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a b s t r a c t

Human brain function undergoes complex transformations across the lifespan. We
employed resting-state functional MRI and graph-theory approaches to systematically
chart the lifespan trajectory of the topological organization of human whole-brain func-
tional networks in 126 healthy individuals ranging in age from 7 to 85 years. Brain
networks were constructed by computing Pearson’s correlations in blood-oxygenation-
level-dependent temporal fluctuations among 1024 parcellation units followed by
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graph-based network analyses. We observed that the human brain functional connectome
exhibited highly preserved non-random modular and rich club organization over the entire
age range studied. Further quantitative analyses revealed linear decreases in modularity
and inverted-U shaped trajectories of local efficiency and rich club architecture. Regionally
heterogeneous age effects were mainly located in several hubs (e.g., default network, dorsal

attention regions). Finally, we observed inverse trajectories of long- and short-distance
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functional connections, indicating that the reorganization of connectivity concentrates and
distributes the brain’s functional networks. Our results demonstrate topological changes in
the whole-brain functional connectome across nearly the entire human lifespan, providing
insights into the neural substrates underlying individual variations in behavior and cog-
nition. These results have important implications for disease connectomics because they
provide a baseline for evaluating network impairments in age-related neuropsychiatric
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. Introduction

The structure and function of the human brain undergo
omplex changes across the lifespan, which are becom-
ng accessible through a range of neuroimaging methods.
or instance, age-related structural changes have been
ocumented in gray matter (GM) volume (Sowell et al.,
003; Ziegler et al., 2012), cortical thickness (Salat et al.,
004; Shaw et al., 2008) and white matter (WM) structural
roperties (Asato et al., 2010; Lebel et al., 2012; Westlye
t al., 2010). Age-related functional changes have also been
etected via electrical signals (Clarke et al., 2001; Polich,
997), glucose metabolism (Alavi et al., 1993; Chugani
t al., 1987; Tanna et al., 1991) and blood oxygen level-
ependent (BOLD) signals (Damoiseaux et al., 2008; Grady
t al., 2006; Kelly et al., 2009). These changes are thought to
eflect synaptic pruning and myelination or cell shrinkage
t the neuronal level (Giedd and Rapoport, 2010; Salat et al.,
005; Sowell et al., 2003) and to partly account for the mat-
ration or decline in human cognitive function. However,
hese studies have focused mainly on focal brain attributes
ather than integrated communication across regions.

The human brain is structurally and functionally orga-
ized into a complex network that is known as the human
rain connectome (Biswal et al., 2010; Kelly et al., 2012;
porns et al., 2005; Zuo et al., 2012) to facilitate the
ffective segregation and integration of information pro-
essing. Recent studies employing graph theory to describe
he organization of both structural and functional brain
onnectomics have consistently demonstrated many non-
rivial topological properties such as efficient network
rchitecture, modular structure, central communication
ubs, and rich club architecture, which is formed by the
ensely interconnected hubs [for reviews, see (Bassett and
ullmore, 2009; Bullmore and Sporns, 2009; Stam, 2010;
an den Heuvel and Sporns, 2011, 2013)]. In particular,
y examining inter-regional correlations in spontaneous
OLD fluctuations (i.e., functional connectivity) (Biswal
t al., 1995; Fox and Raichle, 2007), resting-state func-
ional MRI (R-fMRI) can be used to non-invasively map
ndividual functional connectomics. R-fMRI studies have
xplored age-related changes in functional connectivity
atterns in the whole-brain network (Achard and Bullmore,
007; Fair et al., 2009; Meunier et al., 2009a; Supekar et al.,
009; Wu et al., 2013) and in specific sub-networks involv-

ng default-mode (Fair et al., 2008; Supekar et al., 2010;
homason et al., 2008; Wu et al., 2011), cognitive-control
Fair et al., 2007; Luna et al., 2010) and reading functions

Vogel et al., 2013). However, these studies have focused
ither on early (developmental) or late (aging) age-related
hanges. To date, two R-fMRI studies have examined
thors. Published by Elsevier Ltd.

age-related changes in interregional functional connectiv-
ity across the lifespan by combining data from two research
sites (Wang et al., 2012; Zuo et al., 2010). Zuo et al. (2010)
focused on the lifespan changes of the inter-hemispheric
connectivity between two homotopic voxels. Using the
same datasets as in Zuo et al. (2010), Wang et al. (2012)
employed functional connectivity as the basic feature of the
human brain to predict individual ages using the machine-
learning algorithm. These two studies examined linear and
nonlinear models of the lifespan changes in human brain
connectivity. However, they did not explore the lifespan
trajectories of brain network properties based on graph
theory, which was the main aim of the present paper.

We used R-fMRI and graphic network analyses to chart
the lifespan trajectory of the human whole-brain functional
connectome based on a single-site public dataset with
an age range of 7–85 years. As noted, the human brain’s
structure and function undergo substantial changes during
normal development and aging. In this study, we sought
to determine whether and how the topological organiza-
tion of functional brain networks (including global network
structures and pivotal regions/connections) changes with
age across a wide age range encompassing most of the lifes-
pan.

2. Materials and methods

2.1. Participants and data acquisition

The present study included a total of 126 healthy,
right-handed individuals (age range, 7–85 years; mean
age, 36.8 ± 21.2 years; 68 males and 58 females; Supple-
mental Figure 1) from the NKI/Rockland Sample (NKI-RS),
which is provided by the Nathan Kline Institute (NKI,
NY, USA) and publicly available at the International Neu-
roimaging Data-sharing Initiative (INDI) online database
(http://fcon 1000.projects.nitrc.org/indi/pro/nki.html)
(Nooner et al., 2012). The NKI institutional review board
approved all approvals and procedures for collection
and sharing of data and written informed consent was
obtained from each participant. For those children who
were unable to give informed consent, written informed
consent was obtained from their legal guardian. Further
details regarding the study image acquisition protocol
are available on the INDI website. To date, there are
three papers published only based upon a subset of
NKI-RS sample (Uddin et al., 2011; Oler et al., 2012; Laird

Open access under CC BY-NC-ND license.
studies. In addition, Mwangi et al. (2013) employed
188 diffusion tensor imaging datasets of this sample to
study the brain structure across the lifespan. A recently
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accepted work used the same datasets as the current
work (Yang et al., 2013) explored default network changes
across the lifespan. A detailed table of the subjects’ INDI
database identifiers, corresponding age and sex and a
distribution histogram of the subjects are provided in the
Supplementary materials (Figure S1, Table S1).

”All subjects were scanned using a Siemens TrioTM
3.0 Tesla MRI scanner. The R-fMRI scans were then
collected using an echo-planar imaging (EPI) sequence
(time repetition (TR) / time echo (TE) = 2500/30 ms, flip
angle (FA) = 80◦, field of view (FOV) = 216 × 216 mm2,
voxel size = 3.0 × 3.0 × 3.0 mm3, number of slices = 38).
The scanning lasted 650s (∼10 minutes), which con-
sisted of 260 contiguous functional volumes. The subjects
were instructed to keep their eyes closed, relax their
minds, and remain as motionless as possible during the
EPI data acquisition. The 3D T1-weighted images were
acquired using a magnetization-prepared rapid gradient
echo (MPRAGE) sequence (TR/TE = 2500/3.5 ms, inver-
sion time = 1200 ms, FA = 8◦, FOV = 256×256 mm2, voxel
size = 1.0 × 1.0 × 1.0 mm3, number of slices = 192) and were
used for spatial normalization and group-specific template
generation.”

2.2. Data preprocessing

Data preprocessing was performed using the Con-
nectome Computation System (CCS: http://lfcd.psych.ac.
cn/ccs.html) (Zuo et al., 2013). The CCS provides a common
platform for brain connectome analysis by integrating the
functionality of AFNI, FSL and Freesurfer. The preprocess-
ing contained both functional and structural processing
steps. Briefly, functional preprocessing included the fol-
lowing: (i) discarding of the first four EPI volumes from
each scan for signal equilibration, (ii) slice timing correc-
tion for timing offsets, (iii) 3D geometrical displacement
correction for head motion, (iv) 4D global mean-based
intensity normalization. Furthermore, (v) given recent con-
cerns about the influence of micro-level head motion
on functional connectivity and graphical network metrics
(Power et al., 2012; Satterthwaite et al., 2012; Van Dijk
et al., 2012), the Friston-24 model (Friston et al., 1996),
which has been proven to well remove motion artifact (Yan
et al., 2013), was employed here. Thus, we did nuisance
correction by regressing out 24 motion signals, includ-
ing realigned data on 6 head motion parameters, 6 head
motion parameters one time point before, and the 12 corre-
sponding squared items, individual global means, and WM
and cerebrospinal fluid (CSF) mean signals derived from
the WM/CSF masks output by the segmentation routine
of Freesurfer. Final steps include (vi) band-pass tempo-
ral filtering (0.01–0.1 Hz) and (vii) removal of linear and
quadratic trends. The structural processing steps included
the following steps: (i) removal of the MR image noise using
a spatially adaptive non-local means filter, (ii) brain surface
reconstruction via the recon-all command in Freesurfer and
(iii) spatial normalization from individual functional space

to MNI152 standard brain space (FLIRT + FNIRT in FSL). A
customized group T1 template in the MNI standard space
was generated to reduce the error term resulting from
image registration and bias in template selection. Finally,
Neuroscience 7 (2014) 76–93

each subject’s four-dimensional residual time-series in
native space was registered to the standard space with a
3-mm resolution.

2.3. Network construction

In this study, we constructed macro-scale functional
networks with nodes for brain regions and edges for inter-
regional functional connectivity (Bullmore and Sporns,
2009; He and Evans, 2010). Specifically, to define the net-
work nodes, a group mask in the MNI152 standard space
was first generated, which includes all GM (GM tissue prob-
ability > 0.2) voxels with non-zeros standard deviations of
the BOLD time series. The mean GM probability map was
obtained from all individuals’ GM segmentations. We then
divided the group mask into a total of 1024 contiguous
and uniform regions of interests (ROIs) using a random
partitioning procedure (Zalesky et al., 2010). To define
network edges, we computed the intrinsic functional con-
nectivity for each pair of 1024 ROIs by computing Pearson
correlation coefficients between the regional mean time
series. These correlation coefficients were converted to Z-
values via using Fisher’s r-to-z transform to improve the
normality, resulting in a symmetric 1024 × 1024 Z-value
connection matrix (i.e., functional connectivity matrix) for
each subject. To remove spurious correlations, we set the
matrix elements (correlations) with p-values higher than
a statistical threshold (p > 0.05, Bonferroni-corrected) to
zero. Due to the ambiguous biological explanation of nega-
tive correlations (Fox et al., 2009; Murphy et al., 2009), we
restricted our analysis to positive correlations.

2.4. Network analyses

We systematically analyzed the global, regional and
connectional properties (for illustrations, see Fig. 1) of the
resultant brain functional networks as follows.

(i) To examine the global network properties, we first
explored the topological efficiency, modularity and vul-
nerability/robustness of the brain networks, which are
described briefly below.

Network efficiency: Specifically, for a weighted network
G with N nodes, the topological length or distance of each
edge is assigned by computing the reciprocal of the edge
weight. The path length between any pair of nodes is
defined as the sum of the edge lengths along the path and
the characteristic path length is the length of the shortest
ones. The inverse of the harmonic mean of the character-
istic path length between each pair of nodes within the
network is defined as the global network efficiency:

Eglob(G) = 1
N(N − 1)

∑
1≤i,j≤N,i /= j

1
Lij

(1)
where Lij is the characteristic path length between nodes
i and j in the network. The global efficiency of network G
measures the global efficiency of the parallel information
transfer in the network (Latora and Marchiori, 2001, 2003).

http://lfcd.psych.ac.cn/ccs.html
http://lfcd.psych.ac.cn/ccs.html


M. Cao et al. / Developmental Cognitive

Fig. 1. Illustrations of network measures. A weighted graph composed of
18 nodes and 32 edges is shown as an example. The line thickness repre-
sents the connectional weights. (A) depicts the characteristic path length
between nodes a and b. There are many ways between nodes a and b,
but the shortest one (i.e., the characteristic path length) is 3, indicated
by the red lines. (B) shows that the connectivity strength of node c (red
color) is calculated as the average of the weights of the edges (red lines)
linking with it. Node c is a highly connected hub, with a relatively highly
dense connectivity level. All hubs in this graph are shown as larger dots.
(C) shows the presence of a clustered module, as indicated by seven nodes
(encircled in blue) being mutually strongly interconnected, but sparsely
connected to the rest of the network. (D) indicates the rich-club organiza-
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ion (red dots and lines), which is formed by the densely inter-connected
ubs c, d and e. (For interpretation of the references to color in this figure

egend, the reader is referred to the web version of this article.)

he local network efficiency is defined as the average of the
lobal efficiency of each node’s neighborhood sub-graph:

loc(G) = 1
N

∑
1≤i≤N

Eglob(Gi) (2)

here Gi denotes the sub-graph composed of the nearest
eighbors of node i. The local efficiency reveals how well
he network tolerates faults and illustrates the efficiency
f communication among the first neighbors of the node i
hen it is removed.

Modularity: Modularity, which refers to the existence of
ultiple densely connected modules of brain regions, is a

entral principle in brain network organization (Meunier
t al., 2009b). To explore the significance of the modular
tructure in the functional connectome, we calculated the
odularity index Qmax using a spectral optimization algo-

ithm (Newman, 2006). For a given partition p of a weighted
etwork, Q(p) is defined as:

(p) =
Nm∑
i=1

[
wi

W
−

(
Wi

2W

)2
]

(3)

here Nm is the number of modules, W is the total weight
f the network, wi is the sum of the connectional weights
etween all nodes in module i and Wi is the sum of the

ll regional functional connection strengths (i.e., rFCS, see
elow for details) in module i. Qmax is the largest net-
ork modularity resulting from a specific partition p. One
undred corresponding random networks with the same
Neuroscience 7 (2014) 76–93 79

number of nodes, edges and degree distribution as the
real networks using Maslov’s wiring algorithm (Maslov and
Sneppen, 2002) were generated for comparison. Each edge
weight was retained during the randomization procedure
to preserve the weight distribution of the network.

Notably, besides examining the absolute network prop-
erties based on the correlation thresholding method, we
also examined the relative network properties based on
density thresholding networks considering that different
numbers of edges in networks could interfere with detect-
ing age-related differences in topological organization (He
et al., 2009; Rubinov and Sporns, 2010). We constructed
the relative networks at 5 different connection densities
(for definition, see below) in a range of 5–20% (the den-
sity range of the absolute networks of all subjects) and
calculated the corresponding properties of each network.
The graph metrics were then averaged across the density
range for each subject to reduce the dependency of results
on arbitrary choice of a signal connection density (Rubinov
and Sporns, 2010). The absolute network metrics capture
the network properties but cannot completely detect the
alterations in the topological organization over the lifes-
pan because there are a different number of edges in each
network. The relative network metrics based upon same
density thresholds capture the changes in network orga-
nization of each subject by imposing on each network the
same number of edges for compensatory adaptations. Thus,
the absolute and relative properties measures provide a
way to characterize fully the organizational differences in
the functional networks across individuals (He et al., 2009).

(ii) To explore nodal properties, we considered the rFCS
(i.e., the weighted degree centrality) due to its high
test–retest reliability at both the parcel and voxel lev-
els (Wang et al., 2009; Zuo et al., 2012). Given a brain
region i, its rFCS is defined as:

rFCS(i) = 1
N − 1

∑
1≤j≤N,j /= i

wrij
(4)

where wrij
is the weight or strength of edge rij linking node i

and j, i.e., the Pearson correlation coefficient. rFCS measures
the average functional connectivity strength of this region
i to all other regions in the brain network.

Regions with higher (>1 SD beyond the mean) rFCSs,
referred to as hubs, are thought to play important roles in
the communication of information in brain connectomics
(Buckner et al., 2009; Cole et al., 2010; Zuo et al., 2012). In
this study, we further explored the connectivity patterns
among these functional hubs. We considered the hubs and
their connections as a sub-network and calculated the cor-
relation density using the weighted rich club coefficient
measure ˚, which was computed as the ratio between the
sum of weights of E connections between hub regions and
the strongest E connections for the whole network, which
˚ = Ewei∑E
j=1Wranked

(5)
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where Ewei is the sum of weights of connections between
the hub regions, and Wranked is a vector of all connections
in the examined network ranked by weight. A signifi-
cantly greater rich club coefficient in a brain network
than expected by chance (i.e., the results of random net-
works) indicates the existence of a rich club organization.
In other words, the hub nodes are more densely connected
among themselves than non-hub nodes and thus form a
highly interconnected club. For each brain network, the
rich club coefficients of 100 corresponding random net-
works, ˚random, were computed. The overall ˚random was
computed as the average rich club coefficient over the 100
random networks. The normalized rich club coefficient,
˚norm, was computed as follows:

˚norm = ˚

˚random
(6)

To evaluate the reproducibility of rich club analysis, we
also used four other thresholds to define the hub regions
(rFCS > 0.5, 0.75, 1.25, 1.5 SD beyond the mean).

(iii) To explore the properties of functional network
connectivity, we employed three measures: net-
work connection density; network mean connectivity
strength; and network mean anatomical distance.
Briefly, for a network G with N nodes and K edges, the
network density was calculated as follows:

D(G) = 2K

N(N − 1)
(7)

which scales the number of edges existing in the network.
The network mean connectivity strength was calculated as
the average of the strength across all of the existing edges
in the network:

Str(G) = W

2K
(8)

where W is the total connectional weights of the network.
For each connection in the functional network, we defined
its anatomical distance approximately as the Euclidean dis-
tance between the two nodes. Further, we calculated the
network mean anatomical distance as follows:

Dis(G) =
∑

1≤i,j≤Ndrij

2K
(9)

where drij
is the anatomical distance of edge rij. Notably, we

further grouped the connections of each subject’s network
into 17 bins with a 10-mm step according to the connec-
tions’ anatomical distances. The connection number, the
occupied proportion of the whole edges and the mean con-
nectivity strength of each bin were then calculated.

2.5. Statistical analyses

To determine the changes in the functional connec-
tome across the lifespan, a general linear model (GLM)
was used for each metric as follows. (i) To explore lin-

ear or quadratic age effects, we used two multiple linear
regressions that modeled the targeted property with age
or age2 as predictors along with three other covariates
that included sex (female 1, male 0), one head-motion
Neuroscience 7 (2014) 76–93

covariates, mean frame-wise displacement [meanFD, for
calculation method, see Power et al. (2012)], and temporal
signal-to-noise ratio [tSNR, for calculation method, see Van
Dijk et al. (2012)], which was used to estimate data quality.
Notably, the meanFD of all subjects was <0.50 mm (range,
0.03–0.43 mm; mean, 0.14 mm; SD, 0.08), which indicates
that the subjects included in this study all had rather small
head motions. The meanFD positively correlated with age
(p < 0.0001, r2 = 0.25; Figure S2), while no significant sex
effect was detected (p = 0.10). Specifically, the GLM models
were separately formulated as follows:

Y = ˇ0 + ˇ1 × age + ˇ2 × sex + ˇ3 × meanFD + ˇ4 × tSNR

(10)

Y = ˇ0 + ˇ1 × age + ˇ2 × age2 + ˇ3 × sex + ˇ4 × meanFD

+ ˇ5 × tSNR (11)

Akaike’s information criterion (AIC) (Akaike, 1974;
Hurvich and Tsai, 1989) was used to determine the model
with the best fit. One sample t-tests were performed on
the regression coefficients of the predictor variables. For
network properties exhibiting significant quadratic age
effects, the following equation was further used to deter-
mine the peak age:

Agepeak = −ˇ1

2ˇ2
(12)

(ii) To explore the sex-related differences and their devel-
opment, we used the following GLM model, which
included sex and age-by-sex interaction as predictors,
to detect both positive (female > male) and negative
(male > female) contrasts as well as positive and neg-
ative age-by-sex interactions:

Y = ˇ0 + ˇ1 × age + ˇ2 × sex + ˇ3 × sex × age + ˇ4

× meanFD + ˇ5 × tSNR (13)

2.6. Regional parcellation approaches

Several studies have demonstrated that the quantifi-
cation of topological organization of brain networks is
parcellation-dependent (de Reus and van den Heuvel,
2013; Wang et al., 2009). Although the high-resolution,
randomly-generated template we used may positively
impact the consistency of several graph characteristics
(Fornito et al., 2010; van Wijk et al., 2010; Zalesky
et al., 2010), we also employed two low-resolution func-
tional atlases, L-Yeo131 (Yeo et al., 2011) and L-Dos160
(Dosenbach et al., 2010), to determine whether age-related
differences were influenced by parcellation methods.
Specifically, the brain is parcellated into 7 cortical networks

in the L-Yeo131 atlas including 57 parcellation elements
(parcels) in the cortex and 8 subcortical parcels (i.e.,
amygdala, caudate, hippocampus, accumbens-area, pal-
lidum, putamen, thalamus-proper and cerebellum-cortex)
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or each hemisphere and brain stem. The L-Dos160 we used
as identical to that used by Dosenbach et al. (2010), which
as derived from a series of meta-analyses of task-related

MRI studies.

.7. Validation analyses

Given the controversy surrounding the idea that global
ignal regression (GSR) can introduce negative correlations
nd reshape the distribution of functional connectivity
cross the whole brain (Fox et al., 2009; Murphy et al.,
009), we repeated the analyses without GSR to assess
he influence of this preprocessing, although we focused
xclusively on positive correlations in the present work.

. Results

.1. Age-related changes

.1.1. Global properties
The ‘absolute’ thresholding approach (Hayasaka and

aurienti, 2010; van den Heuvel et al., 2008, 2009),
hich only preserves the significantly existing corre-

ations, produced individual brain networks containing
ifferent edge numbers, resulting in a connection density
ange of 5–20%. Of the 126 networks, 83 were fully con-
ected; the remaining had at least 99.0% of their nodes

ully connected. Although age and density were unrelated
r = −0.08, p = 0.35), we employed a second ‘relative’ thresh-
ld method in which networks were constructed with
he same density threshold value to have the same edge
umbers. To characterize the age effects on the global
etwork topological properties, three key graphic met-
ics were employed, network efficiency (global efficiency
nd local efficiency) and modularity, which were all calcu-
ated based on both ‘absolute’ and ‘relative’ networks. We
ound significant age-related differences in network local
fficiency and module structure. The absolute global effi-
iency of brain functional networks showed no significant
elationship with age, while the local efficiency showed
n inverted U-shaped trajectory (absolute global effi-
iency: p = 0.13, r2 = 0.12; local efficiency: p = 0.03, r2 = 0.21;
ig. 2A). Although all individual brain networks exhib-
ted significantly modular structures across the lifespan
all Z-scores > 113.3, p < 0.0001), the absolute modularity
ecreased linearly with age (p < 0.001, r2 = 0.15; Fig. 2A).
otably, similar age-related differences were observed for
oth relative global and local efficiency (relative global effi-
iency: p = 0.13, r2 = 0.12; local efficiency: p = 0.09, r2 = 0.14;
ig. 1B). The relative modularity also decreased linearly
ith age (p < 0.001, r2 = 0.22; Fig. 2B). The modularity num-

er did not differ significantly with age for either the
bsolute or the relative functional networks.

.1.2. Regional properties
Using a weighted degree centrality metric, rFCS, we

dentified the most highly connected regions (i.e., hubs) of

he networks. The brain hubs were predominantly located
n the default-mode (e.g., medial frontal and parietal
ortices as well as the lateral temporal and parietal cor-
ical regions), attention-related regions (e.g., insula, dorsal
Neuroscience 7 (2014) 76–93 81

anterior cingulate cortex (ACC), lateral frontal cortex and
temporal-parietal junction) and the visual cortex (Fig. 3A
and B). Notably, both the mean rFCS map across all sub-
jects and the fitted rFCS maps of different age populations
were highly similar to the hub probability map derived
from all subjects (r = 0.54 ± 0.12, ps < 0.001; Fig. 3C). Fur-
ther analyses revealed that the brain hubs were densely
connected: the weighted rich club coefficients, ˚, of the
sub-network composed of brain hubs were significantly
larger than those of matched random networks, ˚random
(all Z-scores > 20.51 ps < 0.001). In addition, an increasing
mean ˚norm over a range of hub thresholds was observed
(Fig. 4A). This result suggests that the functional networks
of the human brain contained a rich club architecture in
which the highly connected regions were more densely
linked among themselves than the weakly connected
regions. Fig. 3C shows the rich club structure of the group-
mean brain network. Notably, the rich club phenomenon
has been recently demonstrated in the human brain struc-
tural connectome (Collin et al., 2013; van den Heuvel et al.,
2012; van den Heuvel and Sporns, 2011). Intriguingly, the
normalized rich club coefficient ˚norm showed inverted-
U shaped lifespan trajectories (p = 0.01, r2 = 0.10; Fig. 4B),
indicating that the brain’s functional rich club architec-
ture increased until approximately 40 years of age and
decreased at older ages. These findings persisted over a
range of hub thresholds (Figs. 4A and S3). The 3D surface
visualizations of the results were implemented using the
Brain Net Viewer (www.nitrc.org/projects/bnv) (Xia et al.,
2013).

We also identified the brain regions showing significant
age-related changes in the rFCS across the lifespan (Fig. 5,
p < 0.05, FDR-corrected). Linear age-related decreases in
rFCS were predominantly located in several default-mode
regions (bilateral medial prefrontal cortex), attention
regions (bilateral insula), visual cortex (bilateral middle
occipital gyrus and right calcarine) and subcortical regions
(bilateral putamen and left caudate; Fig. 5A). Part of the
left precuneus showed a linear decreasing trend with age
(p = 0.01, uncorrected; Figure S4 A). The rFCS of the left sup-
plementary motor area, the right inferior temporal gyrus
and the left temporal pole increased significantly with age
(Fig. 5A). The positive quadratic (U-shaped) trajectories of
rFCS with age were mainly located in the parahippocam-
pus and thalamus (Fig. 5B). Negative quadratic age effects
(inverted-U shaped) were found in the lateral frontal, pari-
etal and temporal regions (inferior frontal gyrus, precentral
gyrus, postcentral gyrus, inferior parietal gyrus, rolandic
operculum, middle temporal gyrus and inferior temporal
gyrus), and cuneus (Fig. 5B). Bilateral middle frontal gyrus,
medial superior frontal gyrus, and left intraparietal sul-
cus all showed a trend of negative quadratic age effects
(p < 0.01, uncorrected; Figure S4 B). Most of these age-
related regions were identified as hub regions. The rFCS
maps for every decade are shown in Fig. 3C.

3.1.3. Connectional properties

While the network density showed no significant

age effects, the network mean connectivity strength
(p = 0.006, r2 = 0.28) and the network mean anatomical
distance (p < 0.001, r2 = 0.11) followed negative quadratic

http://www.nitrc.org/projects/bnv
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Fig. 2. The lifespan trajectories of functional network efficiency and modularity. (A) The lifespan trajectory of absolute network global efficiency, local efficiency and modularity. (B) The lifespan trajectory of
relative network global efficiency, local efficiency and modularity. The dark dots represent the adjusted results of each subject after regressing out sex, head motion and image quality. The curve fits are shown
by the dark lines; the red pentagrams represent the peak age. The solid lines show the significant relationships, while the dotted lines show the non-significant trends.
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rajectories over the age range (Fig. 6A and B). The distance-
ssociated connection analyses revealed that the pro-
ortions of short-distance connections showed U-shaped
rajectories with age with peak ages at approximately 40
ears (10–60 mm, ps < 0.02, r2 = 0.13 ± 0.03), while the pro-
ortions of long-distance connections showed inverted
-shaped trajectories with peaks around 45 years of age

70–140 mm, p < 0.01, r2 = 0.11± 0.038; Fig. 7A). It should
e noted that for both short- and long-distance con-
ections, when the connections were longer, the peak
ges were older. In addition, the number of these con-
ections showed no significant age effect (p > 0.07). The
orrelation strengths of both short- and long-distance con-
ections exhibited negative quadratic age-related changes
20–160 mm, p < 0.02, r2 = 0.13 ± 0.03); however, the con-
ections shorter than 20 mm decreased linearly with age
p < 0.01, r2 > 0.17; Fig. 7B).

.2. Sex-related differences

Significant sex differences were observed for
any global properties including global efficiency

male > female, absolute: p = 0.001, relative: p < 0.001),
ocal efficiency (male > female, absolute: p = 0.01, relative:
= 0.005; Figure S5). In addition, the network density

p = 0.008) and connectivity strength (p = 0.02) were higher
n males than females (Figure S5). Other metrics such as

odularity and normalized rich club coefficient showed
o significant sex differences. For nodal properties, the
ales showed higher connectivity strength in the left

upplementary motor area, insula and bilateral puta-
en (p < 0.05, FDR corrected). Only the cerebellum crus1

howed a significant sex and age interaction effect (p < 0.05,
DR corrected). We did not observe any significant sex by
ge interaction effects in any other network property (i.e.,
lobal or connectional).

.3. Parcellation-scheme influences

Comparable results were obtained for other two low-
esolution parcellation schemes. No significant age-related
ifferences in network density were detected for either
emplate (L-Dos: p = 0.18; L-Yeo: p = 0.52). Furthermore,
ll main topological findings obtained using the high-
esolution template were reproduced under at least
ne low-resolution functional template (Fig. 8). Some
arcellation-based differences emerged. Specifically, we
bserved linearly decreasing global and local efficiency
nder the L-Dos template and preserved modularity and
onnectivity strength under the L-Yeo template (Fig. 8).
iven the incomparability of nodal location across the var-

ous parcellation schemes, we did not describe the results
f the node and connection analyses.

.4. Robustness of findings

Regarding network analysis without GSR, we observed

hat several metrics, including the mean connectivity
trength, mean anatomical distance, global efficiency, local
fficiency, and normalized rich club coefficients showed
ge-related trajectories similar to the results with GSR,
Neuroscience 7 (2014) 76–93 83

whereas modularity became insensitive to age effects (Fig-
ure S6). Notably, because the network density showed no
significant correlation with age (p = 0.32), we only calcu-
lated the global network properties of ‘absolute’ networks
here for the consideration of the calculated amount.

4. Discussion

We employed R-fMRI data and graph-theory methods to
systematically characterize topological age-related effects
in the global and regional organization of the human brain
functional connectome across the lifespan (7–85 years).
Several previous studies used the NKI-RS sample we used in
this work. Oler et al. (2012) and Laird et al. (2013) employed
subsets of the data to investigate the functional connec-
tivity patterns of amygdala and visual cortex in healthy
people but did not focus the lifespan age effect. In con-
trast, Uddin and colleagues chose the developmental and
adulthood parts of the NKI-RS sample for replication anal-
yses of the maturation of functional networks based upon
their datasets and confirmed that functional hubs cou-
pling is stronger in adults than that in children (Uddin
et al., 2011). This finding supports our observation of rich-
club in the functional connectomes across the human life
span. Using diffusion tensor imaging (DTI) datasets of the
NKI-RS sample, Mwangi and colleagues replicated previ-
ous findings that the white matter microstructure exhibits
nonlinear changes across the lifespan and found the whole-
brain DTI-derived scalar metrics can be useful for accurate
prediction of individual ages (Mwangi et al., 2013). Most
relevant to our work, using the same datasets, Yang and
colleagues demonstrated different lifespan trajectories of
the functional network connectivity derived by indepen-
dent component analysis between the default network and
the precuneus network (Yang et al., 2013). The finding that
the precuneus network declines with age is consistent with
our nodal strength of network connectivity.

Beyond these consistent results, this study mainly char-
acterizes topological age-related effects in the global and
regional network organization of the human brain func-
tional connectome by using the graph theory. Our main
findings included the following: (i) the brain networks
showed preserved high topological global efficiency and
negative quadratic (inverted-U shaped) local efficiency;
(ii) the brain networks exhibited non-random modular
and rich club organization, which were adjusted over the
entire lifespan; (iii) heterogeneous age-related effects were
mainly localized to hub regions in the frontal, parietal
and occipital lobes; and (iv) brain functional connec-
tions showed age-related changes, which were distance
dependent. Collectively, we observed significant topologi-
cal modification of the human brain functional connectome
across the lifespan, while the general structure of the con-
nectomics was stable over time. These results may be
relevant for understanding the changes in neural circuits
that underlie age-related variation in cognition and behav-
ior across the lifespan. These novel findings are discussed

below in details.

In our study, we found that the global efficiencies of
the brain functional networksshowed no significant age
effect over the lifespan while local efficiency increased
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l subject
map. (C
ion and
Fig. 3. Whole-brain rFCS patterns. (A) The hub probability map across al
an rFCS greater than 1 SD beyond the mean. (B) The group-averaged rFCS
each region for different ages were obtained after regressing out sex, mot

until about 30 years of age and then decreased in older

individuals. High global efficiency has been interpreted
as indicating an integrated network capable of rapid
information exchange among the distributed elements
(Bullmore and Sporns, 2012). A previous functional MRI
s. For each individual subject, the hubs were defined as the regions with
) The adjusted rFCS maps for every decade. The adjusted rFCS values for
image quality using the fitted general linear models selected by AIC.

study reported no significant changes in global efficiency

over development (Wu et al., 2013), which is consistent
with our results. When compared with adults, the global
efficiency of the brain functional networks in the elderly
has been detected as lower in the resting-state (Achard
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Fig. 4. Rich-club organization and its lifespan trajectories. (A) The group mean rich-club coefficient curve of brain functional networks for different hub
thresholds: rFCS > 0.5, 0.75, 1, 1.25, and 1.5 SD of the mean. A dark gray line indicates ˚, a light gray line for ˚random and a red line for ˚norm . The figure shows
rich-club behavior of the functional brain networks, showing an increasing normalized rich-club coefficient ˚norm for the threshold range. We show the
results of the rFCS > SD of the mean threshold to represent the main results. (B) Age-related change in ˚norm . The dark dots represent the adjusted results
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f each subject after regressing out sex, head motion and data quality ef
he peak age. (C) The rich-club origination of the group-averaged conne
onnections between them. (For interpretation of the references to color

nd Bullmore, 2007) but maintained during the domi-
ated hand grip task (Park et al., 2012). In addition, we
etected negative quadratic age effects on local efficiency
ver the lifespan. The high local efficiency,which indi-
ates highly clustered connections between topologically
earby neighbors, has been suggested to be correlated with
fficient information processing among functional special-
zed regions as well as high error tolerance (Bullmore and
porns, 2009; He and Evans, 2010; Sporns et al., 2005).
n this view, the inverted-U shaped change trajectory
f local efficiency supports the notion that function-
lly related regions or segregated functional processing
ystems emerge during development (Fair et al., 2009),
ptimize during adulthood and deteriorate with aging
Meunier et al., 2009a). Previous functional brain network

tudies have reported increases in local efficiency during
evelopment and its reduction with aging (Achard and
ullmore, 2007; Wu et al., 2013), which are consistent
ith our results. The brain networks are both topologically
e curve fits are shown by the dark lines; the red pentagram represents
he red dots represent the hub regions, and the blue lines represent the
gure legend, the reader is referred to the web version of this article.)

efficient and prudently anatomically wired. Considering
that we also detected distance dependent changes of
connections in proportion and strength over the lifes-
pan, the trade-offs between efficiency and energetic costs
may result in the maintained global efficiency and neg-
ative quadratic local efficiency over the entire age range
(Bullmore and Sporns, 2012). Collectivity, we demon-
strated the changing trajectories of functional network
efficiency over the entire lifespan.

Modularity is a central organizational principle for brain
networks, and a modular structure enables adaptability or
evolvability for information processing through the for-
mation of relatively independent functional communities,
within which regional nodes are densely interconnected
(Kirschner and Gerhart, 1998; Meunier et al., 2010, 2009b).

Thus, modularity is a related topological property with
clustering that favors specialized or segregated informa-
tion processing in the brain networks. From the perspective
of the entire lifespan, we demonstrated that the brain func-
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Fig. 5. Lifespan rFCS changes. (A) The regions showing significant linear age effects. (B) The regions showing significant quadratic age effects. p < 0.05, FDR correction was performed to correct for multiple
comparisons. The bottom row shows the developmental trajectories of certain, typical regions. INS.L, left insula; MPFC.Rm right medial prefrontal cortex; HIP.L, left hippocampus; SMG.R, right supramarginal
gyrus. The dark dots represent the results of each subject after adjusting for sex, head motion and data quality. The curve fits are shown by the dark lines; the red dot pentagrams represent the peak age. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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ig. 6. Lifespan trajectories of the network mean connectivity strength
ach subject after adjusting for sex, head motion and data quality. The c
nterpretation of the references to color in this figure legend, the reader i

ional networks exhibit a nonrandom optimized modular
tructure, which suggests that the key aspects of the func-
ional connectomics are conserved over the lifespan. We
ound a linear decrease in modularity over the lifespan.
revious studies have reported modularity to be consistent
hroughout brain development (Fair et al., 2009) and aging
Meunier et al., 2009a). This inconsistency may be related
o the age range distribution, as the developmental period
nly accounts for approximately one quarter of the entire
ifespan and these papers employed the method of groups
omparison. Network construction methods and network
omplexity/template resolution may also contribute to the
onflicting results.

Hub regions are believed to play vital roles in establish-
ng and maintaining efficient global communication among
arallel, distributed brain systems. Consistent with pre-
ious works (Cole et al., 2010; Liang et al., 2013; Tomasi
nd Volkow, 2011; Zuo et al., 2012), we observed that
he brain’s functional hub regions were predominantly
ocated in the default-mode, attention and visual networks.
otably, the brain hub spatial locations were preserved
cross the human lifespan, which reflects their relatively
table roles. Hwang and colleagues also reported that func-
ional hubs are stable over development (Hwang et al.,
013). Recently, seminal works by van den Heuvel and
porns have demonstrated the richness of hub connections
n the human brain structural network of white-matter
bers in healthy adults (Collin et al., 2013; van den Heuvel
t al., 2012; van den Heuvel and Sporns, 2011, 2013). Signif-
cantly denser connections between hub regions compared

ith non-hub regions form the rich club organization,
hich is high-cost but provides significant functional ben-

fits by enhancing not only global information flow but
lso the resilience of the network to hub attacks. In this
tudy, we observed the existence of rich club organization
n the functional network over the lifespan. Interestingly,
he rich club structure demonstrated significantly negative

uadratic age effects. As the rich club organization makes

mportant contributions to interregional information traf-
c and cognitive values in healthy populations (Bullmore
nd Sporns, 2012; van den Heuvel et al., 2012), changes
work mean anatomical distance. The dark dots represent the results of
s are shown by the dark lines; the red dots represent the peak age. (For
d to the web version of this article.)

with inverted U-shapes of this core architecture may corre-
late with high cognitive function changes over the lifespan
(Casey et al., 2000). Besides, previous findings about the
formation and degeneration of high functioning compo-
nents (Fair et al., 2008; Luna et al., 2010; Supekar et al.,
2010; Tomasi and Volkow, 2012), may be influenced by
the rich club changes. Similar lifespan trajectories of the
rich club organization and the strength and proportion of
long-distance connections may indicate that communica-
tion within these rich club regions plays a central role
in long-distance brain communication and in optimizing
global brain communication efficiency for healthy cogni-
tive brain functioning (van den Heuvel et al., 2012, 2009;
van den Heuvel and Sporns, 2011).

Age-related changes in the regional nodal properties
were predominately found in highly connected regions
such as default-mode, attention and visual regions. The
correlation strength of medial prefrontal cortex, precuneus
and insula regions linearly decreased with age. The default
mode and attention network regions have been reported to
decrease with aging (Andrews-Hanna et al., 2007; Tomasi
and Volkow, 2012). The left supplementary motor area
increased linearly over the lifespan. Previous studies have
found increased connectivity of this region during both
development (Wu et al., 2013) and aging (Tomasi and
Volkow, 2012). U-shaped lifespan trajectories were found
in thalamus, which is consistent with previous findings of
the rewiring and pruning of subcortical-cortical connec-
tivity during development (Supekar et al., 2009) as well
as increasing correlation strength during aging (Tomasi
and Volkow, 2012). Inverted U-shape lifespan trajectories
were found mainly in the dorsal attention and language
regions, such as the bilateral middle frontal gyrus, precen-
tral gyrus, left intraparietal sulcus, medial superior frontal
gyrus, inferior frontal gyrus, inferior parietal gyrus, rolandic
operculum, middle temporal gyrus and inferior temporal
gyrus, which appear to be among the last brain regions

to mature and which have been related to increasing
cognitive capacity during childhood (Casey et al., 2000).
In the recent remarkable work by Power and colleagues
(Power et al., 2013), they reported that degree-based hubs
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Fig. 7. Distance-dependent changes in the patterns of connectivity across the lifespan. The functional connections were divided into 17 bins based on anatomical distances (in 10-mm steps). The relationships
between the numbers/strengths of the connections of each bin and age were explored. (A) The lifespan trajectories of connection numbers. (B) The lifespan trajectories of connection strengths. Color represents
the significance of the age effects. Bottom row: typical lifespan trajectories of different changes. The dark dots represent the adjusted results of each subject after regressing out sex, head motion and data quality.
The curve fits are shown by the dark lines; the red dots represent the peak age. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. The lifespan trajectories of network properties under two low-resolution parcellation schemes. L-Dos, low-resolution Dosenbach et al.’s functional
atlas. L-Yeo, low-resolution Yeo et al.’s functional atlas. The dark dots represent the adjusted results of each subject after regressing out sex, head motion
and data quality. The curve fits are shown by the dark lines; the red dots represent the peak age. The solid lines show the significant relationships, while
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which we used in the current work) may heavily rely
n the subsystem sizes. In this case, the fact that the
ging effects mainly target the highly connected regions
ay indicate that these brain functional network sys-

ems altered over the lifespan. Power and colleagues also
ound that metrics like participant coefficient will per-
orm better in reflecting the regions’ role or centrality in
nformation transformation. The work of Zuo et al. also
uggested that multiple centrality metrics should be con-
idered to characterize different aspects of network hubs
n applications (Zuo et al., 2012). In that study, sub-graph

entrality tended more robust to community sizes. Future
ork should explore the age effects on regions from differ-

nt perspectives of the information flow in the functional
onnectomics with uses of multiple centrality measures.
ces to color in this figure legend, the reader is referred to the web version

We observed that the adjustment of the human func-
tional connectome over the lifespan was characterized
by both functional connectivity and anatomical distance.
The proportions of short- and long-distance connectiv-
ity showed inverted change trajectories: the proportion
of short-distance connections decreased during devel-
opment and subsequently increased with aging, while
that of the long-distance connections showed the oppo-
site change trajectories. The correlation strength of both
short- and long-connections exhibited inverted U-shape
change trajectories. Previous studies have demonstrated

that short-distance functional connectivity is greater in
children than adults (Dosenbach et al., 2010; Fair et al.,
2009; Supekar et al., 2009) and predicts brain matura-
tion (Dosenbach et al., 2010). Long-distance connections
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are enhanced during development (Fair et al., 2009; Kelly
et al., 2009; Supekar et al., 2009) and then become vulner-
able to aging effects (Tomasi and Volkow, 2012). Previous
work of Supekar et al. (2009) demonstrated that connec-
tivity rewiring at the neuronal level also operates at the
systems level to help brain reconfiguration. To such a
point, the synaptic pruning, which extends through child-
hood and adolescence (Huttenlocher et al., 1982), and the
inverted U-shaped white matter volume change (Giedd
and Rapoport, 2010; Good et al., 2001; Salat et al., 2005;
Sowell et al., 2003), which involves maturation of fibers,
myelination, decrease of myelin density and myelination
of white fibers, might explain the connection changes over
the lifespan. These findings indicate that the brain con-
nectome adaption continues through the lifespan, which
may correlate with underlying structural wiring changes.
Importantly, our findings provide a roadmap of the specific
function maturation and degeneration of brain pathways,
i.e., ‘local, become distributed and then revert back to local’.
In addition, short-distance connections were observed to
be greater than long-distance connections through the
lifespan in terms of intensity. This finding supports an econ-
omy in anatomical wiring costs in the human connectome
(Bullmore and Sporns, 2012) that has been consistently
demonstrated across species (Alexander-Bloch et al., 2013;
Markov et al., 2011).

The construction of functional brain network is also
modulated by sex. We detected significant sex effects on
network efficiency, network density, correlation strength
and some regions. Males showed a significantly higher
network density and correlation strength than females.
Thus, we inferred that males have higher cost than females,
which is consistent with previous white matter structural
network findings (Gong et al., 2009). Previous studies have
also detected a significantly higher global efficiency of func-
tional brain connectomics in males than females, while no
differences was found with regard to local efficiency (Wu
et al., 2013). Both females and males showed a similar
and preserved module and rich-club structure. For nodal
property, the regions related to motion showed a signifi-
cantly higher correlation strength in males compared with
females, which is consistent with previous findings (Zuo
et al., 2012).

Several issues should be considered in interpreting the
current findings. First, we regressed out the global sig-
nal to partly reduce physiological and other global noise.
We also repeated analyses without global signal regres-
sion and found that most of our findings were conserved,
and the modularity failed to detect age effects. This find-
ing might be an indication of the fact that global signal
removing reduces the effects of physiological and other
noise across the whole brain and makes the metrics more
comparable across participants. Second, to mitigate the
effects of in-scanner head motion, we used the Friston-
24 regression model in the preprocessing and added a
motion-related parameter, meanFD, in group level, which
has been proven to be a promising way to reduce the impact

of motion artifacts on both individual and group-level
outcomes (Yan et al., 2013). However, the effects of residual
motion may remain in our results. Specifically, head move-
ment has been found to have a distinct impact on long- and
Neuroscience 7 (2014) 76–93

short-connections, and it significantly correlates with age
(Mowinckel et al., 2012; Power et al., 2012; Satterthwaite
et al., 2012; Van Dijk et al., 2012), implying a complex
role of head motion in the changes of distance-dependent
connectivity. This important issue should be studied care-
fully in future. Third, it is challenging to map the brain’s
parcellation-based functional connectome appropriately
and precisely (Butts, 2009; Smith et al., 2011). We used a
random-generated high-resolution template and showed
the repeatability of most of our findings across differ-
ent parcellation schemes. Notably, non-uniform findings
between templates were also observed, which may orig-
inate from the differences in brain units. These findings
indicate that the age effects on functional networks
were template dependent. Nevertheless, the development
and adoption of novel network tools and whole-brain
connectivity-based parcellation approaches in the future
will provide additional insight into the age effects on the
functional connectome. Fourth, we attempted to explore
the age-related differences of brain functional networks
over a continuous age range that covered both develop-
ment and aging. However, the analyzed samples were
not perfectly distributed across the entire lifespan. The
number of young adults was greater than the number of
older people. We employed linear and quadratic (nonlin-
ear) models to explore the age changes across the human
lifespan. The incomplete distribution of ages in our sam-
ple may have affected parametric curve fitting. Exploration
of larger R-fMRI datasets using non-parametrical models
(e.g., smoothing splines) may reveal more robust and com-
plex maturational processes (Fjell and Walhovd, 2010).
Finally, the age-related functional connectome changes
were detected based on the cross-sectional data and thus
could be potentially influenced by unbalanced cohort dis-
tributions. Because different age cohorts may be different
in substantive ways, investigations of the longitudinal net-
work dynamics should be taken in the future to reveal
the nature of age-related changes (Fjell and Walhovd,
2010).

5. Conclusions

We detected significant age-related changes modeled
by the lifespan trajectories of the functional connectome.
These findings may provide novel insights into the neural
substrates underlying the behavioral and cognitive vari-
ability over the lifespan, which require verification in the
future by combining the neuroimaging data and behavioral
measurements. The present study reveals the dynamics of
the topological organization of the intrinsic network archi-
tecture in the functional connectomics across the human
lifespan and provides a baseline for evaluating the network
impairments of various neuropsychiatric disorders.
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