angle of attack. As a consequence of wing rota-
tion and wing deceleration, the wing also produces counter-balancing vorticity at the trailing edge (Fig. 2a). At 
wing clapping, both vortices have gained maximum strength but remain attached at the ventral wing surface 

Figure 2.   Fluid vorticity, LEV travelling and depletion of vorticity and kinetic energy. (a–e) Images show fluid 
vorticity (upper row) and vortex reconstruction (lower row) at 5 out of 17 measured times (10 kHz sampling 
rate) during clap-peel-fling in a single wing stroke cycle. Black lines highlight chordwise deformation of left and 
right wing blade at 0.6 wing length with the wing’s leading edges (solid circle) pointing upward. LEV leading 
edge vortex; TEV trailing edge vortex; USL undershear layer; L left wing; R right wing; U wing upstroke; D wing 
downstroke. Clockwise and anti-clockwise circulation is shown in blue and red, respectively. Vortices from the 
upstroke are completely shed during the dorsal stroke reversal. At the beginning of the downstroke, the leading 
edge vortex from the upstroke fuses with the trailing edge vortex that forms at the beginning of the downstroke. 
Vortices in the lower row were reconstructed from 15 stroke cycles and wing sections at 0.6 wing length. (f–j) 
Vortex reconstruction at 0.65 wing length in rigid robotic wings mimicking clap-and-fling in fruit fly wing 
kinematics. Timing is shown in fraction of the stroke cycle (1). Flapping frequency was ~ 0.17 Hz and Re =  ~ 180. 
Data are replotted from a previous study28. (k) Reconstruction of leading edge vortex shape and chordwise 
travelling during dorsal stroke reversal after clapping (0 ms). (l) Sketch of hypothesized momentum transfer of 
rotational energy (enstrophy) to the close-by surface by friction between leading edge vortex and wing surface. 
The horizontal wing stroke plane in fruit flies during hovering flight favours frictional forces in a vertical 
direction, supporting lift and nose-down pitching moments. (m–n) Depletion of peak vorticity and chordwise 
sectional energy of the leading edge vortex within ~ 1.0 ms after wing clapping (0 ms). LEV from the upstroke 
is shed after wing clapping and regains strength by fusion with the trailing edge vortex ~ 0.8 ms after the stroke 
reversal. Vortex decay time of a shed trailing edge vortex is shown in supplementary text S2. Data are means 
from 90 stroke cycles recorded in 6 animals and shaded areas indicate standard deviation.
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(Fig. 2b). The stretched shape of LEV and trailing edge vortices results from air viscosity at low Reynolds number 
of ~ 214 for wing flapping in conjunction with the vortex shear velocity relative to the air. Throughout wing peel 
motion (Fig. 2c), the LEV does not separate from the wing as reported for robotic wings28 and computer simula-
tion models29,30. Instead, it remains close to the wing’s ventral surface and consequentially travels downstream 
from the leading towards the trailing wing edge (Fig. 2d). The ability of fruit fly wings to trap the LEV from the 
upstroke results from the combined effect of chordwise wing bending during peel and upward heaving motion27. 
The two wing surfaces effectively separate left and right LEV, avoiding that both vortices cancel each other out 
owing to their opposite spins. This factor saves the LEV’s kinetic energy for later use. The positive wing camber 
generates a curvature with finite radius, which increases the tangential contact area between wing and LEV and 
inevitably facilitates vortex trapping. For comparison, in rigid wings of robotic Drosophila wing flapping models, 
leading edge vorticies are shed during the fling phase into the opening cleft between both wings28 (Fig. 2f–j) that 
forces vortex extinction according the Kelvin’s law rather than energy recycling.

The time, at which the moving upstroke LEV reaches the wing’s trailing edge (~ 1 ms after wing clap, Fig. 2d,e), 
the wings start to separate and to produce start vortices that balance the wings’ bound circulation. At this 
moment, upstroke LEV and downstroke start vortex fuse because of equal spin, and are subsequently shed 
as a single structure into the wake (Fig. 2e). The latter process is quantified in Fig. 2m, showing that the LEV 
gains ~ 2.9 times its vorticity (~ 1442 ± 568 s−1 to ~ 4112 ± 314 s−1) during fusion. While travelling chordwise, the 
trapped LEV keeps its orientation relative to ventral wing surface (Fig. 2k). This potentially allows to transfer 
the LEV’s kinetic energy to the wing by surface friction (Fig. 2l). Due to the horizontal stroke plane in flying 
fruit flies, the resulting shear force vector at the wing may contribute to both vertical lift support and nose down 
pitching moments on the fly body for posture control. Notably, Fig. 2m shows that while travelling, the LEV 
looses ~ 74.2% or ~ 4356 ± 738 s−1 of its initial peak vorticity (~ 5873 ± 909 s−1, N = 15 stroke cycles, 12 animals) 
within less than a millisecond. The LEV’s sectional kinetic energy decreases likewise by ~ 71% from ~ 718 ± 93 
nJm−1 before peel to ~ 212 ± 126 nJm−1 after peel (Fig. 2n). At absence of steering manoeuvres elicited by visual 
stimulation of the fly’s compound eyes, the difference in vortex decay is negligible between both wings.

The assumption that vortex energy is transferred to the wing is supported by comparison of slopes for vorti-
city decay time between leading and trailing edge vortices (TEV) in the fly (supplementary text S2). These data 
show that vortex circulation decreases ~ 6.4 to ~ 9.0 times and sectional energy ~ 6.1 to ~ 7.8 times faster in the 
LEV than the TEV (supplemental text S3). We further confirmed this finding by comparing the time evolution 
of vorticity in vortices modelled by a Lamb-Oseen vortex model (supplementary text S3) and by estimation of 
vorticity decay times of free vortices shed from a robotic fruit fly wing (supplementary text S4 and S5). There is 
also no evidence for vortex-splitting at the wing surface that could cause vorticity decrement42. We also tested the 
idea that spanwise axial flow on the wing surface pulls the LEV outward, in turn changing both sectional vorticity 
and energy of the LEV over time (supplementary text S4). Due the LEV’s conical vorticity profile, a change in 
LEV’s longitudinal position relative to the wing surface might appear as a change in vorticity in the 2-dimen-
sional measurement plane during particle image velocimetry. Data measured in a fruit fly model wing, however, 
suggest that spanwise displacement of a vortex may account for not more than ~ 21.9% change in circulation 
and ~ 36.6% change in sectional kinetic energy (supplementary text S4). These findings rule out the hypothesis 
that spanwise drift causes the measured attenuation in LEV strength in the fruit fly during peel motion. We 
also carefully considered vortex stretching as a possible explanation for vortex decay using computational fluid 
dynamics (supplementary text S6). Vortex stretching is a pure 3-dimensional effect and cannot be captured 
considering our 2-dimensional slices of the flow field. Both, enstrophy dissipation and vortex stretching deter-
mine the time evolution of enstrophy. The numerical simulations show that vortex stretching is several orders 
of magnitude smaller than enstrophy dissipation (supplementary text S6). The excessive dissipation observed in 
leading edge vortices near the wings can thus not be explained by vortex stretching and supports the hypothesis 
that energy is transferred to the wing. In addition, negligible vortex stretching also implies that 2-dimensional 
measurements are sufficient to characterize the decay of vortex enstrophy. Altogether, the controls suggest that 
the LEV’s loss of kinetic energy during peel motion cannot be fully explained by enstrophy dissipation, vortex 
stretching or axial displacement.

To answer the question on how much muscle mechanical power a fruit fly might maximally save by vortex 
trapping, we determined total energy loss in both the fly’s LEV and a corresponding Lamb-Oseen vortex model, 
included the LEV’s spanwise conical vorticity profile and calculated the transferred power with respect to the 
flapping cycle (supplementary text S3). We found that the LEV might maximally transfer ~ 1.08 nJ kinetic energy 
to the wing surface. The potential kinetic energy transfer converts to ~ 0.66 Wkg-1 flight muscle mass and further 
to ~ 1.1% the total aerodynamic power requirements for flight (~ 59.8 W kg−1 flight muscle mass)43 or ~ 3.0% 
the total induced power requirements (~ 21.4 W kg−1 flight muscle mass)43 for vertical lift production44 during 
hovering flight. However, if we compare with mean induced power during peel time (supplementary text S3), 
LEV trapping might lower induced power during peel by ~ 20.6%. Moreover, in a horizontal stroke plane, the 
transferred energy likely accelerates the wings upward, which might further augment lift production due to 
augmentation of the transient unilateral asymmetry in vorticity distribution during fling motion30. As the lead-
ing edge vortices merge with trailing edge vortices at the end of wing separation, the proximity of LEVs to the 
wing surfaces does not hinder the generation of bound circulation during wing translation. Thus, despite vortex 
trapping, Weis-Fogh’s original clap-and-fling mechanism32 still applies, as two strong new downstroke LEVs are 
generated at the leading edge during fling motion (Fig. 2e). The latter enhance the wing’s total circulation and 
thus lift production during the early phase of the downstroke.

Worldwide, small insects are of significant ecological45,46 and agricultural47 importance. Savings in muscle 
power by recycling of kinetic energy from the wake extends the locomotor capacity of these animals. An increase 
in locomotor capacity is highly relevant for the abundance of insect populations and their migration7,8 but also 
in behavioural contexts, in which an insect requires elevated aerodynamic forces such as during take-off48, fast 
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forward flight49, climbing flight50, evasive manoeuvring during predation6, and chasing flight51–53. Assuming that 
insect flight is primarily limited by the production of muscle power and not the production of aerodynamic forces, 
any increase in locomotor efficiency should provide a benefit for a species flying at elevated power demands54. 
This conclusion is evident considering the low total flight efficiency in insects, ranging from ~ 2.3% to ~ 3.5%55. 
Our study, moreover, provides an explanation on how flies utilize elastic deformation of their wings for energy 
harvesting and thus sheds light on the general function of wing elasticity in flapping flight of insects. The latter 
aspect is currently under extended controversial debate, not only for wing flapping motion in animals56–60 but 
also for bioinspired man-made flight devices61–63.

Data availability
All data is available in the main text or the supplementary materials.
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