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Abstract

Interpersonal socializing is important to many sociological outcomes, but assessing the affective 

dynamics within interactional contexts is extremely challenging methodologically. As a first step 

toward capturing socializing and affective outcomes concurrently, this pilot study (n = 118) 

combines intensive daily surveys with a wearable sensor that tracked affective arousal. This 

approach allowed the operationalization of affect along its two primary dimensions, valence and 

arousal, which were then linked to periods socializing with a romantic partner, a best friend, 

and/or a group of friends. Although socializing predicted positive and negative affective valence 

concurrently in time, only socializing with groups of friends consistently predicted increased 

affective arousal. Findings for romantic partners and/or socializing with a close friend suggest 

that low arousal “downtime” with close intimates may also provide important social functions. 

This work demonstrates a new biosignaling approach to affective dynamics broadly relevant to 

emotion-related sociological research.
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The affective and emotional outcomes of social interactions underlie a diverse array of 

intra- and interpersonal phenomena. Peering into these dynamics quantitatively is extremely 

challenging methodologically, however, for two overarching reasons. First, social encounters 

vary along multiple axes of heterogeneity—the who, what, when, where, and why—when 

viewed on short-term time scales from one encounter to the next, and second, these 

short-term scales are inherently difficult to measure in the natural flow of life. However, 

developing new approaches to emotional and other health-related dynamics embedded in the 

microsociological flow of social life holds the potential to enhance research in numerous 

areas. For example, microsociological research emphasizes the importance of affective 

dynamics within the social contexts they take place in and additionally considers the chains 
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of interaction outcomes that over time come to broadly shape and direct individuals through 

life. In this vein, Collins (2004) described how successful interactions create emotional 

energy in the participants, supporting both positive affective outcomes at the individual level 

and interpersonal bonding at dyadic and larger group levels. Collectively, these bonds are 

proposed to produce solidarity in groups and to concatenate interpersonal bonds into social 

network structures, joining individual to collective social outcomes.

In general, social interactions can be both harming and protective (House, Landis, and 

Umberson 1988). For example, positive social interactions can offset the impact of 

low socioeconomic status on stress levels (Taylor and Seeman 1999), while lacking 

connection is a bigger risk factor for mortality later in life than smoking and obesity 

(Holt-Lunstad, Smith, and Layton 2010; Liu et al. 2017; Woodward et al. 2018). In fact, 

a perceived lack of meaningful social connection (i.e., loneliness) is associated with a 

diverse array of adverse outcomes (Goosby et al. 2013; Cacioppo and Cacioppo 2014), 

pointing to a need for research that goes beyond objective network connections or the 

amount of socializing (Cacioppo and Cacioppo 2014). New approaches to examining the 

microsociological processes underlying how individuals experience their social encounters 

is needed. For example, Goosby, Cheadle, and Mitchell (2018) described the physiological 

processes by which the social exclusionary experience of interpersonal racial discrimination 

affects health, which recent studies have tested by linking perceived discrimination during 

specific social encounters to concurrent sympathetic nervous system (SNS) activity tracked 

continuously using a noninvasive wearable sensor (Cheadle et al. 2020; Jelsma, Goosby, and 

Cheadle 2021).

Our goal in this article is to describe affective dynamics during common socializing 

encounters. Affect, or the feelings one has from moment to moment, is characterized along 

two primary dimensions (Russell 1980): valence (how positive or negative one feels) and 

arousal (the intensity of the feeling from low to high). To measure affective arousal, we used 

a wearable sensor of SNS arousal (i.e., electrodermal activity [EDA]) and time-synchronized 

this signal with reports of concurrent positive and negative affective valence every 15 

minutes throughout the day for up to two weeks. These measures were then linked to periods 

spent copresent with a romantic partner, a close friend, and/or a group of friends. With this 

approach, we sought to identify the associations between relationship context and affect. A 

key goal was to determine whether arousal was higher or lower on average in positively 

and negatively valenced encounters compared with baseline. As part of a larger project 

examining how individual and group dynamics feed into each other to mutually shape both 

intra- and interpersonal outcomes, this study demonstrates a new approach to measuring and 

interlinking how individuals feel when interacting with others.

Literature Review

Interaction Ritual Chain Theory

Humans are “hard-wired” to develop and maintain social connections (Massey 2002), and 

this drive to connect spans the life course (Zeman, Cassano, and Perry-Parrish 2006). Social 

network theory has long recognized that interpersonal associations are patterned and evince 

structure in ways that have considerable impacts on diverse facets of life (Christakis and 
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Fowler 2011; Zhang and Centola 2019). Recent trends in network theory emphasize network 

change through social selection processes such as homophily (McPherson, Smith-Lovin, 

and Cook 2001) and the endogenous constraints of local and global network structures that 

individuals are embedded within (Snijders 2001, 2017). This emphasis on dynamics has 

also introduced new insights into both how the behaviors and characteristics of individuals 

influence social network change over time (Cheadle et al. 2013) and how network processes 

affect individuals’ behaviors and characteristics (Steglich, Snijders, and Pearson 2010; 

Snijders, van de Bunt, and Steglich 2010).

Collins’s (2004) interaction ritual (IR) chain theory provides a microsociological framework 

that describes network structure at a point in time as a temporally smoothed and 

filtered representation of the amount and quality of the interactional histories among 

network members. Although network theory emphasizes connections based upon some 

relational criteria such as “best friend,” IR theory (IRT) accentuates the interactional 

histories that determine which relationships do and do not satisfy those criteria from 

the perspective of each participant. The conditions of IRs are physical copresence, the 

rapid and automatic synchronization of microbehaviors such as body movements and 

vocalizations, the intersubjective sharing of a focus of attention, and emotional synchronicity 

(Collins 2004). Successful IRs are proposed to generate positive “emotional energy,” a key 

behavioral motivator to renew associations with individuals and groups when encounters 

increase it. Viewed holistically, a social network measured at one point in time is a snapshot 

summarizing the intersection of the interactional and emotional histories among the set of 

potential interaction partners. For instance, a close friendship network is a summary of the 

feelings of bonding, trust, and closeness that have developed between each network member 

and the others who constitute their personal IR chain, while network change reflects the 

trajectories and discontinuities in these IR chains over time.

Recognizing the important role that interpersonal processes play in the dynamics of larger 

social network structures, we sought to identify microsocial time-scale dynamics within 

which affective outcomes could be embedded within socializing contexts with a romantic 

partner, a close friend, or a group of friends.

Affect, Emotion, and Measurement

Sociological traditions have emphasized specific emotions (e.g., shame; Scheff 1988) while 

illustrating the ways that social structure organizes, channels, and constrains emotions 

(Bonilla-Silva 2019; Hochschild 1990; Lovaglia and Houser 1996; Scheff 1988; Shott 1979). 

Our focus on affect is driven by measurement strategy, and measurement strategy is driven 

by biological, cognitive, and technological constraints. Affect, which reflects the ongoing 

stream of feelings from moment to moment, is a lower level concept than “emotion” that 

is rooted in two broad sets of physiological processes (Barrett 2018; Barrett, Quigley, and 

Hamilton 2016). The first is captured by the concept of allostasis, which refers to the brain’s 

anticipatory regulation of cardiometabolic, immune, and other systems (Sterling 2012). 

Allostasis, the process that manages cardiometabolic and immune resources and prepares the 

body to navigate the (commonly social) environment, refers to the “downstream” regulation 

of the body by the brain. The second concept is interoception, which refers to the rich 
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array of signals ascending from sensors monitoring states throughout the body and into 

the brain, where the information is then used in various ways (Chen et al. 2021; Craig 

2003). For example, the energized arousal feelings a youth may experience when socializing 

with friends reflects allostatic regulation to increase energy, as well as the interoceptive 

monitoring of these states, which are then summarized and experienced in consciousness as 

affect.

Affect is described along two primary dimensions of feeling, as shown in Figure 1 (Posner, 

Russell, and Peterson 2005; Russell 1980): negative to positive (valence; x-axis) and low 

to high arousal (y-axis). Affect is a fundamental feature of consciousness that is produced 

by the brain continuously (whether one is consciously aware of it or not), functioning 

like a barometer for what is happening in the body (Barrett 2020). It is important to 

recognize that the regulation of different physiological systems is done in anticipation of, 

and in response to, the environment (Sterling 2012). Affect is the root of emotion (Barrett 

2017), but emotion is much more complex, as it classifies affective feelings into more 

complex categories that often overlap and may only be subtly distinguished (Turner 2007). 

According to modern neuroscientific theories of emotions, people feel affect and learn 

how to interpret affect in terms of emotion concepts (Barrett 2018), tying emotions and 

cognitions together and situating them as a cultural product. Although there is considerable 

interest in classifying emotions from physiological, neural, and other signals (e.g., Dar et al. 

2020; Valenza et al. 2015), it is not yet possible to do so in the microsociological flow of real 

life.

Wearable sensors, however, allow researchers to track the arousal dimension of affect 

dynamically and noninvasively on the body (Picard, Fedor, and Ayzenberg 2016; Poh, 

Swenson, and Picard 2010). The arousal dimension of affect varies along the two divisions 

of the autonomic nervous system: the SNS (“fight or flight”) and the parasympathetic 

nervous system (PNS; “rest and digest” or “feed and breed”), which typically function 

inversely to each other. The SNS is particularly amenable to noninvasive measurement 

because sweating increases with arousal, changing the electrical characteristics of the skin 

and increasing the conductivity of the skin with a registration delay, as it takes time to 

sweat on the order of one to three seconds (Boucsein 2012). This “electrodermal activity” is 

considered a direct and linear index of SNS arousal.

However, because there are no available passive sensing technologies for affective valence, 

we adapted the day reconstruction method (Diener and Tay 2014; Lucas et al. 2021) as a 

structured daily diary in which participants independently indicated feeling negative and/or 

positive throughout the day. This structure allowed us to partially represent the affective 

state space depicted in Figure 1 when participants were and were not involved in social 

encounters. Although more work remains to be done on refining and expanding the affective 

and emotional coverage of ambulatory sensing technologies, the design presented here 

provides a starting point for dynamically capturing affective states and linking them to 

microsociological processes.

Zhang et al. Page 4

Socius. Author manuscript; available in PMC 2024 February 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Socializing Context and Affect

Our first goal in this article is to characterize how affective valence and arousal dynamics 

are commonly embedded in young adult socializing contexts. We focus on three common 

socializing contexts that are important for both adolescents and young adults of college age, 

the group upon which our analysis is based. First, we examine affect during periods spent 

with a romantic partner, periods that can be deeply intimate but ultimately cross through a 

range of emotions, particularly as many relationships during this period of the life course are 

exploratory (Furman, Brown, and Feiring 1999). Second, we assess the affect created when 

spending time with a close friend. Variations on the concept of a close friend are commonly 

used as the core framework for studying youth social experiences, and a close friend can 

also have a high degree of intimacy and closeness. Both romantic partners and close friends 

have what Goffman (1959) described as “backstage” qualities, as these relationships provide 

opportunities when people can let their guard down, relax, and be themselves (Gosnell, Britt, 

and Mckibben 2011; Kernis 2003). Youth often lead active social lives with a considerable 

“frontstage” spent interacting with and fitting into larger collectives, however. We therefore 

also examine affect in the context of groups of friends, a collective dynamic that is expected 

to lead to high degrees of positive and elevated affect.

However, high positive affective arousal is but one part of the equation for a successful 

social experience, as low-arousal recovery periods are likely to provide important restorative 

functions. In fact, rather than heightened arousal, recovery mechanisms may be critical 

for social support buffering during times of stress (Gosnell et al. 2011). Moreover, 

recovery may be an important component of backstage relationships. Romantic and close 

friendships, for example, likely support a range of affective states (Lishner, Batson, and 

Huss 2011). Emphasizing only positive affective arousal may lead to an underappreciation 

of the pathways by which interpersonal connections are strengthened and maintained. Time 

spent with romantic partners and or a close friend may also provide opportunities for the 

social embedding of low-energy states such as relaxation, serenity, and contentedness that 

are critical to supporting individual recovery (Collins, Welsh, and Furman 2009). In this 

way, finding individuals who support a range of affective states, including the expression 

of negative affect, may be a critical social goal that individuals pursue. These shared 

experiences may create cohesion out of dyadic and small intimate group settings by working 

in tandem with high-arousal experiences that support the formation and perpetuation of 

larger collectives in group settings. Accordingly, the affect generated in intimate small 

“backstage” group settings, compared with larger “frontstage” group settings, may differ in 

important ways, particularly with respect to the level and intensity of the affective arousal 

generated.

Humans are also highly attuned to negative social threats and monitor the environment 

constantly for potential exclusions (Cavanagh and Allen 2007). Boyns and Luery (2015) 

extend IRT by including negative emotional energy that arises from experiences of 

exclusion, withdrawal, and frustration at low levels, and conflict and aggression at more 

intense levels. Critically, negative social experiences are not uncommon as social networks 

are inherently multiplex and can be characterized along both positive and negative 

dimensions. For example, though social networks as commonly measured summarize 
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positive social interactions, they can also be assessed in terms of different dimensions 

of conflict such as bullying (Salmivalli, Huttunen, and Lagerspetz 1997) or enmity 

(Kitts 2006). Even specific relationships selected for positive affect can create frustration, 

disappointment, and anger (Lepore 1992). Most romantic relationships end (Simpson 1987), 

friendships during youth shift and change constantly (Collins and Laursen 2004), and group-

oriented interactions can also lead to negative social experiences (Rhee 2007).

Whereas the positive affective arousal created during successful social interactions is health 

promoting, negative social experiences are generally expected to be stressful and health 

harming. There is a considerable literature on the negative health effects of social exclusion 

and negative social experiences that adversely affect individual health by increasing negative 

affect (Cacioppo and Cacioppo 2014; Holt-Lunstad et al. 2015; Klinenberg 2016). The 

internalized threat of negative evaluations by others reflects needs for acceptance and social 

connection (Dickerson, Gruenewald, and Kemeny 2004; Smith, Birmingham, and Uchino 

2012). Accordingly, our second goal is to evaluate the links between socializing contexts and 

negative affective states.

Data and Methods

The data we use to evaluate social affect was collected as part of a pilot project that sought 

to develop new protocols for the use of ambulatory sensors in sociological research. The 

sample was recruited on a large, predominantly white midwestern university campus during 

the fall of 2016 and the spring of 2017. A key focus of the project was on the social 

experiences of racial/ethnic minority students, who were recruited through list server e-mails 

sent to campus groups focused on students of color, in addition to the distribution of flyers 

around campus (Jochman et al. 2019). Following an intake interview, fall 2016 participants 

were enrolled for a two-week period, while spring 2017 participants were enrolled for 

one week. Participation in the project involved the completion of daily diaries, distributed 

through text messages each morning and evening to assess daily experiences, activities, and 

sleep. The short morning survey asked about sleep quantity and quality, and a more detailed 

evening diary asked participants to document experiences and activities throughout the day. 

Each survey had a six-hour response window.

The daily diaries were complemented with biosignals collected on an Empatica E4, a 

wearable sensor aesthetically similar to a fitness tracker. The E4 devices were placed on 

the students’ nondominant wrist, and the data were uploaded each day to the cloud through 

a provided laptop. These devices provide more flexibility for users than others using the 

same sensor (discussed later), which traditionally have been wired and/or connected to the 

palm or fingers using gels and adhesives, which limit usability and durability over time 

(Boucsein et al. 2012). In contrast, the wrist-worn E4 used dry electrodes on the wrist so 

that it can be worn comfortably in the course of daily life and continuously within battery 

and storage limitations. Fall participants wore two wristbands so that lateralization could 

be assessed and had the potential to receive up to $270 in compensation upon completing 

all study procedures (two lab visits for the intake and exit interviews, all daily diaries, and 

for wearing the wristbands throughout the day) over the two-week period. Because access 

to laboratory space was limited, and because students wore a device on each wrist in the 
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fall, the number of participants who could be recruited was limited during this period. To 

increase enrollment, the second wristband was removed in the spring, and the duration of the 

data collection was halved. The incentive was accordingly reduced to $144 for completing 

all study procedures for one week of participation. All study procedures were approved by 

the university’s institutional review board.

Dependent Variables and Sample Selection

This study uses data from the Empatica E4’s EDA sensor, which provided a linear index 

of SNS arousal (i.e., affective arousal) from small changes in skin conductivity due to 

sweating (Garbarino et al. 2014; Picard et al. 2016; Poh et al. 2010). The EDA signal 

varies depending on sweating and can be used to measure affective arousal on the basis 

of the relationship between SNS arousal and sweat gland activity. As the SNS ramps up 

(i.e., as the affective arousal increases on the y-axis in Figure 1), sweat gland activity also 

increases. The addition of sweat affects the electrical characteristics of the skin (Boucsein 

2012), which can be measured by running a small current between two electrodes. This 

neuromodulated electrophysiological signal allows researchers to use these small changes in 

skin conductance as a proxy for emotional and affective arousal.

EDA data preprocessing followed the procedure outlined in Cheadle et al. (2020) and 

Jelsma et al. (2021). The raw signals from the sensor, which recorded four samples per 

second (4 Hz), were batched into 5-minute windows aligned to the top of the hour. 

The signal was then median-filtered to remove movement artifacts. Each window was 

subsequently processed using a reverse inference dynamic causal model to infer sudomotor 

neuron activity (SNA; i.e., sweating) from nonspecific skin conductance fluctuations in 

terms of the firing rate per unit of time (Bach et al. 2011; Bach and Staib 2015; see also 

Benedek and Kaernbach 2010a, 2010b). These 5-minute EDA-SNA activity rates were then 

grouped into 15-minute “moments” so that they could be time-synchronized with the diary 

surveys. The 5-minute momentary average, maximum, minimum, and maximum-minimum 

difference rates during each moment were then calculated. We used multiple EDA-SNA 

measure operationalizations to summarize different aspects of momentary arousal. Average 

EDA-SNA provides a scaled summary of total activity throughout the moment, while the 

maximum and minimum reflect the 5-minute highs and lows within each moment. The 

maximum-minimum difference captures spiking within the moment or baseline shifts when 

considered along with the minimum. We refer to moments with very low EDA-SNA rates as 

“zero moments” because no activity was recorded, possibly indicating a crossover from the 

SNS where PNS activity is dominant.

These EDA-SNA affective arousal measures were complemented with the daily survey that 

inquired about the affective valence component. For negative affective valence, participants 

were asked, “Think about how negative, anxious, bad, or stressed you felt throughout 

the day. Were there instances during the following three-hour periods when you felt very 

negative, anxious, bad, or stressed?” In the positive affect section, participants were asked a 

similar question: “Think about how positive, excited, or good you felt throughout the day. 

Were there instances during the following three-hour periods when you felt very positive, 

excited, or good?” If participants responded affirmatively to either independent statement 
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for a three-hour time period, they were directed to conditional questions to further detail 

their positive and negative experiences in 15-minute increments within each of the selected 

moments. This procedure allowed us to couple survey responses throughout the day to 

momentary EDA-SNA.

The final sample used for this analysis combined the daily diaries, transformed into within-

day moments, and the processed EDA-SNA momentary sensor data, along with the intake 

survey. Our final analysis sample of n = 118 participants provided nt = 43,406 observations 

out of the theoretical number of moments of nt = 60,984. To select the sample, there were 

initially 147 participants with sensor data out of a total of 151 participants. However, only 

142 participants were able to join together sensor, daily diary, and intake data. Of these, 

another 18 did not have valid sensor data between 7 a.m. and 12 p.m., the waking day, 

and so were removed from the study, reducing the sample size to 124 participants. Another 

4 participants showed no evidence of an EDA response despite providing a valid sensor 

stream. Finally, after removing empty moments due to the construction of lags, an additional 

two participants did not have sufficient observations to remain in the study. Some missing 

moments reflect hardware failures for the wearable device or nondelivered or nonreceived 

text-message survey links. Participants also removed devices at different times to charge and 

upload data, when participating in competitive sports, during activities they did not want to 

be tracked, and during periods of noncompliance.

Key Predictors

The main independent variables, being with a romantic partner, close friend, or a group of 

friends, were ascertained with the telescoping procedure described previously for affective 

valence. Each evening survey asked, “Over the course of the day, did you spend time 

with any of the following people: romantic partner, close friend, group of friends?” If a 

respondent indicated that they did, they were further prompted to select which three-hour 

blocks they spent within the relevant socializing context, then asked to indicate the specific 

moments within the selected three-hour blocks. Multiple selection was possible, meaning 

that respondents could be with different types of friends simultaneously at different times of 

the day.

Control Variables

Several within-day measures were included in the study to assist in characterizing common 

student experiences and activities throughout the day that could affect both EDA and 

socializing. These indicators captured when study participants had breakfast, lunch, and 

dinner; were in class, studying, or at work; or were exercising or napping. We also 

include measures for respondent’s age (centered), whether the respondent is Black (non-

U.S.-born or family, mostly drawn from a local refugee community), continental African 

(i.e., international student), Hispanic (reference category: African American), and female in 

models without person fixed effects. Time fixed effects were included to capture variability 

by time of day by day of week. Additionally, lagged variables for both EDA-SNA and 

valence were included to account for temporal dependence between moments.
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Analytic Strategy

The analytic strategy follows those of Cheadle et al. (2020) and Jelsma et al. (2021), who 

examined momentary affective dynamics in the context of discriminatory racial experiences. 

First, we test the hypothesis that socializing experiences are positively associated with 

concurrent momentary positive and negative dimensions of affect, measured as independent 

binary indicators that the state was recorded within each moment. We used participant-

nested multilevel logistic regression models for this analysis with coefficients capturing the 

difference in the log odds that positive or negative affect was reported versus moments when 

no such experience was recorded. Control variables included lagged positive and negative 

affect from the prior moment, race/ethnicity, meals, napping, exercise, in class, studying, at 

work, day number in the study, and fixed effects for hour of the day and day of week.

Next, we model EDA-SNA with participant fixed-effects linear regression models using 

standardized EDA-SNA measures with robust standard errors. For these analyses, each 

EDA-SNA operationalization was standardized within each person so that coefficients 

capture average associations when comparing individuals with themselves during moments 

when socializing was reported versus moments when it was not, all else equal. These models 

use the time-varying controls noted previously, in addition to lagged EDA-SNA from the 

prior moment, time of day by day of week fixed effects, and person fixed effects. The final 

EDA-SNA arousal analysis includes interactions between the socializing variables and the 

valence indicators.

Results

Descriptive Statistics

Descriptive statistics are presented in Tables 1 and 2. Our final analytic sample was 118 

participants who jointly contributed 43,406 moments. Of the 118 participants, 61 identified 

as Black (either African American or first- or second-generation immigrants to the United 

States), 15 respondents indicated their race to be continental African (international students), 

24 were Hispanic/Latinx, and 18 were white or Asian. The sample was 61.56 percent 

female, and the average participant was 20.41 years old and in their sophomore year of 

college. Approximately 24 percent of the sample participated in the fall study. EDA-SNA 

rates were highest during group settings for the average, maximum, and minimum but 

were similar to that for romantic partners for the maximum-minimum difference. These 

descriptive results suggest that arousal was sustained in group settings, while there is some 

evidence of arousal spikes when with a romantic partner. Notably, EDA-SNA is right 

skewed. As a relatively pure measure of SNS activity, it does not capture parasympathetic 

activity, resulting in about 60 percent of moments recording no EDA-SNA, which is why the 

statistical models use robust standard errors. Approximately 6 percent of moments involved 

socializing with a close friend or group of friends, and about 3 percent of moments were 

spent with a romantic partner. With regard to valence, negative affect was reported in about 5 

percent of moments, and positive affect was reported in about 14 percent of moments.
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Affective Valence

To test the relationship between positive and negative affect and types of socializing, we 

used participant-nested random-intercept logistic regression models. Coefficients (log odds) 

and standard errors are presented in Table 3. The odds of reporting momentary positive 

affect when with romantic partners is exp(1.115) = 3.05 times larger compared with baseline 

moments “alone” (i.e., not with a romantic partner, close friend, or group of friends; p < 

.001). The odds of reporting positive affect are also considerably higher both when with 

a close friend (exp[1.335] = 3.80, p < .001) and especially when with a group of friends 

(exp[1.864] = 6.45, p < .001) compared with baseline moments when participants did not 

report socializing per the included categories. However, the odds of reporting negative affect 

were also positively associated with socializing with romantic partners (exp[0.409] = 1.51, 

p < .01), a close friend (exp[0.758] = 2.13, p < .001), and/or a group of friends (exp[0.804] 

= 2.23, p < .001). Although affective valence is considerably more likely to be positive than 

negative, these results show that both affective states are more likely than neutral states when 

socializing.

Affective Arousal

The goal of analyzing momentary EDA-SNA is to examine how different types of social 

interaction impact affective arousal. For this analysis, we used person and time (time of 

day by day of week) fixed-effects linear regression models with robust standard errors. 

These models predicted the momentary EDA-SNA five-minute rate summaries standardized 

within person, controlling for the in the prior moment of the same operationalization. Four 

separate models, one for each operationalization of EDA-SNA arousal (average, maximum, 

minimum, difference), are presented in Table 4.

Across models in Table 4, spending time with a romantic partner was not associated with 

EDA-SNA. The coefficients were all very close to zero, suggesting that time with romantic 

partners was consistently neutral along the arousal dimension. Time with a close friend 

was associated with decreased arousal for average momentary EDA-SNA (b = 0.061, p = 

.009), maximum momentary EDA-SNA (b = 0.037, p = .09), and minimum EDA-SNA (b = 

0.061, p = .013). To provide a concrete interpretation, average momentary EDA-SNA was on 

average 0.061 standard deviations lower during moments when a student was with a close 

friend compared with baseline moments “alone,” adjusting for person-specific fixed effects, 

time of day by day of week trends, and the time-varying momentary within-day control 

variables. Given that both the maximum and minimum rates were lower during moments 

with close friends, it is not surprising that the difference was not statistically significant (p = 

.244).

Affective arousal was consistently higher during moments when students were with groups 

of friends. On average, during these moments compared with moments not with groups 

of friends, close friends, or romantic partners, average momentary EDA was elevated by 

0.17 standard deviations (p < .001), the maximum was elevated by 0.18 standard deviations 

(p < .001), the minimum was elevated by 0.16 standard deviations (p < .001), and the 

maximum-minimum difference was elevated by 0.09 standard deviations (p < .001). These 

results suggest both some spiking during moments with close friends compared with the 
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reference category as indicated by the maximum-minimum difference, as well as a rise in 

baseline EDA-SNA levels with the increase in the minimum momentary EDA-SNA. Time 

spent in groups of friends is therefore associated with a broad pattern of increased affective 

arousal, consistent with IRT predictions.

Table 5 depicts the interactions between positive or negative affect and socializing across 

momentary EDA-SNA operationalizations. This analysis allows us to address questions 

along the lines of whether affective arousal is higher during positively valenced socializing 

moments. The main effects for affective valence were not associated with arousal. Time with 

a romantic partner also was not associated with arousal, regardless of whether the moment 

was positively or negatively valenced with one exception, a decrease in the maximum during 

negatively valenced moments (b = −0.236, p = .017), which is more consistent with a 

sadness experience rather than, for example, anger.

Findings for moments with a close friend tracked closely to the main effects results 

reported in Table 4. However, this negative association was reduced to nonsignificance 

during positively valenced moments when summing the terms (average: F = 0.387, p = 

.534; maximum: F = 0.681; p = .409; minimum: F = 0.131, p = .717; maximum-minimum 

difference: F = 0.496, p = .481). Furthermore, there is evidence of EDA-SNA spiking during 

negatively valenced moments, as indicated by the rise in the maximum (b = 0.173, p = .01) 

and maximum-minimum difference (b = 0.199, p = .008) during these moments, though the 

total effects did not differ statistically (maximum: F = 0.091, p = .762; maximum-minimum 

difference: F = 1.536, p = .215). Considered collectively, these results suggest that affective 

arousal is lower during valence-neutral moments with friends, but people are otherwise 

arousal neutral during positive moments, and there is preliminary and only partial support 

for evidence of spiking during negative moments during moments spent with a close friend.

The main effects for time spent with a group of friends were reduced when the valence 

interactions were included. The overall trend was for considerably higher affective arousal 

during positively valenced moments: average, b = 0.128, p < .001; maximum, b = 0.138, 

p < .001; minimum, b = 0.121, p < .001; and maximum-minimum difference, b = 0.113, 

p < .01. These results are consistent with expectations from IRT. In fact, the approximate 

doubling of the effect sizes when comparing the interactions and main effects is consistent 

with the valence-arousal linearity assumption in IRT. None of the negative interactions 

are statistically significant, but the effect sizes are larger than for the positive interactions 

that were statistically significant, perhaps because there were fewer reported negative than 

positive moments overall. It is important to note that the total effects for negative affective 

arousal were statistically significant for average (F = 7.445, p = .006), maximum (F = 6.556, 

p = .010), minimum (F = 5.099, p = .024), and maximum-minimum difference (F = 4.392, p 
= .036). The group of friends results are therefore consistent with baseline IRT for positive 

valence and for the negative valence extension offered by Boyns and Luery (2015).

Discussion

This article contributes to a small but growing body of work examining affective and 

emotional differences in daily life (e.g., Daly et al. 2010) but differs from the heavy 
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individualist and psychological emphasis of most prior work by accentuating dynamics 

situated within common social interaction contexts. One overarching goal for this article 

has been to describe a new approach to capturing affect in the moment-to-moment 

flow of real life when socializing. We piloted a set of new procedures integrating daily 

diaries with guided day reconstruction techniques (Diener and Tay 2014; Kahneman et 

al. 2004; Lucas et al. 2021) along with a wearable sensor that captured affective arousal 

noninvasively on the body (Garbarino et al. 2014; Poh et al. 2010). Our hope is that 

intensive data collection designs will inspire new avenues for both discovery and theory 

testing within microsociological frameworks, while also providing quantitative complements 

to ethnographic and qualitative modalities. To these ends, we demonstrated links between 

affect and periods spent copresent with a romantic partner, a close friend, and/or a group of 

friends, all key contexts within which individual and small group emotional life is situated 

and that sustain and shape network dynamics on more abstract and collective levels of social 

organization over time.

Our results point to the importance of affective heterogeneity in social bonding. Time 

with romantic partners, for example, was positively associated with both positive and 

negative valence reports, but was not consistently associated with arousal. This period of 

early adulthood is, of course, one of romantic exploration. On one side, many of these 

relationships will likely end, so some negative valence moments are to be expected, and 

falling in love can also be a volatile and stressful experience (Simon and Barrett 2010; 

Simpson 1987). At the same time, romantic relationships may provide a safe place where 

frustrations and negative experiences can be explored, perhaps toward achieving some 

catharsis within a supportive context (Loving, Crockett, and Paxson 2009; Murray et al. 

2019; Ulmer-Yaniv et al. 2016). Our data, unfortunately, were not sufficiently detailed to 

explore negative affect at this level of detail. Notably, however, moments with a romantic 

partner tended to be affectively positive in valence, but neutral in terms of arousal, which 

is consistent with the hypothesis that many of these moments were restorative rather 

than arousing. In the future, theories of social interaction and emotional outcomes may 

consider both how low-arousal recovery states are implicated in bonding processes and 

how relationships create “downtime” moments backstage that support physiological and 

emotional recovery from the vicissitudes of life.

As with romantic partners, close friendships showed affective heterogeneity that spanned 

positive and negative experiences. Time with a close friend was also associated with both 

positive and negative affective valence, but arousal was on average lower compared with 

reference. Arousal was also indistinguishable from the reference in positively valenced 

moments, though there was evidence of arousal spiking during negative moments. Reasons 

for negative arousal are likely heterogeneous and could reflect both relationship dynamics 

and the backstage opportunities to explore and ruminate on other negative or troubling 

experiences safely with a trusted confidant. Unfortunately, our exploratory research design 

was not able to assess these forms of heterogeneity, which remain important contextual 

targets for future work.

Moments with romantic partners and close friends where affect was embedded within group 

contexts largely conformed to expectations from Collins’s (2004) classic IRT formulation, 
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as well as the expectations for negative affective arousal developed by Boyns and Luery 

(2015). It is important to note here that IRT, deriving from the Durkheimian notion of 

“collective effervescence,” is most strongly a theory of the group dynamics that support 

long-term group outcomes. A positive valence moment was most likely when with a group 

of friends compared with the other socializing categories, and arousal was higher, especially 

during positively valenced moments. Negative moments were also more likely than neutral 

moments compared with being “alone” vis-à-vis our socializing categories, and negative 

affect in the arousal also tended to be magnified during these moments. In short, arousal was 

intensified when socializing with groups of friends, regardless of the direction of valence. 

Although there is no guarantee that a social interaction with other individuals or in groups 

will produce positive affect, our results suggest that the way people feel while socializing is 

quite heterogeneous on short-term time scales.

This study is limited in important ways. For example, we measured only three different 

aspects of socializing, so our reference category may be somewhat admixed, likely 

decreasing effect sizes and introducing some ambiguity into our analysis. Addressing this 

issue should be a primary target in future work. In addition, though this design is extremely 

rich along the time dimension, our sample was small and, perhaps more important, was 

a convenience sample. Clearly, stronger sampling designs are needed, and we hope that 

demonstrations such as those provided here can help justify future studies. In general, there 

are many axes of heterogeneity that we could not explore but may be important: age and 

development, racial/ethnic background, gender dynamics and intersectionality, geographic 

and local cultural variabilities, and individual differences (Williams et al. 2011). We note 

that although there were significant race effects on negative affect in our models, the scope 

of this study is limited in how to assess race/ethnic affective differences in socializing 

contexts. Although previous research has examined race differences in the context of 

discrimination in this sample with explicit hypotheses (Cheadle et al. 2020), we do not have 

strong hypotheses about why these processes would differ across groups in the socializing 

contexts studied here. Because of our use of fixed-effects regression, any hypothesis would 

necessarily be one of moderation.

Our approach also linked experiences in real-world settings to short-term affect dynamics 

following prior work linking within-day affect variation to heart rate using the day 

reconstruction method diary technique (Daly et al. 2010). It is likely that the reconstruction-

based approach introduces some recall biases (Diener and Tay 2014; Lucas et al. 2021). 

At the same time, it is also true that gold-standard experience-sampling techniques are 

discrete and have important limitations when considered against the continuous signal 

streams provided by ambulatory sensors (Cheadle et al. 2020). In addition, it is worth 

noting that our approach has operationalized only short-term dynamics and was not able 

to assess socializing outcomes such as relationship stability or group cohesion over the 

longer term. Our approach to measurement also relied on self-reports, which we hope will 

be unnecessary in the future as sensors and machine learning techniques advance (e.g., 

Dar et al. 2020). Finally, the sensor we used also comes with important limitations. We 

measured affective arousal using a direct signal of SNS activity, but the sensor was unable to 

index PNS crossovers that directly index gradational variation in low-arousal states. Future 

research may consider the electrocardiogram, a more complex signal that includes SNS and 
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PNS arousal components, and that also contains rich information on valence (Ernst 2017). 

However, the electrocardiogram is a more invasive measure as it is typically measured on the 

chest using adhesive electrodes (e.g., Holter devices).

Conclusion

This article provides a first attempt at capturing affective dynamics within the natural 

flow of social life. Being able to measure such processes is key for understanding how 

individuals are moved by their interpersonal social experiences. Of course, when stepping 

back and expanding the view, these microsociological dynamics support and interact with 

larger-scale group and social network dynamics. Following IRT, we suggest that future 

research may consider the flow of affect within various social contexts as an important 

avenue in the study of social selection and influence in networks. For example, emotional 

arousal has been hypothesized to be a key mediator between stimulating social contexts 

such as parties and adolescent risk behaviors resulting from emotional susceptibilities 

due to patterns of neurobiological development (Steinberg 2010). Moreover, negative 

arousal is also a critical component of physiological stress in daily life and its long-term 

health implications over time. Considerable theoretical work (e.g., Collins 2004; Turner 

1988, 2007) has been dedicated both to emotional and social interaction dynamics, 

but measurement constraints combined with a lack of relevant data in traditional data 

sources has limited operationalization and testing. That is changing, however, with new 

technological developments that will help expand our ability to capture temporality in 

meaningful layers spanning from the microdynamic to long-term trends in social processes 

common in traditional sociological data sources. The work presented in this article, for 

example, demonstrates a novel biosignal approach to studying positive and negative affective 

dynamics in real time, providing a foundation for future research focused on how emotions 

are embedded in different constellations of socializing experiences.
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Figure 1. 
Circumplex model of affect.
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